
TypoScript Syntax and In-depth Study

Extension Key: doc_core_ts
Language: en
Version: 4.7.0
Keywords: typoscript, syntax, forAdmins, forIntermediates
Copyright 2000-2012, Documentation Team, <documentation@typo3.org>

This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3
- a GNU/GPL CMS/Framework available from www.typo3.org

Official documentation
This document is included as part of the official TYPO3 documentation. It has been approved by the
TYPO3 Documentation Team following a peer-review process. The reader should expect the information in
this document to be accurate - please report discrepancies to the Documentation Team
(documentation@typo3.org). Official documents are kept up-to-date to the best of the Documentation
Team's abilities.

Core Manual
This document is a Core Manual. Core Manuals address the built in functionality of TYPO3 and are
designed to provide the reader with in-depth information. Each Core Manual addresses a particular process
or function and how it is implemented within the TYPO3 source code. These may include information on
available APIs, specific configuration options, etc.
Core Manuals are written as reference manuals. The reader should rely on the Table of Contents to identify
what particular section will best address the task at hand.

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Syntax and In-depth Study

Table of Contents
TypoScript Syntax and In-depth Study
..1

Introduction...3
About this document...3
What's new..3
Credits..3
Feedback..3

Syntax...4
Introduction...4
Contexts...4
TypoScript syntax...4
Conditions..8
Includes..12

TypoScript Templates..13
Constants..13
Using constants..13
Declaring constants for the Constant Editor............15

Sorting out details..20
More about syntax, semantics and TypoScript
compared to XML and XSLT......................................20
Where is TypoScript used?...21
Entering TypoScript..24
Parsing, storing and executing TypoScript................24
Syntax highlighting and debugging............................26
Myths, FAQ and acknowledgments...........................29

The TypoScript parser API.......................................32
Introduction...32
Parsing custom TypoScript..32
Implementing custom conditions...............................34
Implementing combined conditions...........................37

Appendix A – What is TypoScript?.........................42
PHP arrays...42
TypoScript syntax, object paths, objects and
properties...42

Next steps..45

2

TypoScript Syntax and In-depth Study - doc_core_ts Introduction

Introduction
About this document

This document describes the syntax of TypoScript. It also covers the nature of TypoScript and what the
differences are between the various contexts in which it can be used (i.e. templates and TSconfig).

If the concept of TypoScript itself is not clear, please read the appendix "What is TypoScript?".
Otherwise feel free to ignore it.

What's new
This version of the manual was updated for TYPO3 4.7. The changes include updating an outdated
statement about conditions. Additionally the deprecated content object "HTML" in some examples was
replaced by the content object "TEXT".

In the version for TYPO3 4.5 all screenshots in this manual were updated.

Credits
This document was formerly maintained by Michael Stucki and François Suter. Additions have been
made by Sebastian Michaelsen. The updates for recent versions were done by Christopher Stelmaszyk.

Feedback
For general questions about the documentation get in touch by writing to documentation@typo3.org.

If you find a bug in this manual, please file an issue in this manual's bug tracker:
http://forge.typo3.org/projects/typo3v4-doc_core_ts/issues

Maintaining quality documentation is hard work and the Documentation Team is always looking for
volunteers. If you feel like helping please join the documentation mailing list
(typo3.projects.documentation on lists.typo3.org).

3

http://forge.typo3.org/projects/typo3v4-doc_core_ts/issues
mailto:documentation@typo3.org

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

Syntax
Introduction

TypoScript is like a (large) multidimensional PHP array (see "Appendix A – What is TypoScript?").
Values are arranged in a tree-like hierarchy. The "branches" are indicated with periods (".") - a syntax
borrowed from for example JavaScript and which conveys the idea of defining objects/properties.

Example:
myObject = [value 1]
myObject.myProperty = [value 2]
myObject.myProperty.firstProperty = [value 3]
myObject.myProperty.secondProperty = [value 4]

Referring to "myObject" we might call it an "object with the value [value 1] and the property, 'myProperty'
with the value [value 2]. Furthermore 'myProperty' has its own two properties, 'firstProperty' and
'secondProperty' with a value each ([value 3] and [value 4])."

The TYPO3 backend contains tools that can be used to visualize the tree structure of TypoScript. They
are described in the relevant section further in this document (see "TypoScript Templates" and
"TSconfig"). The above piece of TypoScript would look like this:

Contexts
There are two contexts where TypoScript is used: templates, where TypoScript is used to actually define
what will appear in the TYPO3 frontend, and TSconfig, where it is used to configure settings of the
TYPO3 backend. TSconfig is further subdivided into User TSconfig (defined for backend users or user
groups) and Page TSconfig (defined for pages in the page tree).

Some parts of TypoScript are available in both contexts, some only in one or the other. Any difference
is always mentioned in this manual.

Each context has its own chapter in this manual. It also has its own reference in a separate manual (see
"Next steps" at the end of this manual).

TypoScript syntax
TypoScript is parsed in a very simple way; line by line. This means that abstractly said each line
normally contains three parts based on this formula:

[Object Path] [Operator] [Value]

Example:
myObject.myProperty = value 2

The object path (in this case "myObject.myProperty") is like the variable name in a programming
language. The object path is the first block of non-whitespace characters on a line until one of the
characters "=<>{(" (space included) is found. Use only A-Z, a-z, 0-9, "-", "_" and periods (.) for
Object Paths!

The operator (in this case it is "=") can be one of the characters "=<>{(". The various operators are
described below.

The value (in this case "value 2") is whatever characters follow the operator until the end of the line,
but trimmed for whitespace at each end. Notice that values are not encapsulated in quotes! The value
starts after the operator and ends with the line break.

4

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

Comments
When a line starts with "/" or "#" it is considered to be a comment and will be ignored.

Example:
// This is a comment
/ This also is a comment (only ONE slash is needed)
myObject = TEXT
myObject.value = Some HTML code
This line also is a comment.

Comment blocks
When a line starts with "/*" or "*/" it defines the beginning or the end of a comment section
respectively. Anything inside a comment section is ignored.

Rules:

/* and */ MUST be the very first characters of a trimmed line in order to be detected.

Comment blocks are not detected inside a multi-line value block (see parenthesis operator below).

Example:
/* This is a comment
 .. and this line is within that comment which...
 ends here:
*/ ... this is not parsed either though - the whole line is still within the comment
myObject = TEXT
myObject.value (
 Here's a multiline value which
 /*
 This is not a comment because it is inside a multi-line value block
 */
)

Value assignment: The "=" operator
This simply assigns a value to an object path.

Rules:

Everything after the "=" sign and up to the end of the line is considered to be the value. In other words:
You don't need to quote anything!

Be aware that the value will be trimmed, which means stripped of whitespace at both ends.

Value modifications: The ":=" operator
This operator assigns a value to an object path by calling a predefined function which modifies the
existing value of the current object path in different ways.

This is very useful when a value should be modified without completely redefining it again.

Rules:

The portion after the ":=" operator and to the end of the line is split in two parts: A function and a
value. The function is specified right next to the operator (trimmed) and holding the value in brackets
(not trimmed).

There are six predefined functions:

‒ prependString: Adds a string to the beginning of the existing value.

‒ appendString: Adds a string to the end of the existing value.

‒ removeString: Removes a string from the existing value.

‒ replaceString: Replaces old with new value. Separate these using "|".

‒ addToList: Adds a comma-separated list of values to the end of a string value. There is no

5

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

check for duplicate values, and the list is not sorted in any way.

‒ removeFromList: Removes a comma-separated list of values from an existing comma-
separated list of values.

There is a hook inside class.t3lib_tsparser.php which can be used to define more such functions.

Example:
myObject = TEXT
myObject.value = 1,2,3
myObject.value := addToList(4,5)
myObject.value := removeFromList(2,1)

produces the same result as:

myObject = TEXT
myObject.value = 3,4,5

Code blocks: The { } signs
Opening and closing curly braces are used to assign many object properties in a simple way at once.
It's called a block or nesting of properties.

Rules:

‒ Everything on the same line as the opening brace ("{"), but that comes after it is ignored.

‒ The "}" sign must be the first non-space character on a line in order to close the block.
Everything on the same line, but after "}" is ignored.

‒ Blocks can be nested. This is actually recommended for improved readability.

‒ Note: You cannot use conditions inside of braces (except the [GLOBAL] condition which will
be detected and reset the brace-level to zero)

‒ Note: Excessive end braces are ignored, but generate warnings in the TypoScript parser.

Example:
myObject = TEXT
myObject.field = title
myObject.ifEmpty.data = leveltitle:0

could also be written as:

myObject = TEXT
myObject {

field = title
ifEmpty {

data = leveltitle:0
}

}

Multi-line values: The () signs
Opening and closing parenthesis are used to assign a multi-line value. With this method you can define
values which span several lines and thus include line breaks.

Rules:

Note: The end-parenthesis is extremely important. If it is not found, the parser considers the following
lines to be part of the value and does not return to parsing TypoScript. This includes the [GLOBAL]
condition which will not save you in this case! So don't miss it!

Example:
myObject = TEXT
myObject.value (
 <p class="warning">
 This is HTML code.
 </p>
)

6

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

Object copying: The "<" sign
The "<" sign is used to copy one object path to another. The whole object is copied - both value and
properties - and it overrides any old objects and values at that position.

Example:
myObject = TEXT
myObject.value = <p class="warning">This is HTML code.</p>

myOtherObject < myObject

The result of the above TypoScript is two independent sets of objects/properties which exactly the same
(duplicates). They are not references to each other but actual copies:

Another example with a copy within a code block:

pageObj {
10 = TEXT
10.value = <p class="warning">This is HTML code.</p>
20 < pageObj.10

}

Here also a copy is made, although inside the "pageObj" object. Note that the copied object is referred
to with its full path ("pageObj.10"). When copying on the same level, you can just refer to the copied
object's name, prepended by a dot.

The following produces the same result as above:

pageObj {
10 = TEXT
10.value = <p class="warning">This is HTML code.</p>
20 < .10

}

which – in tree view – translates to:

Note: When the original object is changed after copying, the copy does not change! Take a look
at the following code:

someObject = TEXT
someObject {

value = Hello world!
wrap = <p>|<p>

}
anotherObject < someObject
someObject.wrap = <h1>|<h1>

The value of the "wrap" property of "anotherObject" is "<p>|</p>". It it not "<h1>|<h1>" because this
change happens after the copying. This example may seem trivial, but it's easy to loose the oversight in
larger pieces of TypoScript.

References: the "=<" sign
In the context of TypoScript Templates it is possible to create references from one object to another.
References mean that multiple positions in an object tree can use the same object at another position
without making an actual copy of the object but by simply pointing to the objects full object path.

The obvious advantage is that a change of code to the original object affects all references. It
avoids the risk mentioned above with the copy operator to forget that a change at a later point does not
affect earlier copies. On the other hand there's the reverse risk: it is easy to forget that changing the

7

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

original object will have an impact on all references. References are very convenient, but should be used
with caution.

Example:
someObject = TEXT
someObject {

value = Hello world!
wrap = <p>|<p>

}
anotherObject =< someObject
someObject.wrap = <h1>|<h1>

In this case, the "wrap" property of "anotherObject" will indeed by "<h1>|<h1>". In tree view the
properties of the reference are not shown. Only the reference itself is there:

Remember: References are only available in TypoScript templates, not in TSconfig.

Object unsetting: The ">" sign:
This is used to unset an object and all of its properties.

Example:
myObject = TEXT
myObject.value = HTML - code

myObject >

In this last line "myObject" is totally wiped out (removed).

Conditions: Lines starting with "["
Conditions break the parsing of TypoScript in order to evaluate the content of the condition line. If the
evaluation returns true parsing continues, otherwise the following TypoScript is ignored until the next
condition is found, at which point a new evaluation takes place. The next section in this document
describes conditions in more details.

Rules:

Conditions apply only when outside of any code block (i.e. outside of any curly braces).

Example:
[browser = msie]
page.10.value = Internet Explorer
[else]
page.10.value = Not an Internet Explorer browser!
[end]

Conditions
There is a possibility of using so called conditions in TypoScript. Conditions are simple control
structures, that evaluate to TRUE or FALSE based on some criteria (externally validated) and thereby
determine, whether the TypoScript code following the condition and ending where the next condition is
found, should be parsed or not.

Examples of a condition could be:

‒ Is the browser "Internet Explorer"?

‒ Is a usergroup set for the current session?

‒ Is it Monday?

‒ Is the GET parameter "&language=uk" set?

8

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

‒ Is it my mother’s birthday?

‒ Do I feel lucky today?

Of these examples admittedly the first few are the most realistic. In fact they are readily available in the
context of TypoScript Templates. But a condition can theoretically evaluate any circumstance and
return either TRUE or FALSE which subsequently means the parsing of the TypoScript code that
follows.

Where conditions can be used
The detection of conditions is a part of the TypoScript syntax but the validation of the condition content
always relies on the context where TypoScript is used. Therefore in plain syntax highlighting (no
context) conditions are just highlighted and nothing more. In the context of TypoScript Templates there
is a whole section of TSref which defines the syntax of the condition contents for TypoScript Templates.
For "Page TSconfig" and "User TSconfig" conditions are implemented since TYPO3 4.3. Basically they
work the same way as conditions in TypoScript templates do, but there are some small differences. For
details see the according section "Conditions" in TSconfig.

The syntax of conditions
A condition always has its own line and the line is detected by " [" (square bracket) being the first
character on that line:

(Some TypoScript)

[condition 1][condition 2]

(Some TypoScript only parsed if condition 1 or condition 2 are met.)

[GLOBAL]

(Some TypoScript)

As you can see from this example, the line "[GLOBAL]" also is a condition. It is built-in into
TypoScript and always returns TRUE. The line "[condition 1][condition 2]" is another condition. If
"[condition 1][condition 2]" is TRUE, then the TypoScript in the middle would be parsed until
[GLOBAL] (or [END]) resets the conditions. After that point the TypoScript is parsed for any case again.

Notice: The condition line "[condition 1][condition 2]" conveys the idea of two conditions being set,
but from the TypoScript parsers point of view the whole line is the condition - it is in the context of
TypoScript Templates that the condition line content is broken down into smaller units ("[condition 1]"
and "[condition 2]") which are individually evaluated and connected by a logical OR before they return
the resulting TRUE or FALSE value. (That is all done with the class t3lib_matchCondition).

Here is an example of some TypoScript (from the context of TypoScript Templates) where another text
is outputted if you use the Microsoft Internet Explorer web browser (instead of for example Google
Chrome) or use Windows NT as operating system:

pageObj.10 = TEXT
pageObj.10.value = Hello World
pageObj.10.case = upper

[browser = msie][system = WinNT]
pageObj.20 = TEXT
pageObj.20 {
 value = Hello Internet Explorer or Windows NT users!
 case = upper
}

[GLOBAL]
pageObj.30 = TEXT
pageObj.30.value = <hr>

You can now use the Object Browser to actually see the difference in the parsed object tree depending

9

http://typo3.org/documentation/document-library/core-documentation/doc_core_tsconfig/4.6.0/view/1/2/
http://typo3.org/documentation/document-library/core-documentation/doc_core_tsref/4.5.1/view/1/4/

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

on whether the condition evaluates to TRUE or FALSE (which can be simulated with that module as
you can see):

The special [ELSE], [END] and [GLOBAL] conditions
There's a special condition called [ELSE] which will return TRUE if the previous condition returned
FALSE. To end an [ELSE] condition you can use either [END] or [GLOBAL]. For all three conditions you
can also use them in lower case.

Here's an example of using the [ELSE]-condition (also in the context of TypoScript Templates):

page.typeNum = 0
page = PAGE
page.10 = TEXT

[browser = msie]
page.10.value = Internet Explorer

[else]
page.10.value = Not an Internet Explorer browser!

[end]

page.10.wrap = |
Here we have one output text if the browser is Internet Explorer and another if not. Anyways the text is
wrapped by | as we see, because this wrap is added outside of the condition block
(here after the [END]-condition).

The fact that you can "enable" the condition in the TypoScript Object Browser is a facility provided to
simulate the outcome of any conditions you insert in a TypoScript Template. Whether or not the
conditions validate correctly is only verified by actually getting a (in this example) Internet Explorer

10

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

browser and hitting the site.

Another example could be if you wanted to do something special in case a bunch of conditions is NOT
true. There's no negate-character, but you could do this:

[browser = msie][usergroup = 3]
 # Enter nothing here!
[else]
 page.10.value = This text is only displayed if the conditions above are not TRUE!
[end]

Where to insert conditions in TypoScript?
Conditions can be used outside of confinements (curly braces) only!

So, this is valid:

someObject {
 1property = 234
}
[browser = msie]
someObject {
 2property = 567
}

But this is not valid:

someObject {
 1property = 234
 [browser = msie]
 2property = 567
}

When parsed with syntax highlighting you will see this error:

This means that the line was perceived as a regular definition of "[object path] [operator] [value]" and
not as a condition.

The [GLOBAL] condition
However for the special condition [GLOBAL] (which resets any previous condition scope), it is a bit
different since that will be detected at any line except within multiline value definitions.

someObject {
 1property = 234
 [GLOBAL]
 2property = 567
}

But you will still get some errors if you syntax highlight it:

The reason for this is that the [GLOBAL] condition aborts the confinement started in the first line
resulting in the first error ("... short of 1 end brace(s)"). The second error appears because the end brace
is now in excess since the "brace level" was reset by [GLOBAL].

11

TypoScript Syntax and In-depth Study - doc_core_ts Syntax

So, in summary; the special [global] (or [GLOBAL]) condition will break TypoScript parsing within
braces at any time and return to the global scope (unless entered in a multiline value). This is true for
any TypoScript implementation whether other condition types are possible or not. Therefore you can
use [GLOBAL] (put on a single line for itself) to make sure that following TypoScript is correctly parsed
from the top level. This is normally done when TypoScript code from various records is combined.

Summary
‒ Conditions are detected by "[" as the first line character (whitespace ignored).

‒ Conditions are evaluated in relation to the context where TypoScript is used. They are widely
used in TypoScript Templates and can also be used in "Page TSconfig" or "User TSconfig".

‒ Special conditions [ELSE], [END] and [GLOBAL] exist.

‒ Conditions can be used outside of confinements (curly braces) only. However the [GLOBAL]
condition will always break a confinement if entered inside of one.

Includes
You can also add include-instructions in TypoScript code. Availability depends on the context, but it
works with TypoScript templates, Page TSconfig and User TSconfig.

An include-instruction looks like this:

<INCLUDE_TYPOSCRIPT: source="FILE: fileadmin/html/mainmenu_typoscript.txt">

‒ It must have its own line in the TypoScript template, otherwise it is not recognized.

‒ It is processed BEFORE any parsing of TypoScript (contrary to conditions) and therefore does
not care about the nesting of confinements within the TypoScript code.

The "source" parameter points to the source of the included content. The string before the first ":" (in
the example it is the word "FILE") will determine which source the content is coming from. This is the
only option available:

Option Description

FILE A reference to a file relative to PATH_site. Cannot contain ".." (double periods, back path). Until
TYPO3 4.5 had to be less than 100 KB; in newer versions this limitation was dropped.
If you prefix the relative path with such as "EXT:myext/directory/file.txt" then the file included will
be searched for in the extension directory of extension "myext", subdirectory "directory/file.txt".

12

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

TypoScript Templates
Constants

What are constants?
Constants are values defined in the "Constants"-field of a template. They follow the syntax of ordinary
TypoScript!

Note, reserved name: The object or property "file" is always interpreted as data type "resource". That
means it refers to a file, which you have to upload in the resource section of your template record.

Note: Toplevel "object" TSConstantEditor cannot be used. It's reserved for configuration of the
Constant Editor module.

Example:

Here "bgCol" is set to "red" and "file.toplogo" is set to "logo.gif". which is found in the resource-field of
the template.

bgCol = red
topimg.width = 200
topimg.file.pic2 = fileadmin/logo2.gif
file.toplogo = logo.gif

This could also be defined in other ways, e.g. like this:

bgCol = red
file {
 toplogo = logo.gif
}
topimg {
 width = 200
 file.pic2 = fileadmin/logo2.gif
}

(The objects in bold are the reserved word "file" and the properties are always of data type "resource".

Using constants
Constants are inserted in the template-setup by performing an ordinary str_replace operation! You
insert them in the setup field like this:

{$bgCol}
{$topimg.width}
{$topimg.file.pic2}
{$file.toplogo}

Example:
page = PAGE

13

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

page.typeNum = 0

page.bodyTag = <body bgColor="{$bgCol}">
page.10 = IMAGE
page.10.file = {$file.toplogo}

Only constants, which are defined in the "Constants" field, are substituted. So for our example to
work, we again have to define the constants from the last example in the constants field.

Remember that in the constants field you can reference files without giving a file path (like we did
for logo.gif). For the replacement to work, you must upload these files in the resources section of the
template.

Constants in included templates are also substituted as the whole template is just one large chunk of
text.

Constants are case sensitive.

You should use a systematic naming scheme for constants. Seek inspiration in the code-examples
around.

Notice how the constants in the setup code are substituted (marked in green). In the Object Browser,
you can monitor the constants with or without substitution. Also notice that the value "logo.gif" was
resolved to the resource "uploads/tf/logo.gif"

(Note: The "Display constants" function is not available if you select "Crop lines".)

14

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

Declaring constants for the Constant Editor
You can put comments anywhere in your TypoScript. Comments are always ignored by the parser when
the template is processed. But the backend module Web > Template has the ability to utilize comments
in the constant editor that makes simple configuration of a template even easier than constants already
make it themselves.

When the TypoScript "Constant Editor" parses the template, all comments before every constant-
definition are registered. You can follow a certain syntax to define what category the constant should be
in, which type it has and what explanation there is about the constant. This is an example containing
several constant definitions:

styles.content.textStyle {
 # cat=content/cText/1; type=; label= Bodytext font: This is the fontface used for text!
 face =
 # cat=content/cText/2; type=int[1-5]; label= Bodytext size
 size =
 # cat=content/cText/3; type=color; label= Bodytext color
 color =
 color1 =
 color2 =
 properties =
}

It's totally optional to make the comments before your constants compliant with this system, but it's
very useful later on if you want others to make simple corrections to your template or distribute the
template in a template-archive or such.

Default values:
The default value of a constant is determined by the value the constant has BEFORE the last template
(the one you're manipulating with the module) is parsed (previous templates are typically included
static_template-records!), unless the mark ###MOD_TS:EDITABLE_CONSTANTS### is found in the
last template, in which case constant-definitions before this mark are also regarded default-values.

This means that all constant values - or values after the mark
###MOD_TS:EDITABLE_CONSTANTS### if present - in the template-record you're manipulating are
regarded to be your customized extensions.

Comments:
How the comments are perceived by the module:

15

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

‒ All comments set on lines before the constant wherever it's found in the templates are parsed
sequentially.

‒ Each line is split by the ";" (semicolon) character, that separates the various parameters

‒ Each parameter is split by the "=" (equal) sign to separate the parameter "key" and the "value".

Keys:

cat=

‒ Comma-separated list of the categories (case-insensitive) that the constant is a member of. You
should list only one category, because it usually turns out to be confusing for users, if one and
the same constant appears in multiple categories!

‒ If the chosen category is not found among the default categories listed below, it's regarded a
new category.

‒ If the category is empty (""), the constant is excluded from the editor!

Predefined Categories

Category Description

basic Constants of superior importance for the template-layout. This is dimensions, imagefiles and enabling
of various features. The most basic constants, which you would almost always want to configure.

menu Menu setup. This includes fontfiles, sizes, background images. Depending on the menutype.

content All constants related to the display of pagecontent elements.

page General configuration like metatags, link targets.

advanced Advanced functions, which are used very seldom.

Subcategories:

There are a number of subcategories to use. Subcategories are entered after the category-name
separated by a slash "/". Example: "basic/color/a"

This will make the constant go into the "BASIC"-category, be listed under the "COLOR"-section and
probably be one of the top-constants listed, because the "a" is used to sort the constants in a
subcategory. If "a" was not entered, the default is "z" and thus it would be one of the last colors to
select. As the third parameter here, you can choose whatever you like.

You can use one of the predefined subcategories or define your own. If you use a non-existing
subcategory, your constant will just go into the subcategory "Other".

Predefined Subcategories

Standard subcategories (in the order they get listed in the Constant Editor):

Subcategory Description

enable Used for options that enable or disable primary functions of a template.

dims Dimensions of all kinds; pixels, widths, heights of images, frames, cells and so on.

file Files like background images, fonts and so on. Other options related to the file may also enter.

typo Typography and related constants.

color Color setup. Many colors will be found with related options in other categories though.

links Links: Targets typically.

language Language specific options.

Subcategories based on the default content elements

cheader,cheader_g,ctext,ctextpic,cimage,cbullets,ctable,cuploads,cmultimedia,cmailform,csearch,clogin,c
splash,cmenu,cshortcut,clist,cscript,chtml

16

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

These are all categories reserved for options that relate to content rendering for each type of tt_content
element. See static_template "content (default)" and "styles.content (default)" for examples.

Custom Subcategories

To define your own Subcategory put a comment including the parameter "customsubcategory". Here is
an example:

customsubcategory=cache=LLL:EXT:myext/locallang.xml:cache
This line defines the new Subcategory "cache" which will be available for your Constants defined
AFTER this line. Usage example:

#cat=Site conf/cache/a; type=boolean; label=Global no_cache
config.no_cache = 0

Will look in the Constant Editor like this:

type=

Type Description

int [low-
high]

Integer, opt. in range "low" to "high"

int+ Positive integer

offset
[L1,L2,...L6]

Comma-separated integers. Default is "x,y", but as comma separated parameters in brackets you can
specify up to 6 labels being comma separated! If you wish to omit one of the last 4 fields, just don't
enter a label for that element.

color HTML color

wrap HTML-code that is wrapped around some content.

options
[item1,item
2,...]

Selectbox with values/labels item1, item2 etc. Comma-separated. Split by "=" also and in that case, first
part is label, second is value

boolean
[truevalue]

Boolean, opt. you can define the value of "true", def.=1

comment Boolean, checked= "", not-checked = "#".

file [ext-
list/IMAGE
_EXT]

Selectorbox with resources. Opt. list allowed extensions (no space in list!), eg. "[ttf]" or "[txt,html,htm]".
You can also enter "[IMAGE_EXT]" in which case the default image-extensions are listed. (used for
datatype "imgResource")

string (the
default)

Just a string value

user ...

label=

Text string, trimmed.

Split by the first ":" to separate a header and body of the comment. The header is displayed on it's own
line in bold.

This can be localized by using the traditional "LLL" syntax. Example:

#cat=Site conf/cache/a; type=boolean; label=LLL:EXT:examples/locallang.xml:config.no_cache
config.no_cache = 0

Note that a single string is referenced (not one for the header and one for the description). This means

17

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

that the localized string must contain the colon separator (":"). Example:

<label index="config.no_cache">Global no_cache:Check to box to turn off all cache</label>

In case of TYPO3 4.6 or newer translation files in XLIFF format are supported. There the label might
look like this:

<trans-unit id="config.no_cache" xml:space="preserve">
 <source>Global no_cache:Check to box to turn off all cache</source>
</trans-unit>

TSConstantEditor.[category]
In addition to using constants, you can also configure a category in the constant editor by a special
top-level TypoScript "object" in the constants-field. The name is "TSConstantEditor" and any properties
to this object will NOT be substituted like any other constant normally would.

Property: Data type: Description: Default:

header string Header, displayed in upper-case.

description string, break by // Description, enter "//" to create a line break.

bulletlist string, break by // Lines for a bulletlist, enter "//" (double-slash) in order to break
to next bullet.

image image This is an optional image you can attach to the category.
The image would normally show a given configuration of the
template and contain numbered marks, that indicate positions
that are referred to by the constants, listed in the number-array.
The image must be located in "gfx/" in the module path OR be
a file from the resource-list of the template.

Array, 1-20 list of constant-
names

Each number refers to a number-mark on the image and all
constants that are listed at each number will get a little number-
icon by it's header.

[TSConstantEditor.[category]]

Example:
TSConstantEditor Configuration
TSConstantEditor.basic {
 header = Standard Template "BUSINESS"
 description = BUSINESS is a framebased template in a very simple layout, based on
 bulletlist = Left-frame image in the top. The dimensions are fixed to
 image = gfx/BUSINESS_basic.gif

 1 = leftFrameWidth,menu.file.bgImg,menu.bgCol
 2 = page.file.bgImg,bgCol
 3 = contentOffset
 4 = file.logo
 5 = page.L0.titleWrap
 6 = page.L1.titleWrap
 7 = contentWidth,styles.content.imgtext.maxW
 8 = page.lineCol
}

This example shows how the static template "BUSINESS", which you find in the system extension
"statictemplates", is configured for the basic-module.

The Business template is framebased and has a very simple layout. It has a 2-level textual menu. You
can select the properties of the font tag like the font size, color and so on. Details are in the following
list. The numbers in brackets fit to the numbers in the code example above and in the screenshot
below.

‒ You can define the background images for each frame, the left and the page frame). The width
of the left frame can also be selected. (1) and (2)

‒ You can set the offset of the content from the left frame and from the top. (3)

18

TypoScript Syntax and In-depth Study - doc_core_ts TypoScript Templates

‒ You can choose a logo for the top of the left frame. The dimensions are fixed to 150x80 pixels
(normally you are free to choose the dimensions yourself). (4)

‒ The page titles from first level (5) and second level (none in the screenshot) (6) are displayed at
the top.

‒ You can choose the width of the content block. (7)

‒ You can pick a color for the ruler at the top. (8)

This is how it looks like in TYPO3 by default:

19

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

Sorting out details
More about syntax, semantics and TypoScript compared to XML
and XSLT

If you think you perfectly understand TypoScript now (you might already...), then don't bother with this
section. I even risk confusing you again. But anyways, here it is - more theoretical information on
TypoScript including references to the relationship between XML and XSLT:

XML and TypoScript - all about syntax:

A chunk of "TypoScript code" is like an XML document - it only contains information in a structured
way, nothing else. But in order to store information in TypoScript or XML you need to follow the
syntax - rules about how the information values can be inserted in the structure. The syntax is like the
grammar for a human language defines in which order words can be combined.

For XML such rules include that "all tags must be ended, e.g. ... or
", correct nesting,
using lowercase for element and attribute names etc. If you follow these rules, an XML document is
called 'well formed'". For TypoScript similar rules exist like "The = operator assigns the rest of the text
string as the value to the preceding object path" or "A line starting with # or / is a comment and
therefore ignored".

XSLT and "TypoScript Templates" - all about semantics (meaning, function):

This is syntactically valid XML:

<asdf>qwerty</asdf>

And this is syntactically valid TypoScript:

asdf = qwerty

And this is syntactically valid English:

footballs sing red

But none of these examples make sense without some reference which defines how elements, values and
words can be combined in order to form meaning - they need a context. This is called semantics. For
human languages we have it internally because we know footballs can't sing and you can't "sing red" -
we know it's nonsense while the sentence is correctly formed. For an XML document you have a DTD
or schema which defines if the element "<asdf>" exists on that level in the document (and if not, then
it's nonsense) and for TypoScript you have a reference document for the context where the TypoScript
syntax is used to define an information hierarchy - for instance the "TSref" for TypoScript Templates or
the "TSconfig" document for "Page TSconfig" or "User TSconfig".

So an XML document makes sense only if you know the relationship of the information stored inside of
the document and that is required if you want an XSLT stylesheet to transform one XML document to
another document. In fact an XSLT stylesheet is like a translator for XML - it translates one "language"
of XML into another "language" of XML.

Similarly TypoScript is used as the syntax to build "TypoScript Templates" (containing semantics -
meaning); the information only makes sense if it follows the rules defined in the "TSref" document.

BTW, the comparison of "TypoScript Templates" and "XSLT" is intentional since both can be described
as declarational programming languages - programming by configuring values which instructs a real
procedural program (e.g. the TypoScript Frontend Engine which is written in PHP) how to output data.

XSL was not the way to go as the XSL proposals were public from November 1999 which is a little later
than TypoScript was born. Anyways, they were a brand new technology and it did not seem smart using
it until it was more stable or had proved to be useful and supported. At that time there certainly would

20

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

be no significant XSL(T) processors.

But TypoScript is also a concept that fits the PHP and TYPO3 configuration very well (although it has
been taken very far in certain areas). TypoScript is basically a large object-like structure of information
which can be set from text-files (DB -records...) and the TYPO3 default PHP frontend code just reacts
to the settings in TypoScript.

TypoScript was not destined to be a procedural language and it is not today! It could be compared to
the Windows registration database which is a similar bunch of hierarchical configuration.

For more on syntax and semantics, you can read this article that I found on the net.

Where is TypoScript used?
This question cannot be answered completely since this document only describes the syntax of
TypoScript and not any of the contexts where TypoScript syntax is applied for configuration;
theoretically anyone could use the TypoScript parser class in TYPO3 to generate configuration for their
own local extensions using their own local "semantics".

But at least we can mention the three main applications of the TypoScript syntax as used in the core
parts of TYPO3:

‒ Page TSconfig: Customization of branches of the Page tree.

‒ User TSconfig: Customization of users and their groups.

‒ TypoScript Templates: Definition and customization of each website found in the page tree.

Page TSconfig
Each page record in TYPO3 has a field where you can enter "TSconfig code". The main idea
with Page TSconfig is that you can configure individual behavior for separate parts of the page tree.
This is possible because the TypoScript code entered in the TSconfig fields is accumulated for all pages
in the root line of the current position in the page tree starting from the root and going outwards. Thus
TypoScript settings in TSconfig fields of outer pages can override those settings of pages closer to the
root.

For instance you may have two separate websites located in separate branches of the page tree. The one
website might support content from only the "normal" column while the other website supports it for
both the "normal" and "border" column. Since the Page module by default shows all four possible
columns you may want to instruct the page module to show only the normal column and normal +
border column respectively. But this will only be possible if you can somehow tell the system that from
this page and outwards, use only "normal" column and from that page and outwards use only "normal"
+ "border" column. So in the root page of the two-column website you enter this line in the TSconfig
field:

And likewise for the one-column website you enter this value in the TSconfig field of the root page:

21

http://www.jguru.com/faq/view.jsp?EID=81

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

For any subpage of the root page where the configuration was entered the "Page" module will receive
the value of the property "colPos_list". Accordingly only the configured columns will be shown.

The objects and properties you can use here are generally defined in the document "TSconfig" in
addition to local extension documents.

User TSconfig
Each frontend and backend user and group has a field for input of TSconfig code. The main
idea with User TSconfig is that you can configure individual behavior for groups and even users
themselves. This gives you the possibility to set values, which are very detailed, much more detailed
than what you want to set as permission settings in the main forms for users/groups. For instance you
could configure how many clipboard pads a user should see or whether a "Save document and add
new" button should appear for all forms for this user - stuff which is clearly too detailed for a spot in
the main form for permissions and settings.

Like with Page TSconfig the content of the TSconfig fields are accumulated in a certain order; the
order of member groups and finally the users own fields settings. Thus a setting for a user will override
the setting for one of his member groups.

Here is an example of what you can do with User TSconfig for a backend user. This line will enable the
"Save document and create new" button in editing forms:

The objects and properties you can use here are generally defined in the document "TSconfig" in
addition to local extension documents.

TypoScript Templates
The most (in)famous and extensive use of TypoScript is in TypoScript Templates for the
frontend engine. There TypoScript is used to configure how the frontend engine will put together the
website output. This is probably also where TypoScript clashes most with traditional ideas of template
building in web design and confuses people to think of TypoScript as a programming language - with
the result that they find it even more confusing. (If TYPO3 has a scripting language it is not TypoScript
but PHP!)

This introduction to TypoScript tries to eliminate this confusion. Therefore let us make two statements
about how TYPO3 handles templates:

‒ No fixed template method: TYPO3 does not offer one fixed way to dealing with templates for
websites; rather you are set free to choose the way you find most appealing. You can use:

‒ HTML templates: Configure TYPO3 to facilitate external HTML-templates with
markers and subparts. Popular and familiar for most people. Please see the tutorial
"Modern Template Building, Part 1".

‒ Fluid templates: Configure TYPO3 to use extbase and fluid (available as system
extensions since TYPO3 4.3) for templating. This allows to use external HTML
templates, but with fluid-style variables with curly braces. Since TYPO3 4.5 a new
content object "FLUIDTEMPLATE" is available, which that way lets you use fluid from
inside TypoScript.

22

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

‒ External Templating Engines: Configure TYPO3 to use XSLT stylesheets with an
XSLT processor. This is done either by an extension providing this functionality or by
writing your own extension for it.

‒ Custom PHP: Configure TYPO3 to call your own PHP code which generates content in
any way you may prefer. This might include using third party templating engines!

‒ TS content objects: Build the page by the "content objects" of the Frontend Engine.
These cObjects are accessible/programmable through the TypoScript syntax.

‒ TypoScript Templates determine the method: No matter which template method (see list
above) you would like to use TYPO3 needs to be told which one! And this is what the
TypoScript Template does first and foremost; it is used to configure basic and advanced
behaviors of the frontend engine so that the site rendering gets done.

A TypoScript Template works a little like the Page TSconfig; it is a database record attaching its
TypoScript content to a certain page and from that page and outwards the configuration contained in
the TypoScript will affect the pages until a new template record is found which overrides properties
from earlier in the tree. Thus TypoScript Template records are effectively defining which page is the
root page of a website:

TypoScript Templates contain a field for the TypoScript configuration code ("Setup" field) but a
template record like the one in the picture above ("ROOT") can also contain references to other
template records and files which contain predefined generally useful TypoScript code which is included
and thus reusable/sharable across templates. The order of included TypoScript template records/files
can be seen visually with the Template Analyzer, which you find inside the "Template" module in the
backend (if it is not there, install the system extension "tstemplate_analyzer"):

To get more background knowledge about how TypoScript templates work, please read the document
"TypoScript Templates". To read about all standard objects and properties which you can use in
building TypoScript templates you should refer to the TypoScript reference - TSref. For practical
examples or when you want to learn by doing, look at the Getting Started manual.

23

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

Entering TypoScript
Since TypoScript has a line-based syntax which most of all resembles what is found in simple text
based configuration files, it is also authored in ordinary textarea input fields inside of TYPO3. An
example is the "TSconfig" box of a regular page header:

This is how TypoScript is typically entered - directly in form fields. Since TYPO3 4.2 a JavaScript-
based editor is available for TypoScript templates. It provides line-numbering and syntax highlighting.
Since TYPO3 4.3, it also provides auto-completion.

If you don't see the code with syntax highlighting as in the screenshot above, make sure the system
extension "t3editor" is loaded. Also the editor is available only when editing TypoScript from the Web >
Template module (function: "Info/Modify") and not when editing the whole template record.

Other helpful features:

‒ There is the "TS wizard" icon which is often found to the right of the textarea - this can help
you finding properties for the current TypoScript context.

‒ There also is the ability to insert an include-tag in any TypoScript field (see later in this
document) which refers to an external file which can contain TypoScript - and that file can be
edited with an external editor with whatever benefits that has.

Parsing, storing and executing TypoScript
Parsing TypoScript
This means that the TypoScript text content is transformed into a PHP array structure by following the
rules of the TypoScript syntax. But still the meaning of the parsed content is not evaluated.

During parsing, syntax errors may occur when the input TypoScript text content does not follow the
rules of the TypoScript syntax. The parser is however very forgiving in that case and it only registers an

24

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

error internally while it will continue to parse the TypoScript code. Syntax errors can therefore be seen
only with a tool that analyzes the syntax - like the syntax highlighter does.

The class "t3lib_tsparser" is used to parse TypoScript content. Please see the appendix "The TypoScript
parser API" in this document for details.

Storing parsed TypoScript
When TypoScript has been parsed it is stored in a PHP array (which is often serialized and cached in
the database afterward). If you take the TypoScript from the introduction examples and parse it, you
will get a result like below:

First, the TypoScript:

asdf = qwerty
asdf {
 zxcvbnm = uiop
 backgroundColor = blue
 backgroundColor.transparency = 95%
}

Then after parsing it with the function "parse()" in the t3lib_tsparser class, the internal variable $this-
>setup in that class will contain a PHP array which looks like this (with the print_r() PHP function):

Array
(
 [asdf] => qwerty
 [asdf.] => Array
 (
 [zxcvbnm] => uiop
 [backgroundColor] => blue
 [backgroundColor.] => Array
 (
 [transparency] => 95%
)
)
)

You can also print the array by an API function in TYPO3, namely t3lib_div::view_array() or just
debug(). Then it looks like this:

As you see the value ("blue") of the property "backgroundColor" can be fetched by this PHP code:

$this->setup['asdf.']['backgroundColor']

So you can say that TypoScript offers a text-based interface for getting values into a
multidimensional PHP array from a simple text field or file. This can be very useful if you need to
take that kind of input from users without giving them direct access to PHP code - hence the reason
why TypoScript came into existence.

"Executing" TypoScript
Since TypoScript itself contains only information(!) you cannot "execute" it. The closest you come to
"executing" TypoScript is when you take the PHP array with the parsed TypoScript structure and pass it
to a PHP function which then performs whatever actions according to the values found in the array.
This is the syntax/semantics debate again.

25

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

Syntax highlighting and debugging
Syntax highlighting of TypoScript code is done by various analysis applications in TYPO3 like the
Template Analyzer for TypoScript Templates or the User Admin module or Page TSconfig function in
the Info module. These typically allows you to view the TypoScript in each context highlighted with
syntax.

Here is an example from Page TSconfig as you can view it in the Info module:

In the extension "extdeveval" you will also find a tool, "Code highlighting", which can analyze
TypoScript code ad hoc. This is what you get, when you just press the TypoScript button:

26

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

There are various modes of display:

The analytic mode (displayed above) colors all parts of the syntax:

‒ Light blue background: Object and property names

‒ Yellow background: Values

‒ Olive green background: Whitespace

‒ Brown background: Operators

Another mode is the "Block mode", which simply indents the TypoScript code:

27

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

Finally you will be warned if syntax errors are found and ignored data will also be highlighted in green:

Debugging
Debugging TypoScript for syntax errors can be done with this tool and any other place where the
syntax highlighter is used. But this will only tell you if something is syntactically wrong with the code -
whether you combine objects and properties semantically correctly depends on the context and cannot
be told by the TypoScript parser itself.

The TYPO3 system extension "t3editor" offers advanced functions, which can also be useful for
debugging. Its auto-completion functionality for example only offers properties to be chosen, which in
fact are semantically allowed at a certain place. Currently t3editor is available when editing the Setup
field of a TypoScript template – not for Page TSconfig or User TSconfig (writing summer 2011).

28

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

Myths, FAQ and acknowledgments
This section contains a few remarks and answers to questions you may still have. So here it goes:

Myth: "TypoScript is a scripting language"
This is misleading to say since you will think that TypoScript is like PHP or JavaScript while it is not.
From the previous pages you have learned that TypoScript strictly speaking is just a syntax. However
when the TypoScript syntax is applied to create TypoScript Templates then it begins to look like
programming and the parallel to XSLT might also hint at that.

In any case TypoScript is NOT comparable to a scripting language like PHP or JavaScript. In fact, if
TYPO3 offers any scripting language it is PHP itself! TypoScript is only an API which is often used to
configure underlying PHP code.

Finally the name "TypoScript" is misleading as well. We are sorry about that; too late to change that
now.

Myth: "TypoScript has the same syntax as JavaScript"
TypoScript was designed to be simple to use and understand. Therefore the syntax looks like JavaScript
objects to some degree. But again; it is very dangerous to say this since it all stops with the syntax -
TypoScript is still not a procedural programming language!

Myth: "TypoScript is a proprietary standard"
Since TypoScript is not a scripting language it does not make sense to claim this in comparison to PHP,
JavaScript, Java or whatever scripting language.

However compared to XML or PHP arrays (which also contain information) you can say that TypoScript
is a proprietary syntax since a PHP array or XML file could be used to contain the same information
as TypoScript does. But this is not a drawback: For storage and exchange of content TYPO3 uses SQL
(or XML if you need to), for storage of configuration values XML is not suitable anyways - TypoScript is
much better at that job (see below).

To claim that TypoScript is a proprietary standard as an argument against TYPO3 is really unfair since
the claim makes it sound like TypoScript is a whole new programming language or likewise. Yes, the
TypoScript syntax is proprietary but extremely useful and when you get the hang of it, it is very easy to
use. In all other cases TYPO3 uses official standards like PHP, SQL, XML, XHTML etc. for all external
data storage and manipulation.

The most complex use of TypoScript is probably with the TypoScript Template Records. It is
understandable that TypoScript has earned a reputation of being complex when you consider how
much of the Frontend Engine you can configure through TypoScript Template records. But basically
TypoScript is just an API to the PHP functions underneath. And if you think there are a lot of options
there it would be no better if you were to use the PHP functions directly! Then there would be maybe
even more API documentation to explain the API and you wouldn't have the streamlined abstraction
provided by TypoScript Templates. This just served to say: The amount of features and the time it
would take to learn about them would not be eliminated, if TypoScript was not invented!

Myth: "TypoScript is very complex"
TypoScript is simple in nature. But certainly it can quickly become complex and get "out of hand" when
the amount of code lines grows! This can partly be solved by:

‒ Disciplined coding: Organize your TypoScript in a way that you can visually comprehend.

‒ Use the Syntax Highlighter to analyze and clean up your code - this gives you overview as well.

Why not XML instead?
A few times TypoScript has been compared with XML since both "languages" are frameworks for
storing information. Apart from XML being a W3C standard (and TypoScript still not... :-)) the main
difference is that XML is great for large amounts of information with a high degree of "precision" while

29

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

TypoScript is great for small amounts of "ad hoc" information - like configuration values normally are.

Actually a data structure defined in TypoScript could also have been modeled in XML. Currently you
cannot use XML as an alternative to TypoScript (writing of October 2011), but this may happen at some
point. Lets present this fictitious example of how a TypoScript structure could also have been
implemented in "TSML" (our fictitious name for the non-existing TypoScript Mark-Up Language):

styles.content.bulletlist = TEXT
styles.content.bulletlist {
 current = 1
 trim = 1
 if.isTrue.current = 1
 # Copying the object "styles.content.parseFunc" to this position
 parseFunc < styles.content.parseFunc
 split {
 token.char = 10
 cObjNum = 1
 1.current < .cObjNum
 1.wrap =
 }
 # Setting wrapping value:
 fontTag = <ol type="1"> |
 textStyle.altWrap = {$styles.content.bulletlist.altWrap}
}

That was 17 lines of TypoScript code and converting this information into an XML structure could look
like this:

<TSML syntax="3">
 <styles>
 <content>
 <bulletlist>
 TEXT
 <current>1</current>
 <trim>1</trim>
 <if>
 <isTrue>
 <current>1</current>
 </isTrue>
 </if>
 <!-- Copying the object "styles.content.parseFunc" to this position -->
 <parseFunc copy="styles.content.parseFunc"/>
 <split>
 <token>
 <char>10</char>
 </token>
 <cObjNum>1</cObjNum>
 <num:1>
 <current>1</current>
 <wrap></wrap>
 </num:1>
 </split>
 <!-- Setting wrapping value: -->
 <fontTag><ol type="1"> | </fontTag>
 <textStyle>
 <altWrap>{$styles.content.bulletlist.altWrap}</altWrap>
 </textStyle>
 </bulletlist>
 </content>
 </styles>
</TSML>

That was 33 lines of XML - the double amount of lines! And in bytes probably also much bigger. This
example clearly demonstrates why not XML! XML will just get in the way, it is not handy for what
TypoScript normally does. But hopefully you can at least use this example in your understanding of
what TypoScript is compared to XML.

The reasonable application for using XML as an alternative solution to TypoScript is if an XML editor

30

TypoScript Syntax and In-depth Study - doc_core_ts Sorting out details

existed which in some way made the entering of XML data into a structure like this possible and easy.

31

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

The TypoScript parser API
Introduction

If you want to deploy TypoScript in your own TYPO3 applications it is really easy. The TypoScript
parser is readily available to you and the only thing that may take a little more effort than the
instantiation of PHP is if you want to define conditions for TypoScript.

Basically this chapter will teach you how you can parse your own TypoScript strings into a PHP array
structure. The exercise might even help you to further understand the straight forward nature of
TypoScript.

Notice that the following pages are for experienced TYPO3 developers and require a good knowledge
of PHP.

Parsing custom TypoScript
Lets imagine that you have created an application in TYPO3, for example a plug-in. You have defined
certain parameters editable directly in the form fields of the plug-in content element. However you
want advanced users to be able to set up more detailed parameters. But instead of adding a host of
such detailed options to the interface - which would just clutter it all up - you rather want advanced
users to have a text area field into which they can enter configuration codes based on a little reference
you make for them.

The reference could look like this:

Root level
Property Data type Description Default

colors ->COLORS Defining colors for various elements.

adminInfo ->ADMINFO Define administrator contact information for cc-emails

headerImage file-reference A reference to an image file relative to the websites path
(PATH_site)

[TLO]

->COLORS
Property Data type Description Default

backgroundColor HTML-color The background color of ... white

fontColor HTML-color The font color of text in ... black

popUpColor HTML-color The shadow color of the pop up ... #333333

[colors]

->ADMINFO
Property Data type Description Default

cc_email string The email address that ...

cc_name string The name of ...

cc_return_adr string The return address of ... [servers]

html_emails boolean If set, emails are sent in HTML. false

[adminInfo]

32

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

So these are the "objects" and "properties" you have chosen to offer to your users of the plug-in. This
reference defines what information makes sense to put into the TypoScript field (semantically), because
you will program your application to use this information as needed.

A case story

Now let's imagine that a user inputs this TypoScript configuration in whatever medium you have offered
(e.g. a textarea field). (In a syntax highlighted version with line numbers it would look like the listing,
which indicates that there are no syntax errors and everything is fine in that regard.)

 0: colors {
 1: backgroundColor = red
 2: fontColor = blue
 3: }
 4: adminInfo {
 5: cc_email = email@email.com
 6: cc_name = Copy Name
 7: }
 8: showAll = true
 9:
 10: [UserIpRange = 123.456.*.*]
 11:
 12: headerImage = fileadmin/img1.jpg
 13:
 14: [ELSE]
 15:
 16: headerImage = fileadmin/img2.jpg
 17:
 18: [GLOBAL]
 19:
 20: // Wonder if this works... :-)
 21: wakeMeUp = 7:00

(Syntax highlighting of TS (and XML and PHP) can be done with the extension "extdeveval").

In order to parse this TypoScript we can use the following code provided that the variable $tsString
contains the above TypoScript as its value:

 3: require_once(PATH_t3lib.'class.t3lib_tsparser.php');
 4:
 5: $TSparserObject = t3lib_div::makeInstance('t3lib_tsparser');
 6: $TSparserObject->parse($tsString);
 7:
 8: echo '<pre>';
 9: print_r($TSparserObject->setup);
 10: echo '</pre>';

‒ Line 3: The TypoScript parser class is included (most likely already done in both frontend and
backend of TYPO3).

‒ Line 5: Creates an object of the parser class.

‒ Line 6: Initiates parsing of the TypoScript content of the string $tsString.

‒ Line 8-10: Outputs the parsed result which is located in $TSparserObject->setup.

The result of this code being run will be this:

Array
(
 [colors.] => Array
 (
 [backgroundColor] => red

33

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

 [fontColor] => blue
)

 [adminInfo.] => Array
 (
 [cc_email] => email@email.com
 [cc_name] => Copy Name
)

 [showAll] => true
 [headerImage] => fileadmin/img2.jpg
 [wakeMeUp] => 7:00
)

Now your application could use this information in a manner like this:

echo '<table bgcolor="'.$TSparserObject->setup['colors.']['backgroundColor'].'">
 <tr>
 <td>
 setup['colors.']['fontColor'].'">HELLO WORLD!
 </td>
 </tr>
</table>';

As you can see some of the TypoScript properties (or object paths) which are found in the reference
tables above are implemented here. There is not much mystique about this and in fact this is how all
TypoScript is used in its respective contexts; TypoScript contains simply configuration values that
make our underlying PHP code act accordingly - parameters, function arguments, as you
please; TypoScript is an API to instruct an underlying system.

This also means that now we can begin to meaningfully talk about invalid information in TypoScript -
it is obvious that two properties are entered in TypoScript but do not make any sense: "showAll" and
"wakeMeUp". Both properties are not defined in the reference tables and therefore they should neither
be implemented in the PHP code of course. However no errors are issued by the parser since the syntax
used to define those properties is still right. The only problem is that they are irrelevant; it is like
defining a variable in PHP and then never using it! A waste of time - and probably confusing later.

As noted there exists only the input mode of t3editor to do "semantics-checking". However, this only
works during input, not at a later time. It might be interesting and very helpful some day if we had that
as well so we could also be warned if we use non-existing properties (which could just be spelling
errors).

Implementing custom conditions
Now we know how to parse TypoScript and the only thing we still want to do is to implement support
for custom conditions. As stated a few places the evaluation of a condition is external to TypoScript and
all you need to do in order to have an external process deal with conditions is to pass an object as the
second parameter to the parse-function. This is done in the code listing below:

 1: require_once(PATH_t3lib.'class.t3lib_tsparser.php');
 2:
 3: class myConditions {
 4: function match($conditionLine) {
 5: if ($conditionLine === '[TYPO3 IS GREAT]') {
 6: return TRUE;
 7: }
 8: }
 9: }
 10: $matchObj = t3lib_div::makeInstance('myConditions');
 11:
 12: $TSparserObject = t3lib_div::makeInstance('t3lib_tsparser');
 13: $TSparserObject->parse($tsString, $matchObj);
 14:
 15: debug($TSparserObject->setup);

34

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

Here go some notes to this listing:

‒ Lines 3-10 define a very simple class with a function, match(), inside.
The function "match()" must exist and take a string as its argument and the match function
must also return a boolean value. This function should be programmed to evaluate the
condition line according to your specifications.
Currently, if a condition line contains the value "[TYPO3 IS GREAT]" then the condition will
evaluate to true and the subsequent TypoScript will be parsed.

‒ Line 13: Here the instantiated object, $matchObj, of the "myConditions" class is passed to the
parser.

‒ Line 15: Just a little side note: Instead of using PHPs "print_r()" function we use the classic
debug() function in TYPO3 which prints an array in an HTML table - some of us think this is
the nicest way to look into the content of an array (make your own opinion from the screenshot
below).

Anyways, let's test the custom condition class from the code listing above. This is done by parsing this
TypoScript code:

 0: someOtherTS = 123
 1:
 2: [TYPO3 IS GREAT]
 3:
 4: message = Yes
 5: someOtherTS = 987
 6:
 7: [ELSE]
 8:
 9: message = No
 10:
 11: [GLOBAL]
 12:
 13: someTotallyOtherTS = 456

With this listing we would expect to get the object path "message" set to "Yes" since the condition line
"[TYPO3 IS GREAT]" matches the criteria for what will return true. Lets try:

According to this output it worked!

Lets try to alter line 2 to this:

 1:
 2: [TYPO3 IS great]
 3:

The parsed result is now:

35

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

As you can see the value of "message" is now "No" since the condition returned FALSE. The string
"[TYPO3 IS great]" is obviously not the same as "[TYPO3 IS GREAT]"! The value of "someOtherTS"
was also changed to "123" which was the value set before the condition and since the condition was not
TRUE the overriding of that former value did not happen like in the first case.

A realistic example
Most likely you don't want to evaluate conditions based on their bare string value. More likely you want
to set up rules for a syntax and then parse the condition string. One example could be this modified
condition class which will implement support for the condition seen in the TypoScript listings in the
former section, "[UserIpRange = 123.456.*.*]":

 1: class myConditions {
 2: function match($conditionLine) {
 3: // Getting the value inside of the square brackets:
 4: $insideSqrBrackets = trim(ereg_replace('\]$', '', substr($conditionLine, 1)));
 5:
 6: // Splitting value into a key and value based on the "=" sign
 7: list($key, $value) = explode('=', $insideSqrBrackets, 2);
 8:
 9: switch(trim($key)) {
 10: case 'UserIpRange':
 11: return t3lib_div::cmpIP(t3lib_div::getIndpEnv('REMOTE_ADDR'), trim($value)) ?
TRUE : FALSE;
 12: break;
 13: case 'Browser':
 14: return $GLOBALS['CLIENT']['BROWSER'] == trim($value);
 15: break;
 16: }
 17: }
 18: }

This class works in this way:

‒ Line 4: The square brackets in the start (and possibly end as well) of the condition line is
removed.

‒ Line 7: The condition line without square brackets is exploded into a key and a value separated
by the "=" sign; we are trying to implement the concept of evaluating a data source to a value.

‒ Line 9-16: This switch construct will allow the "key" to be either "UserIpRange" or "Browser"
(the datasource pointer) and the value after the equal sign is of course interpreted accordingly.

Lets try and parse the TypoScript listing from the former section:

 0: colors {
 1: backgroundColor = red
 2: fontColor = blue
 3: }
 4: adminInfo {
 5: cc_email = email@email.com
 6: cc_name = Copy Name
 7: }
 8: showAll = true
 9:
 10: [UserIpRange = 123.456.*.*]
 11:
 12: headerImage = fileadmin/img1.jpg
 13:
 14: [ELSE]
 15:
 16: headerImage = fileadmin/img2.jpg
 17:
 18: [GLOBAL]
 19:
 20: // Wonder if this works... :-)

36

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

 21: wakeMeUp = 7:00

The result of parsing this will be an array like this:

As you can see the "headerImage" property value stems from the [ELSE] condition section and thus the
"[UserIpRange = 123.456.*.*]" must still have evaluated to FALSE - which is actually no wonder since
nobody can have the IP address range "123.456.*.*"!

Lets change line 10 of the TypoScript to this:

 9:
 10: [UserIpRange = 192.168.*.*]
 11:

Since I'm currently on an internal network with an IP number which falls into this space, the condition
should now evaluate to TRUE when the TypoScript is parsed:

... and in fact it does!

Implementing combined conditions
Conditions can be combined using OR and AND. This feature already is implemented for TypoScript
Templates. Here the explanation, how that was done. For an overview of the resulting possibilities see
the chapter "Conditions" in TSref. It contains short information about the syntax and an overview of
the available conditions.

In the context of TypoScript Templates you can place several "conditions" in the same (real) condition:

[browser = msie][browser = opera]
someTypoScript = 123
[GLOBAL]

They are evaluated by OR-ing the result of each sub-condition (done in the class

37

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

t3lib_matchCondition). We could implement something alike and maybe even better. For instance we
could implement a syntax like this:

[CON 1] && [CON 2] || [CON 3]

This will be read like "Returns TRUE if condition 1 and condition 2 are TRUE OR if condition 3 is
TRUE". In other words we implement the ability to AND and OR conditions together.

The implementation goes as follows:

 1: class myConditions {
 2:
 3: /**
 4: * Splits the input condition line into AND and OR parts
 5: * which are separately evaluated and logically combined to the final output.
 6: */
 7: function match($conditionLine) {
 8: // Getting the value from inside of the wrapping
 9: // square brackets of the condition line:
 10: $insideSqrBrackets = trim(ereg_replace('\]$', '', substr($conditionLine, 1)));
 11:
 12: // The "weak" operator, OR, takes precedence:
 13: $ORparts = split('\][[:space:]]*\|\|[[:space:]]*\[', $insideSqrBrackets);
 14: foreach($ORparts as $andString) {
 15: $resBool = FALSE;
 16:
 17: // Splits by the "&&" and operator:
 18: $ANDparts = split('\][[:space:]]*\&\&[[:space:]]*\[', $andString);
 19: foreach($ANDparts as $condStr) {
 20: $resBool = $this->evalConditionStr($condStr) ? TRUE : FALSE;
 21: if (!$resBool) break;
 22: }
 23:
 24: if ($resBool) break;
 25: }
 26: return $resBool;
 27: }
 28:
 29: /**
 30: * Evaluates the inner part of the conditions.
 31: */
 32: function evalConditionStr($condStr) {
 33: // Splitting value into a key and value based on the "=" sign
 34: list($key, $value) = explode('=', $condStr, 2);
 35:
 36: switch(trim($key)) {
 37: case 'UserIpRange':
 38: return t3lib_div::cmpIP(t3lib_div::getIndpEnv('REMOTE_ADDR'), trim($value)) ?
TRUE : FALSE;
 39: break;
 40: case 'Browser':
 41: return $GLOBALS['CLIENT']['BROWSER']==trim($value);
 42: break;
 43: }
 44: }
 45: }

With this implementation I can make a condition line like this:

 9:
 10: [UserIpRange = 192.168.*.*] && [Browser = msie]
 11:
 12: headerImage = fileadmin/img1.jpg
 13:

38

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

So if I'm in the right IP range AND have the right browser the value of "headerImage" will be
"fileadmin/img1.jpg"

If we modify the TypoScript as follows, the same condition applies but if the browser is Firefox then the
condition will evaluate to TRUE regardless of the IP range:

 9:
 10: [UserIpRange = 192.168.*.*] && [Browser = msie] || [Browser = firefox]
 11:
 12: headerImage = fileadmin/img1.jpg

This is because the conditions are read like the parenthesis levels show:

("UserIpRange = 192.168.*.*" AND "Browser = msie") OR "Browser = firefox"

The order of the "||" and "&&" operators may be a problem now. For instance:

 9:
 10: [UserIpRange = 192.168.*.*] || [UserIpRange = 212.237.*.*] && [Browser = msie]
 11:
 12: headerImage = fileadmin/img1.jpg

I would like it to read as "If User IP Range is either #1 or #2 provided that the browser is MSIE in any
case!". But right now it will be TRUE if the User IP range is 192.168.... OR if either the range is 212....
and the browser is MSIE.

Formally, this is what I want:

("UserIpRange = 192.168.*.*" OR "UserIpRange = 212.237.*.*") AND "Browser = msie"

My solution is to implement a second way of OR'ing conditions together - by simply implying an OR
between two "condition sections" if no operator is there. Thus the line above could be implemented as
follows:

 9:
 10: [UserIpRange = 192.168.*.*][UserIpRange = 212.237.*.*] && [Browser = msie]
 11:
 12: headerImage = fileadmin/img1.jpg

Line 10 will be understood in this way:

[UserIpRange = 192.168.*.*](implied OR here!)[UserIpRange = 212.237.*.*] && [Browser = msie]

The function match() of the condition class will have to be modified as follows:

 1: /**
 2: * Splits the input condition line into AND and OR parts
 3: * which are separately evaluated and logically combined to the final output.
 4: */
 5: function match($conditionLine) {
 6: // Getting the value from inside of the wrapping
 7: // square brackets of the condition line:
 8: $insideSqrBrackets = trim(ereg_replace('\]$', '', substr($conditionLine, 1)));
 9:
 10: // The "weak" operator, OR, takes precedence:
 11: $ORparts = split('\][[:space:]]*\|\|[[:space:]]*\[', $insideSqrBrackets);
 12: foreach($ORparts as $andString) {
 13: $resBool = FALSE;
 14:
 15: // Splits by the "&&" and operator:
 16: $ANDparts = split('\][[:space:]]*\&\&[[:space:]]*\[', $andString);

39

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

 17: foreach($ANDparts as $subOrStr) {
 18:
 19: // Split by no operator between] and [(sub-OR)
 20: $subORparts = split('\][[:space:]]*\[', $subOrStr);
 21: $resBool = FALSE;
 22: foreach($subORparts as $condStr) {
 23: if ($this->evalConditionStr($condStr)) {
 24: $resBool = TRUE;
 25: break;
 26: }
 27: }
 28:
 29: if (!$resBool) break;
 30: }
 31:
 32: if ($resBool) break;
 33: }
 34: return $resBool;
 35: }

That's it.

Addendum to the reference for our application
Remember in the previous sections? We defined three tables with properties that could be used in
TypoScript in the context of our case-story application. To that reference we should now add a section
with conditions which defines the following:

#1: Line syntax:

A condition is split into smaller parts which are connected using a logical AND or a logical OR. Each
sub-part of the condition line is separated by "] (Operator) [" where operator can be "&&" (AND) , "||"
(OR) or nothing at all (also meaning OR "below" AND in order).

The format of the condition line therefore is:

[COND1] || [COND2] && [COND3] [COND4] etc

where the operators have precedence as indicated by these illustrative parenthesis:

[COND1] || ([COND2] && ([COND3] [COND4]))

(Notice: Between COND3 and COND4 the blank space implicitly is an OR.)

#2: Subpart syntax:

For each subpart (for example "[COND 1]") the content is evaluated as follows:

[KEY = VALUE]

where the key denotes a type of condition from the table below:

Key Description Example

UserIpRange Returns TRUE if the client's remote IP address matches the pattern given
as value.
The value is matched against REMOTE_ADDR by the function
t3lib_div::cmpIP(), which you can consult for details on the syntax.

[UserIpRange =
192.168.*.*]

40

TypoScript Syntax and In-depth Study - doc_core_ts The TypoScript parser API

Key Description Example

Browser Returns TRUE, if the client's browser matches one of the keywords below.

Values you can use:
konqu = Konqueror
opera = Opera
msie = Microsoft Internet Explorer
net = Netscape (or any other)

Values are evaluated against the output of the function
t3lib_div::clientInfo() which can be consulted for details on the values for
browsers.

Note: These values are examples, which fit to the code we have built
above. In current TYPO3 versions the available values have changed!
For an overview of the values currently possible, always consult
TSref!

[Browser = msie]

41

TypoScript Syntax and In-depth Study - doc_core_ts Appendix A – What is TypoScript?

Appendix A – What is TypoScript?
People are often confused about what TypoScript (TS) is, where it can be used and have a tendency to
think of it as something complex. This chapter has been written in the hope of clarifying these issues.

First let's start with a basic truth:

‒ TypoScript is a syntax for defining information in a hierarchical structure using simple ASCII
text content.

This means that:

‒ TypoScript itself does not "do" anything - it just contains information.

‒ TypoScript is only transformed into function when it is passed to a program which is designed
to act according to the information in a TypoScript information structure.

So strictly speaking TypoScript has no function in itself, only when used in a certain context. Since the
context is almost always to configure something you can often understand TypoScript as parameters (or
function arguments) passed to a function which acts accordingly (e.g. "background_color = red"). And
on the contrary you will probably never see TypoScript used to store information like a database of
addresses - you would use XML or SQL for that.

PHP arrays
In the scope of its use you can also understand TypoScript as a non-strict way to enter information into
a multidimensional array. In fact when TypoScript is parsed, it is transformed into a PHP array! So when
would you define static information in PHP arrays? You would do that in configuration files - but
probably not to build your address database!

This can be summarized as follows:

‒ When TypoScript is parsed it means that the information is transformed into a PHP array from
where TYPO3 applications can access it.

‒ So the same information could in fact be defined in TypoScript or directly in PHP; but the
syntax would be different for the two of course.

‒ TypoScript offers convenient features which is the reason why we don't just define the
information directly with PHP syntax into arrays. These features include a relaxed handling of
syntax errors, definition of values with less language symbols needed and the ability of using
an object/property metaphor, etc.

TypoScript syntax, object paths, objects and properties
See, that is what this document is about - the syntax of TypoScript; the rules you must obey in order to
store information in this structure. Obviously I'll not explain the full syntax here again but just give an
example to convey the idea.

Remember it is about storing information, so think about TypoScript as assigning values to variables:
The "variables" are called "object paths" because TypoScript easily lends itself to the metaphor of
"objects" and "properties". This has some advantages as we shall see but at the same time TypoScript is
designed to allow a very simple and straight forward assignment of values; simply by using the equal
sign as an operator:

asdf = qwerty

Now the object path "asdf" contains the value "qwerty".

Another example:

42

TypoScript Syntax and In-depth Study - doc_core_ts Appendix A – What is TypoScript?

asdf.zxcvbnm = uiop
asdf.backgroundColor = blue

Now the object path "asdf.zxcvbnm" contains the value "uiop" and "asdf.backgroundColor" contains the
value "blue". According to the syntax of TypoScript this could also have been written more comfortably
as:

asdf {
 zxcvbnm = uiop
 backgroundColor = blue
}

What happened here is that we broke down the full object path, "asdf.zxcvbnm" into its components
"asdf" and "zxcvbnm" which are separated by a period, ".", and then we used the curly brace operators,
{ and } , to bind them together again. To describe this relationship of the components of an object path
we normally call "asdf " the object and " zxcvbnm " the property of that object.

So although the terms objects and properties normally hint at some context (semantics) we may also use
them purely to describe the various parts of an object path without considering the context and
meaning. Consider this:

asdf {
 zxcvbnm = uiop
 backgroundColor = blue
 backgroundColor.transparency = 95%
}

Here we can say that "zxcvbnm" and "backgroundColor" are properties of (the object) "asdf". Further,
"transparency" is a property of (the object / the property) "backgroundColor" (or
"asdf.backgroundColor").

Note about perceived semantics
You may now think that "backgroundColor = blue" makes more sense than "zxcvbnm = uiop" but
having a look at the syntax only it doesn't! The only reason that "backgroundColor = blue" seems to
make sense is that in the English language we understand the words "background color" and "blue" and
automatically imply some meaning. We understand the semantics of it. But to a machine like a
computer the word "backgroundColor" makes just as little sense as "zxcvbnm" unless it has been
programmed to understand either one, e.g. to take its value as the background color for something. In
fact "uiop" could be an alias for blue color values and "zxcvbnm" could be programmed as the property
setting the background color of something.

This just serves to point one thing out: Although most programming languages and also TypoScript use
function, method, keyword and property names which humans can often deduct some meaning from, it
ultimately is the programming reference, DTD or XML-Schema which defines the meaning.

Note about the internal structure when parsed into a PHP array
As stated in the previous chapter TypoScript can be understood as a lightweight way to enter
information into a multidimensional PHP array. Let’s take the TypoScript from above as an example:

asdf {
 zxcvbnm = uiop
 backgroundColor = blue
 backgroundColor.transparency = 95%
}

When parsed, this information will be stored in a PHP array which could be defined as follows:

$TS['asdf.']['zxcvbnm'] = 'uiop';
$TS['asdf.']['backgroundColor'] = 'blue';
$TS['asdf.']['backgroundColor.']['transparency'] = '95%';

43

TypoScript Syntax and In-depth Study - doc_core_ts Appendix A – What is TypoScript?

Or alternatively you could define the information in that PHP array like this:

$TS = array(
 'asdf.' => array(
 'zxcvbnm' => 'uiop',
 'backgroundColor' => 'blue',
 'backgroundColor.' => array (
 'transparency' => '95%'
)
)
)

The information inside a PHP array like that one is used by TYPO3 to apply the configurations, which
you have set.

44

TypoScript Syntax and In-depth Study - doc_core_ts Next steps

Next steps
If you are looking for an overview of the available objects in TypoScript templates, have a look at TSref,
the TypoScript Reference.

All properties and values for TSconfig fields are listed in the document "TSconfig".

45

	TypoScript Syntax and In-depth Study
	Introduction
	About this document
	What's new
	Credits
	Feedback

	Syntax
	Introduction
	Example:

	Contexts
	TypoScript syntax
	Example:
	Comments
	Example:

	Comment blocks
	Rules:
	Example:

	Value assignment: The "=" operator
	Rules:

	Value modifications: The ":=" operator
	Rules:
	Example:

	Code blocks: The { } signs
	Rules:
	Example:

	Multi-line values: The () signs
	Rules:
	Example:

	Object copying: The "<" sign
	Example:

	References: the "=<" sign
	Example:

	Object unsetting: The ">" sign:
	Example:

	Conditions: Lines starting with "["
	Rules:
	Example:

	Conditions
	Where conditions can be used
	The syntax of conditions
	The special [ELSE], [END] and [GLOBAL] conditions
	Where to insert conditions in TypoScript?
	The [GLOBAL] condition
	Summary

	Includes

	TypoScript Templates
	Constants
	What are constants?
	Example:

	Using constants
	Example:

	Declaring constants for the Constant Editor
	Default values:
	Comments:
	Keys:
	cat=
	type=
	label=

	TSConstantEditor.[category]
	Example:

	Sorting out details
	More about syntax, semantics and TypoScript compared to XML and XSLT
	Where is TypoScript used?
	Page TSconfig
	User TSconfig
	TypoScript Templates

	Entering TypoScript
	Parsing, storing and executing TypoScript
	Parsing TypoScript
	Storing parsed TypoScript
	"Executing" TypoScript

	Syntax highlighting and debugging
	Debugging

	Myths, FAQ and acknowledgments
	Myth: "TypoScript is a scripting language"
	Myth: "TypoScript has the same syntax as JavaScript"
	Myth: "TypoScript is a proprietary standard"
	Myth: "TypoScript is very complex"
	Why not XML instead?

	The TypoScript parser API
	Introduction
	Parsing custom TypoScript
	Root level
	->COLORS
	->ADMINFO
	A case story

	Implementing custom conditions
	A realistic example

	Implementing combined conditions
	Addendum to the reference for our application

	Appendix A – What is TypoScript?
	PHP arrays
	TypoScript syntax, object paths, objects and properties
	Note about perceived semantics
	Note about the internal structure when parsed into a PHP array

	Next steps

