
 TYPO3 Services - doc_core_services TYPO3 Services

TYPO3 Services

Extension Key: doc_core_services

Language: en

Keywords: services, development, extension, auth, reference, forDevelopers, forAdvanced

Copyright 2000-2008, TYPO3 Core Development Team, <info@typo3.org>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.org

Revised for TYPO3 4.2, March 2009

1

 TYPO3 Services - doc_core_services TYPO3 Services

Table of Contents
TYPO3 Services...1

Introduction... 3

Two reasons to use services....................................3

1. Freedom of implementation.........................3

2. Extend functionality with extensions.............3

Using services.. 4

Service precedence... 4

Simple use..4

Use with subtypes...4

Calling a chain of services..4

Configuration... 6

Registration changes... 6

Service configuration...6

Service type configuration.......................................6

Developer's Guide.. 7

Introducing a new service type................................7

Implementing a service... 7

Service registration..8

Skeleton service class................................... 10

Service API... 11

Getter methods for service information...........11

Error handling..11

General service functions..............................12

I/O tools... 12

I/O Input and I/O output...............................12

Service implementation.................................13

Service-related API..13

t3lib_extMgm..13

t3lib_div...14

2

 TYPO3 Services - doc_core_services Introduction

Introduction
This document describes the services functionality included in the TYPO3 core since version 3.6.0.

Services are designed to be overridden so that you can extend, improve or – in general – modify the behavior of the TYPO3
or any extension that uses services without having to change the original code of TYPO3 or of the extension.

Services are PHP classes inside of an extension similar to FE-plugins (or inside the core of TYPO3, for some base services).
Usually when you use a class, you address it directly by creating an instance:

require_once(t3lib_extMgm::extPath('some_extension').'class.tx_some_extension_class.php');
$obj = t3lib_div::makeInstance('tx_some_extension_class');

Using a service class is done by calling a function which chooses the right service automatically by passing only the requested
service type name and not the class name:

$serviceObj = t3lib_div::makeInstanceService('my_service_type');

The difference is that the class name itself and its usage is not hardcoded. The same service can be provided by different
extensions. The service with the highest priority and quality is chosen automatically.

Two reasons to use services

1. Freedom of implementation
A service may be implemented multiple times to take into account different environments like operating systems (Unix,
Windows, Mac), available PHP extensions or other third-party dependencies (other programming languages, binaries, etc.).

Imagine an extension which could rely on a Perl script for very good results. Another implementation could exist, that relies
only on PHP, but gives results of lesser quality. With a service you could switch automatically between the two
implementations just by testing the availability or not of Perl on the server.

2. Extend functionality with extensions
Services are able to handle subtypes. Take the service of the type “fileMeta” which extracts meta data from files. It provides
information depending on the file type for which it is implemented.

if (is_object($serviceObj = t3lib_div::makeInstanceService('fileMeta', $fileExtension))) {
$meta = serviceObj->getFileMeta($filename);

}

Here you can define a common API that doesn't vary whatever the type of file you are trying to read, greatly simplifying the
implementation of code relying on such services. Any extension can add new subtypes handling, say 'mp3' for example, and
this subtype will automatically be available to code that uses the “fileMeta” service.

3

 TYPO3 Services - doc_core_services Using services

Using services
There are different ways to use services, which are described below. But first a word about precedence.

Service precedence
Several services may be declared to do the same job. What will distinguish them is two intrinsic properties of services: priority
and quality. Priority tells TYPO3 which service should be called first. Normal priorities vary between 0 and 100, but can be
exceptionally set to higher values (no maximum). When two services of equal priority are found, the system will use the
service with the best quality.

The priority is used to define a call order for services. The default priority is 50. The service with the highest priority is called
first. The priority of a service is defined by its developer, but may be reconfigured (see “Configuration” below). It is thus very
easy to add a new service that comes before or after an existing service, or to change the call order of already registered
services.

The quality should be a measure of the worthiness of the job performed by the service. There may be several services who
can perform the same task (e.g. extracting meta data from a file), but one may be able to do that much better than the other
because it is able to use a third-party application. However if that third-party application is not available, neither will this
service. In this case TYPO3 can fall back on the lower quality service which will still be better than nothing. Quality varies
between 0-100.

More considerations about priority and quality can be found in the “Developer's Guide” below.

Simple use
The most basic use is when you just want an object that handles a given service type:

if (is_object($serviceObj = t3lib_div::makeInstanceService('textLang'))) {
$language = $serviceObj->guessLanguage($text);

}

In this example a service of type 'textLang' is requested. If such a service is indeed available an object will be returned. Then
the service type 'textLang' has a function guessLanguage() which is used.

There's no certainty that an object will be returned, for a number of reasons:

• there might be no service of the requested type installed

• the service deactivated itself during registration because it recognized it can't run on your platform

• the service was deactivated by the system because of certain checks

• during initialization the service checked that it can't run and deactivated itself

Note that when a service is requested, the instance created is stored in a global registry. If that service is requested again
during the same code run, the stored instance will be returned instead of a new one. More details in “Service API” below.

If several services are available, the one with the highest priority (or quality if priority are equals) will be used.

Use with subtypes
A service can also be requested for not just a type, but a subtype too:

// find a service for a file type
if (is_object($serviceObj = t3lib_div::makeInstanceService('metaExtract',$fileType))) {

$serviceObj->setInputFile($absFile, $fileType);
if ($serviceObj->process('', '', array('meta' => $meta)) > 0

&& (is_array($svmeta = $serviceObj->getOutput()))) {
$meta = $svmeta;

}
}

In this example a service type “metaExtract” is requested for a specific subtype corresponding some file's type. With the
returned instance, it then proceeds to retrieving whatever possible meta data from the file.

If several services are available for the same subtype, the one with the highest priority (or quality if priority are equals) will be
used.

Calling a chain of services
It is also possible to use services in a “chain”. This means using all the available services of a type instead of just one.

The method t3lib_div::makeInstanceService() accepts a third parameter to exclude a number of services, using a

4

 TYPO3 Services - doc_core_services Using services

comma-separated list of service keys. This way you can walk through all available services of a type by passing the already
used service keys. Services will be called in order of decreasing priority and quality.

The following example is an extract of the user authentication process:

// use 'auth' service to find the user
// first found user will be used

$serviceChain='';
while (is_object($serviceObj = t3lib_div::makeInstanceService('auth', $subType, $serviceChain))) {

$serviceChain .= ',' . $serviceObj->getServiceKey();

if ($tempuser = $serviceObj->getUser($info, $subType, $this)) {
// user found, do something and exit the chain

...
break;

}
}

As you see the while loop is exited when a service gives a result. More sophisticated mechanisms can be imagined. In this
next example – also taken from the authentication process – the loop is exited only when a certain value is returned by the
method called:

// use 'auth' service to authenticate the user
// if one service returns FALSE then authentication failed
// a service might return 100 which means there's no reason to stop
// but the user can't be authenticated by that service

$serviceChain='';
while (is_object($serviceObj = t3lib_div::makeInstanceService('auth', $subType, $serviceChain))) {

$serviceChain .= ',' . $serviceObj->getServiceKey();
$serviceObj->initAuth($subType, $loginData, $authInfo, $this);
if (($ret = $serviceObj->authUser($tempuser))>0) {

// if the service returns >=200 then no more checking is needed
// useful for IP checking without password

if (intval($ret) >= 200) {
$authenticated = true;
break;

} elseif (intval($ret) >= 100) {
// Just go on. User is still not authenticated but there's no reason to stop now.

} else {
$authenticated = true;

}
} else {

$authenticated = false;
break;

}
}

In the above example the loop will walk through all services of the given type except if one service returns false or a value
larger than or equals to 200, in which case the chain is interrupted.

5

 TYPO3 Services - doc_core_services Configuration

Configuration
Each service will have its own configuration which should be documented in their manual. There are however properties
common to all services as well as generic mechanisms which are described below.

Registration changes
The priority and other values of the services registration can be overridden in typo3conf/localconf.php. Example:

 // raise priority of service 'tx_example_sv1' to 110
$TYPO3_CONF_VARS['T3_SERVICES']['auth']['tx_example_sv1']['priority'] = 110;

 // disable service 'tx_example_sv1'
$TYPO3_CONF_VARS['T3_SERVICES']['auth']['tx_example_sv1']['enable'] = false;

The syntax is:

$TYPO3_CONF_VARS['T3_SERVICES'][service type][service key][option key] = value;

Registration options are described in more details in “Implementing a service” below. Any of these options may be overridden
using the above syntax. However caution should be used depending on the options. “className” and “classFile” should not
be overridden in such a way. Instead a new service should be implemented using this alternate class.

Service configuration
Some services will not need additional configuration. Others may have some options that can be set in the Extension
Manager. Yet others may be configured via local configuration files (either typo3conf/localconf.php or some extension's
ext_localconf.php). Example:

$TYPO3_CONF_VARS['SVCONF']['auth']['tx_example_sv1']['foo'] = 'bar';

The syntax is:

$TYPO3_CONF_VARS['SVCONF'][service type][service key][config key] = value;

A configuration can also be set for all services belonging to the same service type by using the keyword “default” instead of a
service key:

$TYPO3_CONF_VARS['SVCONF'][service type]['default'][config key] = value;

The available configuration settings should be described in the service's documentation. See “Service API” below to see how
you can read these values properly inside your service.

Service type configuration
It may also be necessary to provide configuration options for the code that uses the services (and not for usage inside the
services themselves). It is recommended to make use of the following syntax:

$TYPO3_CONF_VARS['SVCONF'][service type]['setup'][config key] = value;

Example:

$TYPO3_CONF_VARS['SVCONF']['auth']['setup']['FE_alwaysFetchUser'] = true;

This configuration can be placed in any configuration file (either typo3conf/localconf.php or some extension's
ext_localconf.php). There's no API for retrieving these values. It's just a best practice recommendation.

6

 TYPO3 Services - doc_core_services Developer's Guide

Developer's Guide
This chapter describes all you need to know to develop a new service, including advice to developing good services.

Introducing a new service type
Every service belongs to a given service type. A service type is represented by a key, just like an extension key. In the
examples above there was mention of the “auth” and “metaExtract” service types.

Each service type will implement its own API corresponding to the task it is designed to handle. For example the “auth”
service type requires the two methods getUser() and authUser(). If you introduce a new service type you should think
well about its API before starting development. Ideally you should discuss with other developers. Services are meant to be
reusable. A badly designed service that is used only once is a failed service. The development mailing list (typo3.dev) is a
good place to discuss new service types.

You should plan to provide a base class for your new service type. It is then easier to develop services based on this type as
you can start by extending the base class. You should also provide a documentation, that describes the API. It should be clear
to other developers what each method of the API is supposed to do.

Implementing a service
The best way to get started when implementing a service is to use the Extension Kickstarter. It will help you create the
skeleton of your service. In the Kickstarter you start by setting the general information and declaring that your extension is of
type “Service”:

Then move to the “Services” section if the left-hand menu and define a first service. Your screen might look something like
this:

7

 TYPO3 Services - doc_core_services Developer's Guide

Apart from the standard extension declaration file (ext_emconf.php) and extension's icon (ext_icon.gif), the
Kickstarter will create the following files:

• ext_localconf.php where the service is declared

• sv1/class.tx_myext_sv1.php where the code of the service resides

As can be seen the naming convention for services is very close to the one used for FE plug-ins, using “sv” instead of “pi”.

Service registration
Registering a service is done inside the ext_localconf.php file. Let's look at what is inside.

<?php
if (!defined ('TYPO3_MODE')) {
 die ('Access denied.');
}

t3lib_extMgm::addService($_EXTKEY, 'textLang' /* sv type */, 'tx_babelfish_sv1' /* sv key */,
array(

'title' => 'Babelfish',
'description' => 'Guess alien languages by using a babelfish',

'subtype' => '',

8

 TYPO3 Services - doc_core_services Developer's Guide

'available' => true,
'priority' => 60,
'quality' => 80,

'os' => '',
'exec' => '',

'classFile' => t3lib_extMgm::extPath($_EXTKEY).'sv1/class.tx_babelfish_sv1.php',
'className' => 'tx_babelfish_sv1',

)
);

?>

A service is registered with TYPO3 by calling t3lib_extMgm::addService(). This method takes the following
parameters:

Parameter: Data type: Description:

$extKey string The key of the extension containing the service.

$serviceType string Service type of the service.

$serviceKey string Unique key for the service. By default, the Kickstarter creates the key as “tx_myext_sv1” for the
first service, “tx_myext_sv2” for the second service, etc. This may be changed freely, but the key
should be explicit of the service's function.

$info array Additional information about the service. This is described below.

The additional information array defines the main properties of a service:

Property: Data type: Description: Default:

title string The title of the service.

description string The description. If it makes sense it should contain information about
• the quality of the service (if it's better or not than normal)
• the OS dependency
• the dependency on external programs (perl, pdftotext, etc.)

subtype string / comma list The subtype is not predefined. Its usage is defined by the API of the service type.

Example:
'subtype' => 'jpg,tif',

available boolean Defines if the service is available or not. This means that the service will be ignored
if available is set to false.
It makes no sense to set this to false, but it can be used to make a quick check if
the service works on the system it installed:

Examples:
 // is the curl extension available we need
'available' => is_function('curl_exec'),

Only quick checks are appropriate here. More extensive checks should be
performed when the service is requested and the service class is initialized.

true

priority integer The priority of the service. A service of higher priority will be selected first.
Can be reconfigured with $TYPO3_CONF_VARS.

Use a value from 0 to 100. Higher values are reserved for reconfiguration by
$TYPO3_CONF_VARS. The default value is 50 which means that the service is well
implemented and gives normal (good) results.

Imagine that you have two solutions, a pure PHP one and another that depends on
an external program. The PHP solution should have a priority of 50 and the other
solution a lower one. PHP-only solutions should have a higher priority since they
are more convenient in terms of server setup. But if the external solution gives
better results you should set both to 50 and set the quality value to a higher value.

50 (0-100)

9

 TYPO3 Services - doc_core_services Developer's Guide

Property: Data type: Description: Default:

quality integer/float Among services with the same priority, the service with the highest quality by the
same priority will be preferred.

The use of the quality range is defined by the service type. Integer or floats can be
used. The default range is 0-100 and the default value for a normal (good) quality
service is 50.

The value of the quality should represent the capacities of the services. Consider a
service type that implements the detection of a language used in a text. Let's say
that one service can detect 67 languages and another one only 25. These values
could be used directly as quality values.

50 (0-100)

os string Defines which operating system is needed to run this service.

Examples:
 // runs only on UNIX
'os' => 'UNIX',

 // runs only on Windows
'os' => 'WIN',

 // no special dependency
'os' => '',

exec string / comma list List of external programs which are needed to run the service. Absolute paths are
allowed but not recommended, because the programs are searched for
automatically by t3lib_exec. Leave empty if no external programs are needed.

Examples:
'exec' => 'perl',

'exec' => 'pdftotext',

classFile string Created by the kickstarter

Example:
t3lib_extMgm::extPath($_EXTKEY).'sv1/class.tx_myextkey_sv1.ph
p'

className string Created by the kickstarter

Example:
'tx_myextkey_sv1'

Skeleton service class
The Kickstarter will generate a skeleton PHP class for each service defined. The example above will generate file
sv1/class.tx_babelfish_sv1.php, which contains the following sample code:

/**
 * Service "Babelfish" for the "babelfish" extension.
 *
 * @author Zaphod Beeblebrox <zaphod@goldenheart.com>
 * @package TYPO3
 * @subpackage tx_babelfish
 */
class tx_babelfish_sv1 extends t3lib_svbase {

var $prefixId = 'tx_babelfish_sv1'; // Same as class name
var $scriptRelPath = 'sv1/class.tx_babelfish_sv1.php'; // Path to this script relative to the

extension dir.
var $extKey = 'babelfish'; // The extension key.

/**
 * [Put your description here]
 *
 * @return [type] ...
 */
function init() {

$available = parent::init();

// Here you can initialize your class.

// The class have to do a strict check if the service is available.
// The needed external programs are already checked in the parent class.

// If there's no reason for initialization you can remove this function.

10

 TYPO3 Services - doc_core_services Developer's Guide

return $available;
}

/**
 * [Put your description here]
 * performs the service processing
 *
 * @param string Content which should be processed.
 * @param string Content type
 * @param array Configuration array
 * @return boolean
 */
function process($content='', $type='', $conf=array()) {

// Depending on the service type there's not a process() function.
// You have to implement the API of that service type.

return false;
}

}

This sample code shows how a service class must inherit from the t3lib_svbase base class, which is described in more
details below. It provides a skeleton for the init() method which is the single most important method for a service, as it
defines – at runtime – whether a given service is really available or not. This method is also discussed in more details below.

The skeleton process() method is just an example of what you might want to implement in your service depending on the
API of the service type. In the example Kickstarter input above, the “babelfish” service was declared as a “textLang” type of
service. In this case the specific service type API indeed consists of just the process() method.

The sample code generated by the Kickstarter may change in the future.

Service API
All service classes must inherit from the base service class t3lib_svbase, unless the service type provides a specific base
class (authentication services, for example, inherit from tx_sv_authbase instead). These specific classes should normally
themselves extend t3lib_svbase. This class provides a large number of important or useful methods which are described
below, grouped by type of usage.

Getter methods for service information
Most of the below methods are quite obvious, except for getServiceOption().

Method: Description:

getServiceInfo Returns the array containing the service's properties

getServiceKey Returns the service's key

getServiceTitle Returns the service's title

getServiceOption This method is used to retrieve the value of a service option, as defined in the
$TYPO3_CONF_VARS['SVCONF'] array. It will take into account possible default values as described in the
“Service configuration” chapter above.

The getServiceOption() method requires more explanations. Imagine your service has an option called “ignoreBozo”. To
retrieve it in a proper way, you should not access $TYPO3_CONF_VARS['SVCONF'] directly, but use
getServiceOption() instead. In its simplest form, it will look like this (inside your service's code):

$ignoreBozo = $this->getServiceOption('ignoreBozo');

This will retrieve the value of the “ignoreBozo” option for your specific service, if defined. If not, it will try to find a value in
the default configuration. Additional call parameters can be added:

• the second parameter is a default value to be used if no value was found at all (including in the default
configuration)

• the third parameter can be used to temporarily switch off the usage of the default configuration.

This allows for a lot of flexibility.

Error handling
This set of methods handles the error reporting and manages the error queue. The error queue works as a stack. New errors

11

 TYPO3 Services - doc_core_services Developer's Guide

are added on top of the previous ones. When an error is read from the queue it is the last one in that is taken (last in, first
out). An error is actually a short array comprised of an error number and an error message.

The error queue exists only at run-time. It is not stored into session or any other form of permanence.

Method: Description:

devLog Writes a message to the devlog, implicitly using the service key as a log key. Depends on the member
variable “writeDevLog” being set to true (it's set to false by default).

errorPush Puts a new error on top of the queue stack.

errorPull Removes the latest (topmost) error in the queue stack.

getLastError Returns the error number from the latest error in the queue, or true if queue is empty.

getLastErrorMsg Same as above, but returns the error message.

getErrorMsgArray Returns an array with the error messages of all errors in the queue.

getLastErrorArray Returns the latest error as an array (number and message).

resetErrors Empties the error queue.

General service functions

Method: Description:

checkExec This method checks the availability of one or more executables on the server. A comma-separated list of
excutables names is provided as a parameter. The method returns true if all executables are available.
The method relies on t3lib_exec::checkCommand() to find the executables, so it will search through the
paths defined/allowed by the TYPO3 configuration.

deactivateService Internal method to temporarily deactivate a service at run-time, if it suddenly fails for some reason.

I/O tools
A lot of early services were designed to handle files, like those used by the DAM. Hence the base service class provides a
number of methods to simplify the service developer's life when it comes to read and write files. In particular it provides an
easy way of creating and cleaning up temporary files.

Method: Description:

checkInputFile Checks if a file exists and is readable within the paths allowed by the TYPO3 configuration.

readFile Reads the content of a file and returns it as a string. Calls on checkInputFile() first.

writeFile Writes a string to a file, if writable and within allowed paths. If no file name is provided, the data is written to
a temporary file, as created by tempFile() below. The file path is returned.

tempFile Creates a temporary file and keeps its name in an internal registry of temp files.

registerTempFile Adds a given file name to the registry of temporary files.

unlinkTempFiles Deletes all the registered temporary files.

I/O Input and I/O output
These methods provide a standard way of defining or getting the content that needs to be processed – if this is the kind of
operation that the service provides – and the processed output after that.

Method: Description:

setInput Sets the content (and optionally the type of content) to be processed.

setInputFile Sets the input file from which to get the content (and optionally the type).

getInput Gets the input to process. If the content is currently empty, tries to read it from the input file.

getInputFile Gets the name of the input file, after putting it through checkInputFile(). If no file is defined, but some
content is, the method writes the content to a temporary file and returns the path to that file.

setOutputFile Sets the output file name.

getOutput Gets the output content. If an output file name is defined, the content is gotten from that file.

getOutputFile Gets the name of the output file. If such file is not defined, a temporary file is created with the output
content and that file's path is returned.

12

 TYPO3 Services - doc_core_services Developer's Guide

Service implementation
These methods are related to the general functioning of services. init() and reset() are the most important
methods to implement when developing your own services.

Method: Description:

init This method is expected to perform any necessary initialization for the service. Its return value is critical. It
should return false if the service is not available for whatever reason. Otherwise it should return true.
Note that's it's not necessary to check for OS compatibility, as this will already have been done by
t3lib_extMgm::addService() when the service is registered.
Executables should be checked, though, if any.
The init() method is automatically called by t3lib_div::makeInstanceService() when requesting a
service.

reset When a service is requested by a call to t3lib_div::makeInstanceService(), the generated instance
of the service class is kept in a registry ($GLOBALS['T3_VAR']['makeInstanceService']). When the
same service is requested again during the same code run, a new instance is not created. Instead the stored
instance is returned. At that point the reset() method is called.
This method can be used to clean up data that may have been set during the previous use of that instance.

__destruct Clean up method. The base implementation calls on unlinkTempFiles() to delete all temporary files.

The little schema below summarizes the process of getting a service instance and when each of init() and reset() are
called.

Service-related API
This section describes the methods of the TYPO3 core that are related to the use of services.

t3lib_extMgm
This extension management class contains three methods related to services:

13

 TYPO3 Services - doc_core_services Developer's Guide

Method: Description:

addService This method is used to register services with TYPO3. It checks for availability of service with regards to OS
dependency (if any) and fills the $GLOBALS['T3_SERVICES'] array, where information about all registered
services is kept.

findService This method is used to find the appropriate service given a type and a subtype. It handles priority and quality
rankings. It also checks for availability based on executables dependencies, if any.
This method is normally called by t3lib_div::makeInstanceService(), so you shouldn't have to worry
about calling it directly, but it can be useful to check if there's at least one service available.

deactivateService Marks a service as unavailable. It is called internally by addService() and findService() and should
probably not be called directly unless you're sure of what you're doing.

t3lib_div
This class contains a single method related to services, but the most useful one, used to get an instance of a service.

Method: Description:

makeInstanceService This method is used to get an instance of a service class of a given type and subtype. It calls on
t3lib_extMgm::findService() to find the best possible service (in terms of priority and quality).
As described above it keeps a registry of all instantiated service classes and uses existing instances whenever
possible, in effect turning service classes into singletons.

14

	TYPO3 Services
	Introduction
	Two reasons to use services
	1. Freedom of implementation
	2. Extend functionality with extensions

	Using services
	Service precedence
	Simple use
	Use with subtypes
	Calling a chain of services

	Configuration
	Registration changes
	Service configuration
	Service type configuration

	Developer's Guide
	Introducing a new service type
	Implementing a service
	Service registration
	Skeleton service class

	Service API
	Getter methods for service information
	Error handling
	General service functions
	I/O tools
	I/O Input and I/O output
	Service implementation

	Service-related API
	t3lib_extMgm
	t3lib_div

