
TYPO3 Skinning Reference
Extension Key: doc_core_skinning
Language: en
Keywords: forDevelopers, forAdvanced
Copyright 2000-2010, Documentation Team, <documentation@typo3.org>

This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3
- a GNU/GPL CMS/Framework available from www.typo3.org

Ofcial documentation
This document is included as part of the ofcial TYPO3 documentation. It has been approved by the
TYPO3 Documentation Team following a peer-review process. The reader should expect the information in
this document to be accurate - please report discrepancies to the Documentation Team
(documentation@typo3.org). Ofcial documents are kept up-to-date to the best of the Documentation
Team's abilities.

Core Manual
This document is a Core Manual. Core Manuals address the built in functionality of TYPO3 and are
designed to provide the reader with in-depth information. Each Core Manual addresses a particular process
or function and how it is implemented within the TYPO3 source code. These may include information on
available APIs, specifc confguration options, etc.

Core Manuals are written as reference manuals. The reader should rely on the Table of Contents to identify
what particular section will best address the task at hand.

TYPO3 Skinning Reference - doc_core_skinning TYPO3 Skinning Reference

Table of Contents
TYPO3 Skinning Reference....................1

Introduction... 3

About this document... 3

What's new.. 3

Credits.. 3

Feedback.. 3

Supported Browsers... 4

CSS Files Organization..5

Backend CSS API... 7

Skinning API... 7

CSS concatenation.. 7

CSS compression ... 8

Icons API.. 8

Sprite Generation.. 10

CSS Coding Guidelines.. 12

CSS Naming Conventions...13

Icons naming conventions..13

Why are there so many classes rather than

cascading?... 13

When to use an id rather than a class attribute?...14

Use Cases..15

Use case 1: load additional stylesheets to skin the
Backend...15

Use case 2: registering a new icon with the Backend
.. 15

Use case 3: migration steps from legacy to new API.
16

CSS generic elements.. 17

"A" tag with icon..17

Button with icon.. 17

Input... 17

Button without icon.. 17

Form...17

Table.. 18

FAQ... 20

Next steps... 21

Appendix A – Icon reference....................................22

2

TYPO3 Skinning Reference - doc_core_skinning Introduction

Introduction
About this document

This document explains how CSS classes and icons in the TYPO3 Backend are defned. It is the basis
for a consistent naming convention to ease the skinning of the TYPO3 Backend, as well as to ensure
consistency.

The goals of the CSS naming convention are the following points:

‒ The designer should have a clear idea for which purpose a CSS class is intended to be used just
by reading the name of the class. He should have a clear understanding which CSS selectors he
can use to style elements.

‒ The developer must be aware where he should add CSS classes to the HTML output. When
new CSS classes are required, he should know how to defne them, since he has a document
explaining the naming conventions.

Developers and designers should stick to these guidelines as much as possible. Following these simple
rules will make it easier to have a consistent look and feel all around the TYPO3 Backend. Old pieces of
code are still present in TYPO3 and it will almost be impossible to change everything but this
document is considered as a starting point for new developments.

Note that this document is provided as guidelines for TYPO3 v4.4 and above. TYPO3 versions below
v4.4 will stick to the old legacy CSS stylesheet located in typo3/stylesheet.css of the TYPO3 package.
This document dos not target TYPO3 v5 either.

What's new
This is the frst version of this manual.

Credits
This manual was written by Fabien Udriot with the help of Stefen Ritter and Stefen Gebert.

During the process of refactoring the skin system for TYPO3, these diferent projects and readings
provided inspiration:

‒ Ext JS for CSS organization and CSS naming

‒ freedesktop.org Icons Naming Specifcation

‒ OOCSS for a maintainable, standards-based CSS code

Feedback
For general questions about the documentation get in touch by writing to documentation@typo3.org.

If you fnd a bug in this manual, please fle an issue in this manual's bug tracker:
http://forge.typo3.org/projects/typo3v4-doc_core_skinning/issues

Maintaining quality documentation is hard work and the Documentation Team is always looking for
volunteers. If you feel like helping please join the documentation mailing list
(typo3.projects.documentation on lists.typo3.org).

3

mailto:documentation@typo3.org
http://wiki.github.com/stubbornella/oocss
http://www.freedesktop.org/wiki/
http://www.extjs.com/deploy/dev/examples/samples.html
http://www.extjs.com/deploy/dev/examples/samples.html

TYPO3 Skinning Reference - doc_core_skinning Introduction

Supported Browsers
The TYPO3 Backend (and thus the CSS code) supports the following browsers:

‒ All Gecko-based browsers, version 1.8+ (used in Mozilla Firefox 1.5 and higher)

‒ All Webkit-based browsers; Safari, Chrome and Konqueror

‒ Opera 9 and higher

‒ Microsoft Internet Explorer version 6 and higher

4

TYPO3 Skinning Reference - doc_core_skinning CSS Files Organization

CSS Files Organization
All CSS fles used in the Backend are in one of two following folders "structure" or "visual".

Every CSS fle inside the "structure" directory deals with the layout, positioning of elements and grid-
like structure of a page. Typical attributes are: padding, margin, height, width, position, foat, etc...

Every CSS fle inside the "visual" directory basically deals with colors, background images and so on.
Typical attributes are: font-size, font-weight, color, background, etc...

Structure Visual

padding, margin
width, height
position
foat
display
visibility
top, right, bottom, left
z-index
clear

font
color
background
border
overfow
vertical-align
white-space
cursor
text
box-shadow
list-style
line-height

In the TYPO3 Core itself, you will fnd mainly styles that belong to the structure of a page, you will
fnd this under typo3/stylesheets/structure/. There is no visual stylesheet because it is the purpose of a
skin to "dress up" the TYPO3 Backend. You can experiment by removing every skin extension from the
Extension Manager. You will have a "naked" but still usable TYPO3 Backend.

Furthermore, styles should be grouped together to identify them easily. But instead of having one big
fle that contains all styles, they are in separate fles according to their purpose. The stylesheets for the
TYPO3 Core are:

For a more in-depth understanding of the structure, have a look into the fles within
"typo3/stylesheets/".

In a skin extension, it makes sense to have a "visual" folder containing all the icons, backgrounds,
stylesheets etc. The "structure" folder will contain styles that may override the default structure styles.
Normally, you should have more visual styles than structure styles in a skin.

5

TYPO3 Skinning Reference - doc_core_skinning CSS Files Organization

1. the icons folder

2. the diferent group of icons

3. the stylesheets containing the sprites, structure and visual information

6

TYPO3 Skinning Reference - doc_core_skinning Backend CSS API

Backend CSS API
This section shows skin developers how to add their stylesheet information correctly.

Skinning API
TYPO3 v4.4 introduces a new skinning API which enables you to load as many stylesheets as needed in
the Backend. Convention over confguration tends to be applied when loading stylesheets. TYPO3 is
expecting to fnd CSS fles within two directories:

* EXT:t3skin_improved/stylesheets/structure
* EXT:t3skin_improved/stylesheets/visual

The example below shows up the most simple way for adding stylesheets in the Backend. Since the
system assumes that CSS fles are to be found in folder "structure" and "visual", TYPO3 will
automatically load CSS fles at the latest. Following lines have to be put in fle ext_tables.php of the
extension.

$GLOBALS['TBE_STYLES']['skins']['t3skin_improved'] = array();
$GLOBALS['TBE_STYLES']['skins']['t3skin_improved']['name'] = 'My improved t3skin';

If conventions are respected, TYPO3 will use the array as below. If no fles are found, it will be simply
skipped.

$GLOBALS['TBE_STYLES']['skins']['t3skin_improved'] = array();
$GLOBALS['TBE_STYLES']['skins']['t3skin_improved']['name'] = 'My improved t3skin';
$GLOBALS['TBE_STYLES']['skins']['t3skin_improved']['stylesheetDirectories'] = array(
 'structure' => 'EXT:t3skin_improved/stylesheets/structure',
 'visual' => 'EXT:t3skin_improved/stylesheets/visual',
);

Conventions may be changed by overriding informations in $GLOBALS['TBE_STYLES'].

$GLOBALS['TBE_STYLES']['skins']['t3skin_improved']['stylesheetDirectories'] = array(
 'structure' => 'EXT:t3skin_improved/other_directory/structure', // changes default
directory
 'visual' => '', //removes visual stylesheet
);

Additionally, it is possible to load extra groups of stylesheets by completing the array like this:

$GLOBALS['TBE_STYLES']['skins']['t3skin_improved']['stylesheetDirectories'] = array(
 'EXT:t3skin_improved/stylesheets/extjs',
 'EXT:t3skin_improved/stylesheets/ie6',
 'EXT:t3skin_improved/stylesheets/rtehtmlarea',
);

CSS concatenation
CSS concatenation is the process of combining and minifying all CSS stylesheets that are loaded. This
way the browser only has to load a single stylesheet instead of many, which saves many HTTP requests.
The compression is done automatically when using TYPO3 v4.4 or greater.

The concatenated fles are stored in folder /typo3temp/compressor/, typically:

../typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-
403f03ea0692e1f848b48ae4da48b005.css?1278079667

Segment Description

First md5: 43184ce406ccfb7c04df66f024414129 Md5 of the whole content (not yet concatenated).

Second md5: 403f03ea0692e1f848b48a4da48b005 Md5 of the fle name + fle path + fle size

Time stamp: 1278079667 The creation time stamp of the fle itself.

7

view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667
view-source:http://newsletter.local/typo3temp/compressor/merged-43184ce406ccfb7c04df66f024414129-403f03ea0692e1f848b48ae4da48b005.css?1278079667

TYPO3 Skinning Reference - doc_core_skinning Skinning API

CSS compression
CSS compression enables to reduce drastically the size of the exchanged data between the server and
the browser.

Steps can be enabled in the Backend as follows:

1. In the module "Install" > "All confguration", set compression level between 1 and 9, where 1 is
least compression and 9 is greatest compression. Suggested and most optimal value is 5.

$GLOBALS['TYPO3_CONF_VARS']['BE']['compressionLevel'] = 5;

2. In a .htaccess fle or in virtual host add some confguration provided by fle
misc/advanced_htaccess.

<FilesMatch "\.js\.gzip$">
AddType "text/javascript" .gzip

</FilesMatch>
<FilesMatch "\.css\.gzip$">

AddType "text/css" .gzip
</FilesMatch>
AddEncoding gzip .gzip

Following those 2 steps will generate a compressed fle and therefore add a "gzip" sufx to the fle.

merged-43184ce406ccfb7c04df66f024414129-5c86564215e4bad82a1955b74b639532.css.gzip?1278152902

It may happen that the browser dos not support GZIP compression for some reason. Typically, it can be
behind a proxy server which dos not support GZIP headers. In this case, the compressor will detect it
and send the un-compressed fles.

Icons API
New methods have been added for the purpose of icons generation. The HTML should not be written
manually but rather should be generated by the means of the API. The ofcial format for icons is PNG
24 bits. There is a special fx for IE6 that solves the PNG transparency's issue.

The tables bellow gives an overview of the most common classes that are involved in the icons API.

Classes Description

fnal t3lib_iconWorks
t3lib/class.t3lib_iconworks.php

Icon generation, backend

This library has functions that returns - and if necessary
creates - the icon for an element in TYPO3

t3lib_SpriteManager
t3lib/class.t3lib_spritemanager.php

TYPO3 sprite manager, used in BE and in FE if a BE
user is logged in.

This class builds CSS defnitions of registered icons,
writes TCA defnitions and registers sprite icons in a
cache fle.

A confgurable handler class dos the business task.

interface t3lib_spritemanager_SpriteIconGenerator
t3lib/interfaces/interface.t3lib_spritemanager_spriteicongene
rator.php

Interface all handlers for t3lib_spritemanager have to
implement.

t3lib_spritemanager_SimpleHandler
t3lib/spritemanager/class.t3lib_spritemanager_simplehandler
.php

A class with an concrete implementation of
t3lib_spritemanager_SpriteIconGenerator.

It is the standard / fallback handler of the sprite
manager. This implementation won't generate sprites at
all. It will just render css-defnitions for all registered
icons so that they may be used through
t3lib_iconWorks::getSpriteIcon. Without the css classes
generated here, icons of for example TCA records would
be empty.

8

TYPO3 Skinning Reference - doc_core_skinning Skinning API

The section below gives examples how to use method of t3lib_iconWorks

Method name Description

t3lib_iconWorks::getSpriteIconClasses($iconName) generic method to create the fnal CSS classes based on
the sprite icon name with the base class and splits the
name into parts is usually called by the methods that
are responsible for fetching the names out of the fle
name, or the record type

Example
####
t3lib_iconWorks::getSpriteIconClasses('actions-document-new')
Result:
t3-icon t3-icon-actions t3-icon-actions-document t3-icon-document-new

Method name Description

t3lib_iconWorks::getSpriteIcon($iconName, array
$options = array(), array $overlays = array())

This generic method is used throughout the TYPO3
Backend to show icons in any variation which are not
bound to any fle type (see getSpriteIconForFile) or
database record (see getSpriteIconForRecord)

Examples
####
t3lib_iconWorks::getSpriteIcon('actions-document-new')
Result:

####
t3lib_iconWorks::getSpriteIcon('actions-document-new', array('title' => 'foo'))
Result:
<span title="foo" class="t3-icon t3-icon-actions t3-icon-actions-document t3-icon-document-
new">

####
t3lib_iconWorks::getSpriteIcon('actions-document-new', array(), array('status-overlay-
hidden' => array()))
Result: notice the additional "t3-icon-overlay" class

 <span class="t3-icon t3-icon-status t3-icon-status-overlay t3-icon-overlay-hidden t3-icon-
overlay">

Method name Description

t3lib_iconWorks::getSpriteIconForRecord($table, array
$row, array $options = array())

This method is used throughout the TYPO3 Backend
to show icons for a DB record.
Generates a HTML tag with proper CSS classes. The
TYPO3 skin has defned these CSS classes already to
have a pre-defned background image, and the correct
background-position to show the necessary icon.

Examples
####
t3lib_iconWorks::getSpriteIconForRecord('tt_content', array())
Result:

####
t3lib_iconWorks::getSpriteIconForRecord('tt_content', array('hidden' => 1))
Result:

 <span class="t3-icon t3-icon-status t3-icon-status-overlay t3-icon-overlay-hidden t3-icon-
overlay">

####
t3lib_iconWorks::getSpriteIconForRecord('tt_content', array(), array('class' => 'foo',
'title' => 'bar'))
Result:

9

TYPO3 Skinning Reference - doc_core_skinning Skinning API

<span class="t3-icon t3-icon-mimetypes t3-icon-mimetypes-x t3-icon-x-content-text foo"
title="bar">

Method name Description

t3lib_iconWorks::getSpriteIconForFile($fle, array
$options = array())

This method is used throughout the TYPO3 Backend
to show icons for a fle type.
Generates a HTML tag with proper CSS classes. The
TYPO3 skin has defned these CSS classes already to
have a pre-defned background image, and the correct
background-position to show the necessary icon.

Examples
####
t3lib_iconWorks::getSpriteIconForFile('pdf')
Result:

####
t3lib_iconWorks::getSpriteIconForFile('filename.pdf')
Result:

####
t3lib_iconWorks::getSpriteIconForFile('pdf', array('title' => 'bar'))
Result:
<span title="bar" class="t3-icon t3-icon-mimetypes t3-icon-mimetypes-pdf t3-icon-
pdf">

Sprite Generation
In version 4.4, the generation of sprites was assigned to the developer who should shipped skin
extensions with sprites already "compiled". As from version 4.5, TYPO3 provides a mechanism that
"compile" icons into sprites automatically. The mechanism is fully transparent and is fairly swift. The
sprite generation dos not modify the quality of the icons meaning the color's depth remains unchanged.

The sprite generation process involves diferent mechanism which are supporting by the Sprite
Manager and the Sprite Generator Handler.

Sprite Manager
the Sprite Manager is instantiated each time the Backend is loaded and one of its main role is to verify
whether new icons have been added or not by comparing md5 value from the fle cache with the
serialized icon list. The fle cache md5 is to be found at typo3temp/sprites/*.inc

Sprite Generator Handler
Sprite Generator Handler are confgurable "workers" of the spriteManager. Their tasks is to collect
informations about icons from extensions and have to make it usable for the Backend. In other words,
there are in charge of generating sprites and CSS fles.

If new icons have been added, Sprite Generator Handler is triggered and can "enter the stage" in
three diferent manners. Within the install tool, there is the key "spriteIconGenerator_handler" that is
used to confgure the way the Sprite Generator Handler is acting. Currently it accepts:

‒ simple which turns out stylesheet in typo3temp/sprites/ but dos not generate any sprite at all.
Each image is "linked" independently. This handler is already present in TYPO3 v4.4.

‒ auto-generating which extends the "simple" handler by producing a sprite additionally as
stylesheet. This handler is present upon TYPO3 v4.5.

‒ manual auto-generating - instead of letting TYPO3 taking care of the CSS / Sprite generation
automatically, this option will activate a new icon in the Clear Cache menu that will enable to
manually control the Sprite Manager. This handler is present upon TYPO3 v4.5.

Notice that the Sprite Generator only generate sprite from icons that have been added afterwards
through extensions. The sprite and stylesheet shipped with the Core will never be changed by the Sprite
Generator. Therefore, icons are pre-compiled into one "big" sprite for the whole Backend.

10

TYPO3 Skinning Reference - doc_core_skinning Skinning API

Sprites and stylesheets provided by the Core are located in t3skin as follows:

Path Description

typo3/sysext/t3skin/images/sprites/t3skin.png
typo3/sysext/t3skin/images/sprites/t3skin.gif

The sprites provided by t3skin for the whole backend. The gif
sprite is for IE6 compatibility.

typo3/sysext/t3skin/stylesheets/sprites/t3skin.css Contains the CSS stylesheets that will be used for positioning the
sprite.

Sprites and stylesheets that are generated afterwards by the means of the Sprite Generator Handler are
located in typo3temp as follows:

Path Description

... The sprite / icons location will depend on how the handler is
confgured in the install tool under key
"spriteIconGenerator_handler". It may accept thre diferent
values: simple – autogenerating – manual autogenerating

typo3temp/srpites/zextensions.css Contains the CSS stylesheets that will be used for positioning
the sprite.

Use case #2 gives a good insight of the API to be used to add new icon in the Backend. The common
way, is to call method addSingleIcons as follows:

// Gives the $icon array to the sprite manager
t3lib_SpriteManager::addSingleIcons($icons, 'foo');

11

TYPO3 Skinning Reference - doc_core_skinning CSS Coding Guidelines

CSS Coding Guidelines
‒ All CSS selectors (classes or IDs) are lowercase, multiple words are separated with a hyphen, no

underscore nor camel-case.

‒ All CSS defnitions should take place in a CSS fle or in a CSS part at the top of the page,
inline styles are highly discouraged.

‒ All CSS inclusions should be done through the appropriate <style> tag in HTML, and not
through the @import statement, they also should have proper “media” attributes.

‒ It is encouraged to use generic classes for common styling issues instead of “id”.

‒ It is discouraged to prepend the HTML tag in front of a generic CSS selector, however if you
need to specify one, write it in lowercase (span.t3-icon instead of SPAN.t3-icon).

‒ Use as little cascading as possible. “It is encourage to use cascading when there is no class
defned”

‒ Also, it is strongly discouraged to use multiple class defnitions in one selector due to a bug in
Internet Explorer 6 (e.g. .t3-icon.t3-icon-blue).

‒ Attribute selectors (e.g. input[type=submit]) should be avoided also due to certain limitations in
some browsers.

CSS statements are written as below:

.t3-icon,

.t3-link {
display: inline;
overflow: hidden;
height: 18px;
padding-bottom: 5px;
padding-left: 18px;

}

Notes
1. If you apply a style to multiple selectors, separate the selectors with a comma and a line-break.

2. The opening curly brace is divided by a space from the selector and a line-break for the statements.

3. Every CSS command is indented with a tab, every property is followed by a colon and then a white-
space, every statement is separated by a line-break.

4. When using the short version for properties like “padding”, “margin” or “border”, instead of
“padding-left”, “padding-right”..., all four values are preferred (padding: 10px 0 10px 0). Two values are
also allowed in this case (padding: 10px 0).

5. Null-values should be abbreviated with “0” instead of “0em” or “0px”.

12

TYPO3 Skinning Reference - doc_core_skinning CSS Naming Conventions

CSS Naming Conventions
A CSS class name is defned according to whatever the element is or dos rather than being linked to a
specifc context. The purpose is to be able to reuse a name anytime in the TYPO3 Backend while
keeping a consistent look & feel.

Nevertheless, to avoid conficts in the naming scheme, all news styles are expected to use a "t3-" prefx.
This will prevent naming collisions when mixing up stylesheets with another application or styles from
the old skinning parts.

To be more concrete, let's give a good example of CSS class names:
<input class="t3-form-text t3-form-field" type="text" />

At the frst glance, it seems to be redundant to have multiple classes, but in fact it allows to have very
fne-grained CSS selectors. The "t3-form-feld" class is the base class for every input elements within the
TYPO3 backend, and enables TYPO3 to give a default style to every input elements. In addition, there
is the "t3-form-text" class to make it possible to have additional decorations on the input. Please notice
the dash "-" which is used as separator inside the names.

Now let's have a look at a bad example:
<input class="t3-input-line-table">

This is a bad example as one can't guess the purpose of the "t3-input-line-table" selector. It contains
the word “table” but is used within an input feld which makes it semantically hard to understand the
purpose of the class. Furthermore it creates confusion with the “table” HTML tag.

Icons naming conventions
This section aims to explain how classes apply to links. As reminder, icons are merged dynamically in
sprites (cf. chapter "Sprite Generator"). Additionally, CSS classes are generated and outputted for each
image which will be used for positioning the sprite correctly.

To put the CSS classes in context, let's consider the HTML code that is necessary for displaying an
icon.

<span class="t3-icon t3-icon-actions t3-icon-actions-document t3-icon-document-

new">

The table below clarify the purpose of each class.

Class name Description

t3-link The base class of all links.

t3-icon The base class of all icons.

t3-icon-actions Defnes what sprite is going to be used. In version 4.4, there is 5 main sprites. As from version 4.5,
there is only one.

t3-icon-
document-new

Defnes the background position of the sprite.

Why are there so many classes rather than cascading?
Using many classes might burden the HTML output. But on the other hand, it is a fast way for the
browser to decorate elements, rather than dealing with complicated cascades and selectors. This is
especially true when dealing with a big XML tree structure like in the TYPO3 Backend. It is encouraged
to use cascading when there is no class defned and styling for a certain element is needed. This is
mostly true for inline elements like legend, span, a, strong, blockquote, img, em, li, etc.

13

TYPO3 Skinning Reference - doc_core_skinning CSS Naming Conventions

Just a few examples:

.t3-form-fieldset legend {
...

}

.t3-form-element span {
...

}

When to use an id rather than a class attribute?
It makes sense to use the "id" attribute (additionally to a generic class if possible), especially when
JavaScript is or could be involved in some way. Every “id” needs to be prefxed by "t3-" and should be
used rather on block element like div, form, p, etc.

Example with block tag:

<div class=”t3-module” id="t3-module-page-container" />
<form class=”t3-form t3-form-fileupload” id="t3-fileupload" />

Special cases exist where an ID is needed to reference another element within the HTML document like
"label" and "input" tags.

<label class=”t3-form-label” for="t3-myinput" />
<input class=”t3-form-input” id="t3-myinput" />

14

TYPO3 Skinning Reference - doc_core_skinning Use Cases

Use Cases
Use case 1: load additional stylesheets to skin the Backend

Step 1: add following line into ext_tables.php to register the extension

$GLOBALS['TBE_STYLES']['skins'][$EXTKEY]['name'] = $EXTKEY;

Step2: save CSS fles with your extension. The name of the CSS fles dos not matter really. More
importantly, CSS fles need to be saved in a specifc location to be automatically added onto the
Backend:

- EXT:extension/stylesheets/structure/
- EXT:extension/stylesheets/visual/

Example of CSS
table.t3-page-columns {
 width:100%; // 800px
}

td.t3-page-column-2 {
 min-width:200px;
 Width:20%;
 background-color:red;
}

td.t3-page-column-0{
 width:78%;
 min-width:400px;
}

As an example, have a look at the extension pagemodulecss at Forge.

Use case 2: registering a new icon with the Backend
Save icons within your extension whenever it makes sense. As example, it can be placed in
EXT:extension/ Resources/Public/images/icons.

Here are the steps:

1. copy icon in EXT:foo/Resources/Public/images/icons

2. declare your icon by adding following lines into EXT:foo/ext_tables.php

// Defines $icon array()
$pathToExtension = t3lib_extMgm::extRelPath('foo');
$icons = array(

'error' => $pathToExtension . 'Resources/Public/images/icons/error.png',
'information' => $pathToExtension . 'Resources/Public/images/icons/information.png',
'notification' => $pathToExtension . 'Resources/Public/images/icons/notification.png',
'ok' => $pathToExtension . 'Resources/Public/images/icons/ok.png',
'warning' => $pathToExtension . 'Resources/Public/images/icons/warning.png',

);

// Gives the $icon array to the sprite manager
t3lib_SpriteManager::addSingleIcons($icons, 'foo');

3. Clear the "Confguration" cache to take into account the changes done in ext_tables.php

4. Finished! It should be possible to call the new icons like:

t3lib_iconWorks::getSpriteIcon('extensions-foo-warning')
will turn out:

<span class="t3-icon t3-icon-extensions t3-icon-extensions-devlog t3-icon-devlog-
warning">

15

http://forge.typo3.org/projects/show/extension-pagemodulecss

TYPO3 Skinning Reference - doc_core_skinning Use Cases

Use case 3: migration steps from legacy to new API
As TYPO3 4.4 removes all hardcoded icons from the Core, all icons in typo3/gfx have become
superfuous as from now. However they are still present in the Core, mainly for backwards compatibility
reasons. The same happens to t3ksin with its icons/gfx.

They are due to be removed in 4.6 and so developers are strongly encouraged to migrate the code basis
to the sprite system.

As a frst step, icons should be copied / pasted into your extension, as long as there are used in a
diferent context as the ones in the Backend. Then, following "Use Case 2" it should be possible to call
icons by the means of the API (cf. Chapter Icons API).

Bellow, fnd the equivalence of legacy API versus new API.

Legacy API > TYPO3 4.3 New API < TYPO3 4.4

 t3lib_iconWorks::getSpriteIcon('actions-document-new')

t3lib_iconWorks::getIconImage(...) t3lib_iconWorks::getSpriteIconForRecord('tt_content')

t3lib_iconWorks::getSpriteIconForFile('pdf')

16

TYPO3 Skinning Reference - doc_core_skinning CSS generic elements

CSS generic elements
Notice that HTML element are currently not implemented in this way throughout the Backend. However
following examples can be taken as guidelines for further developments.

"A" tag with icon
API is meant be used to generate the link icon: getSpriteIcon() - getSpriteIconForRecord() -
getSpriteIconForFile().

Button with icon
<input id="t3-generated-1" class="t3-icon t3-icon-actions-edit t3-icon-edit-add t3-button"
type="submit" value="Submit"/>

or

<button id="t3-generated-1" class="t3-icon t3-icon-actions-edit t3-icon-edit-add t3-button"
type="submit">Submit</button>

Input
<input id="t3-generated-1" class="t3-form-text t3-form-field" type="text" />
<input id="t3-generated-2" class="t3-form-checkbox t3-form-field" type="checkbox"/>
<input id="t3-generated-3" class="t3-form-radio t3-form-field" type="radio"/>
<select id="t3-generated-4" class="t3-form-select t3-form-field"></select>

Button without icon
<input type="submit" class="t3-button-submit t3-button" value="Submit"/>

or

<button type="submit" class="t3-button-text t3-button">Submit</button>

Form
<form id="t3-generated-1" class="t3-form" method="POST">
 <div class="t3-form-container">

 <!-- FIELDSET -->
 <fieldset class="t3-form-fieldset">
 <legend>Contact Information</legend>

 <!-- INPUT FIELD -->
 <div class="t3-form-item">
 <label class="t3-form-item-label" for="t3-component-1">First Name</label>
 <div class="t3-form-element">
 <input id="t3-component-1" class="t3-form-text t3-form-field"
type="text" name="tx_extension[text_example]" size="20"/>
 </div>
 <div class="t3-form-clear-left"/>
 </div>

 <!-- CHECKBOX FIELD -->
 <div class="t3-form-item">
 <div class="t3-form-element">
 <div class="t3-form-check-wrap">
 <input id="t3-component-2" class="t3-form-checkbox t3-form-field"
type="checkbox" name="tx_extension[checkbox_example]"/>
 <label class="t3-form-checkbox-label" for="t3-component-2">Item
1</label>
 </div>
 </div>
 <div class="t3-form-clear-left"/>
 </div>

17

TYPO3 Skinning Reference - doc_core_skinning CSS generic elements

 <!-- RADIO FIELD -->
 <div class="t3-form-item">
 <label class="t3-form-item-label" for="t3-component-3"/>
 <div class="t3-form-element">
 <div class="t3-form-check-wrap">
 <input id="t3-component-3" class="t3-form-radio t3-form-field"
type="radio" name="tx_extension[radio_example]" value="1"/>
 <label id="t3-component-3" class="t3-form-checkbox-label" for="t3-
component-3">Item 1</label>
 </div>
 </div>
 <div class="t3-form-clear-left"/>
 </div>

 <!-- SELECT FIELD -->
 <div class="t3-form-item">
 <label class="t3-form-item-label" for="t3-component-4">First Name</label>
 <div class="t3-form-element">
 <select id="t3-component-4" class="t3-form-select t3-form-field">
 <option value="1">Item 1</option>
 </select>
 </div>
 <div class="t3-form-clear-left"/>
 </div>

 <!-- TEXTAREA FIELD -->
 <div class="t3-form-item">
 <label for="t3-component-5">Address</label>
 <div class="t3-form-element">
 <textarea id="t3-component-5" class="t3-form-textarea t3-form-field"
name="tx_extension[textarea_example]"/>
 </div>
 <div class="t3-form-clear-left"/>
 </div>

 <div id="t3-generated-26" class="t3-form-clear"/>
 </fieldset>

 <!-- BUTTONS -->
 <div class="t3-form-buttons-container">
 <div class="t3-form-buttons t3-form-buttons-center">
 <button id="t3-generated-x" class="t3-button-text t3-button"
type="submit">TEXT</button>
 <div class="t3-clear"/>
 </div>
 </div>
 </div>
</form>

Table
<div id="t3-generated-1">
 <table class="t3-list">
 <thead>
 <tr class="t3-row-header">
 <th class="t3-column t3-cell t3-td-1">
 <div class="t3-cell-inner">Examples</div>
 </th>
 </tr>
 </thead>
 <tbody>
 <tr class="t3-row t3-row-first t3-row-even">
 <td class="t3-cell t3-td-1">
 <div class="t3-cell-inner">Examples</div>
 </td>
 </tr>
 <tr class="t3-row t3-row-odd">
 <td class="t3-cell t3-td-1">
 <div class="t3-cell-inner">Examples</div>
 </td>
 </tr>
 <tr class="t3-row t3-row-last t3-row-even">

18

TYPO3 Skinning Reference - doc_core_skinning CSS generic elements

 <td class="t3-cell t3-td-1">
 <div class="t3-cell-inner">Examples</div>
 </td>
 </tr>
 </tbody>
 </table>
</div>

19

TYPO3 Skinning Reference - doc_core_skinning FAQ

FAQ
Where can I fnd other or missing icons?

Although we tried to replace all icons, there might be some icons missing. In this case please refer to
the fam fam fam icon set: http://www.famfamfam.com/lab/icons/silk/

20

http://www.famfamfam.com/lab/icons/silk/

TYPO3 Skinning Reference - doc_core_skinning Next steps

Next steps
This manual describes only the skinning API. To learn more about the many other APIs provided by
TYPO3, please refer to the “Core API” manual.

21

TYPO3 Skinning Reference - doc_core_skinning Appendix A – Icon reference

Appendix A – Icon reference
The Icon Reference is a PDF document that brings together all icons from the Core into one fle and
can be used to know how to address icons without having to skim the whole TYPO3 source code. This
document is available along the current document (i.e. inside extension doc_core_skinning) and is
auto-generated for each TYPO3 version.

As an insight here's what the beginning of that document looks like:

22

	TYPO3 Skinning Reference
	Introduction
	About this document
	What's new
	Credits
	Feedback
	Supported Browsers

	CSS Files Organization
	Backend CSS API
	Skinning API
	CSS concatenation
	CSS compression
	Icons API
	Sprite Generation

	CSS Coding Guidelines
	CSS Naming Conventions
	Icons naming conventions
	Why are there so many classes rather than cascading?
	When to use an id rather than a class attribute?

	Use Cases
	Use case 1: load additional stylesheets to skin the Backend
	Use case 2: registering a new icon with the Backend
	Use case 3: migration steps from legacy to new API

	CSS generic elements
	"A" tag with icon
	Button with icon
	Input
	Button without icon
	Form
	Table

	FAQ
	Next steps
	Appendix A – Icon reference

