
 TYPO3 Core APIs - doc_core_api TYPO3 Core APIs

TYPO3 Core APIs

Extension Key: doc_core_api

Language: en

Keywords: tsref, typoscript, reference, forDevelopers, forAdvanced

Copyright 2000-2011, TYPO3 Core Development Team, <info@typo3.org>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.org

Revised for TYPO3 4.3, March 2010

1

 TYPO3 Core APIs - doc_core_api TYPO3 Core APIs

Table of Contents
TYPO3 Core APIs..1

Introduction... 4

Overview.. 4

Code examples... 4

Dedication.. 4

TYPO3 Extension API..................................5
Extension Architecture...5

Introduction..5

Files and locations...5

System, Global and Local extensions........................7

Extension key... 8

Naming conventions..9

Import and install of extensions............................... 9

ext_tables.php and ext_localconf.php.....................10

ext_emconf.php.. 11

Extension configuration options
(ext_conf_template.txt)... 13

Extending “extensions-classes”..............................14

The Extension Manager (EM).................................14

Basic framework for a new extension.....................15

TYPO3 API overview..................................19
Introduction... 19

General functions...20

High priority functions (CGL requirements).............21

Functions typically used and nice to know...............30

Programming with workspaces in mind...................36

TYPO3 Core Engine (TCE)....................................40

Introduction..40

Database: t3lib_TCEmain basics.............................40

Using t3lib_TCEmain in scripts...............................44

The "tce_db.php" API..45

Files: t3lib_extFileFunctions basics.........................46

The "tce_file.php" API... 47

Hooks... 48

The concept of "hooks"...48

Hook configuration.. 48

Creating hooks..51

Variables and Constants......................................51

Constants... 51

Global variables...53

Backend User Object..54

Checking user access for $BE_USER from PHP........54

Using the system log..55

The log table (sys_log).. 55

Using the system registry....................................57

The registry table (sys_registry).............................57

The registry API.. 57

PHP Class Extension...58

Introduction..58

Which classes?..59

Extending methods...61

User defined methods in classes............................61

A few examples of extending the backend classes...62

Warnings.. 63

AJAX in the TYPO3 Backend.................................64

In-depth presentation..64

Developing with AJAX in the TYPO3 Backend..........65

Using third-party JavaScript libraries in the TYPO3
Backend..66

Using Prototype.. 66

Using Scriptaculous... 66

Using ExtJS...67

Flash messages.. 67

Flash messages API...68

Various examples...68

Introduction..68

Rendering page trees.. 69

Accessing the clipboard...70

Adding Context Sensitive Menu items.....................71

Parsing HTML: t3lib_parsehtml...............................74

Links to edit records.. 78

Support for custom tables in the Page module........80

Adding elements to the Content Element Wizard.....81

Using custom permission options...........................82

Table Control Array, $TCA..........................83
Page types..84

$PAGES_TYPES... 84

User Settings Configuration.......................85
Introduction... 85

Reference... 85

$TYPO3_USER_SETTINGS['ctrl']............................. 85

$TYPO3_USER_SETTINGS['columns'][fieldname].....85

$TYPO3_USER_SETTINGS['showitem']...................86

Checking the User Settings Configuration...............86

2

 TYPO3 Core APIs - doc_core_api TYPO3 Core APIs

RTE API..87
Rich Text Editors in the TYPO3 backend..............87

Introduction..87

RTEs in Extensions.. 87

API for Rich Text Editors.. 88

Transformations...90

Introduction..90

Process illustration.. 91

Transformation overview..93

Transformation details... 93

Page TSconfig...95

Custom transformations API.................................100

Historical perspective on RTE transformations. 101

Introduction.. 101

Properties and 'transformations'...........................102

RTE transformations in Content Elements.............102

Skinning API...104
$TBE_STYLES... 104

Directory structure for “skinImgAutoCfg” feature...109

How to make your extensions compatible with
skinning..109

Finding CSS selectors for the backend documents. 110

Skinning database record icons with variations......113

Error and Exception Handling...................118
Introduction...118

Screenshots.. 118

Configuration... 121

t3lib_error_ErrorHandler...................................... 123

t3lib_error_ProductionExceptionHandler................123

t3lib_error_DebugExceptionHandler......................123

Examples.. 123

Extending the error and exception handling..........124

Data Formats.. 126
<T3DataStructure>...126

Introduction.. 126

Elements.. 126

Sheet references... 128

Syntax highlighting of a Data Structure.................129

Parsing a Data Structure...................................... 130

Applications.. 131

<T3locallang>..132

Introduction.. 132

Elements.. 132

3

 TYPO3 Core APIs - doc_core_api Introduction

Introduction

Overview
TYPO3 is known for its extensibility. However to really benefit from this power, a complete documentation is needed. “Core
APIs” and its companion, “Inside TYPO3”, aim to provide such information to developers and administrators. Not all areas are
covered with the same amount of details, but at least some pointers are provided.

"Inside TYPO3" contains the overall introduction to the architecture of the TYPO3 core. It also contains API descriptions to a
certain degree but mostly in the form of examples and short table listings. “Core APIs” goes into much more detail about such
APIs and covers subjects more closely related to development.

These documents do not contain any significant information about the frontend of TYPO3. Creating templates, setting up
TypoScript objects etc. is not the scope of these documents; they are about the backend part of the core only.

The TYPO3 Core Team hopes that these two documents, "Inside TYPO3" and "TYPO3 Core API", will form a complete picture
of the TYPO3 Core architecture, the backend and be the reference of choice in your work with TYPO3. It took Kasper more
than a year to get the first version published and we've tried to maintain it as best we could.

Code examples
Many of the code examples found in this document come from the TYPO3 Core itself.

Quite a few others come from the “examples” extension which is available in the TER. You can install it if you want to try out
these examples yourself and use them as a basis for your own stuff.

Yet some other examples just belong to this manual. Some may be moved to the “examples” extension at some later stage.

Dedication
I want to dedicate this document to the people in the TYPO3 community who have the discipline to do the boring job of
writing documentation for their extensions or contribute to the TYPO3 documentation in general. It's great to have good
coders, but it's even more important to have coders with character to carry their work through till the end - even when it
means spending days writing good documents. Go for completeness!

- kasper

4

 TYPO3 Core APIs - doc_core_api TYPO3 Extension API

TYPO3 Extension API

Extension Architecture

Introduction
TYPO3 can be extended in nearly any direction without loosing backwards compatibility. The Extension API provides a
powerful framework for easily adding, removing, installing and developing such extensions to TYPO3. This is in particular
powered by the Extension Manager (EM) inside TYPO3 and the online TYPO3 Extension Repository (TER) found at typo3.org
for easy sharing of extensions.

“Extensions” is a general term in TYPO3 which covers many kinds of additions to TYPO3. The main types are:

• Plugins which play a role on the website itself, e.g. a discussion board, guestbook, shop, etc. It is normally enclosed
in a PHP class and invoked through a USER or USER_INT cObject from TypoScript. A plugin is an extension in the
frontend.

• Modules are backend applications which have their own entry in the main menu. They require a backend login and
work inside the framework of the backend. We might also call something a module if it exploits any connectivity of
an existing module, that is if it simply adds itself to the function menu of existing modules. A module is an extension
in the backend.

• Services are libraries that provide a given service through a clearly defined API. A service may exist both in the
frontend and the backend. Please refer to the “TYPO3 Services” manual (doc_core_services) for more information
about this type of extension.

Extensions and the Core
Extensions are designed in a way so that extensions can supplement the core seamlessly. This means that a TYPO3 system
will appear as "a whole" while actually being composed of the core application and a set of extensions providing various
features. This philosophy allows TYPO3 to be developed by many individuals without loosing fine control since each developer
will have a special area (typically a system extension) of responsibility which is effectively encapsulated.

So, in one end of the spectrum system extensions makes up what is known as "TYPO3" to the outside world. In the other
end, extensions can be 100% project specific and carry only files and functionality related to a single implementation.

Files and locations

Files
An extension consists of

1. a directory named by the extension key (which is a worldwide unique identification string for the extension unless prefix
with “user_”)

2. standard files with reserved names for configuration related to TYPO3 (of which most are optional, see list below)

3. any number of additional files for the extension itself.

Reserved filenames
This list of filenames are all reserved filenames in the root directory of extensions. None of them are required but for example
you cannot have a TYPO3 extension recognized by TYPO3 without the “ext_emconf.php” file etc. You can read more details
like that in the table below.

In general, do not introduce your own files in root directory of extensions with the name prefix “ext_”.

Filename Description

ext_emconf.php Definition of extension properties.

Name, category, status etc. Used by the EM. The content of this file is described in more details below. Note
that it is auto-written by EM when extensions are imported from the repository.

Notice: If this file is not present the EM will not find the extension.

5

 TYPO3 Core APIs - doc_core_api Extension Architecture

Filename Description

ext_localconf.php Addition to localconf.php which is included if found. Should contain additional configuration of
$TYPO3_CONF_VARS and may include additional PHP class files.

All ext_localconf.php files of included extensions are included right after the
typo3conf/localconf.php file has been included and database constants defined. Therefore you
cannot setup database name, username, password though, because database constants are defined already
at this point.

Notice: Observe rules for content of these files. See section on caching below.

ext_tables.php Addition to tables.php which is included if found. Should contain configuration of tables, modules,
backend styles etc. Everything which can be done in an “extTables” file is allowed here.

All ext_tables.php files of loaded extensions are included right after the tables.php file in the order
they are defined in the global array TYPO3_LOADED_EXT but right before a general “extTables” file (defined
with the var $typo_db_extTableDef_script in the typo3conf/localconf.php file, later set as the
constant TYPO3_extTableDef_script). Thus a general “extTables” file in typo3conf/ may overrule any
settings made by loaded extensions.
You should not use this file for setting up $TYPO3_CONF_VARS. See “ext_localconf.php” above.

Notice: Observe rules for content of these files. See section below.

ext_tables.sql SQL definition of database tables.

This file should contain a table-structure dump of the tables used by the extension. It is used for evaluation
of the database structure and is therefore important to check and update the database when an extension is
enabled.
If you add additional fields (or depend on certain fields) to existing tables you can also put them here. In
that case insert a CREATE TABLE structure for that table, but remove all lines except the ones defining the
fields you need.
The ext_tables.sql file may not necessarily be “dumpable” directly to MySQL (because of the semi-complete
table definitions allowed defining only required fields, see above). But the EM or Install Tool can handle this.
The only very important thing is that the syntax of the content is exactly like MySQL made it so that the
parsing and analysis of the file is done correctly by the EM.

ext_tables_static+adt.sql Static SQL tables and their data.

If the extension requires static data you can dump it into a sql-file by this name.
Example for dumping mysql data from bash (being in the extension directory):

mysqldump --password=[password] [database name] [tablename] --add-drop-table
> ./ext_tables_static.sql

--add-drop-table will make sure to include a DROP TABLE statement so any data is inserted in a fresh
table.

You can also drop the table content using the EM in the backend.

Notice: The table structure of static tables needs to be in the ext_tables.sql file as well - otherwise an
installed static table will be reported as being in excess in the EM!

ext_typoscript_constants.txt Preset TypoScript constants
Deprecated (use static template files instead, see extMgm API description)

Such a file will be included in the constants section of all TypoScript templates.

ext_typoscript_setup.txt Preset TypoScript setup
Deprecated (use static template files instead, see extMgm API description)

Such a file will be included in the setup section of all TypoScript templates.

ext_typoscript_editorcfg.txt Preset TypoScript editor configuration
Deprecated (use static template files instead, see extMgm API description)

Such a file will be included in the “Backend Editor Configuration” section of all TypoScript templates.

6

 TYPO3 Core APIs - doc_core_api Extension Architecture

Filename Description

ext_conf_template.txt Extension Configuration template.

Configuration code in TypoScript syntax setting up a series of values which can be configured for the
extension in the EM.

If this file is present the EM provides you with an interface for editing the configuration values defined in the
file. The result is written as a serialized array to localconf.php file in the variable
$TYPO3_CONF_VARS['EXT']['extConf'][extension_key]

The content of the “res/” folder is used for filelists in configuration forms.

If you want to do user processing before the content from the configuration form is saved (or shown for that
sake) there is a hook in the EM which is configurable with $TYPO3_CONF_VARS['SC_OPTIONS']
['typo3/mod/tools/em/index.php']['tsStyleConfigForm'][] = “function reference”

ext_icon.gif Extension Icon

18x16 gif icon for the extension.

(*/) locallang*.xml Localization values.

The filename locallang.xml (or any file matching locallang*.xml) is used for traditional definition of
language labels in the $LOCAL_LANG array. If you use this name consistently those files will be detected by
the translation tool!

Notice: PLEASE DO ONLY put the definition of the variable $LOCAL_LANG into this file and don't rely on
comments in the file. The file will be automatically updated by the extension repository when translations
are applied.

class.ext_update.php Local Update tool class

If this file is found it will install a new menu item, “UPDATE”, in the EM when looking at details for the
extension. When this menu item is selected the class inside of this file (named “ext_update”) will be
instantiated and the method “main()” will be called and expected to return HTML content.
Also you must add the function “access()” and make it return a boolean value whether or not the menu item
should be shown. This feature is meant to let you disable the update tool if you can somehow detect that it
has already been run and doesn't need to run again.
The point of this file is to give extension developers the possibility to provide an update tool if their
extensions in newer versions require some updates to be done.

ext_autoload.php Since TYPO3 4.3, it is possible to declare classes in this file so that they will be automatically detected by the
TYPO3 autoloader. This means that it is not necessary to require the related class files anymore. See the
“Autoloading” chapter for more details.

ext_api_php.dat PHP API data

A file containing a serialized PHP array with API information for the PHP classes in the extension. The file is
created - and viewed! - with tools found in the extension “extdeveval” (Extension Development Evaluator)

pi*/ Typical folder for a frontend plugin class.

mod*/ Typical folder for a backend module.

sv*/ Typical folder for a service.

res/ Extensions normally consist of other files: Classes, images, html-files etc. Files not related to either a
frontend plugin (pi/) or backend module (mod/) might be put in a subfolder of the extension directory
named “res/” (for “resources”) but you can do it as you like (inside of the extension directory that is).
The “res/” folder content will be listed as files you can select in the configuration interface.

Files in this folder can also be selected in a selector box if you set up Extension configuration in a
“ext_conf_template.txt” file.

System, Global and Local extensions
The files for an extension are located in a folder named by the extension key. The location of this folder can be either inside
typo3/sysext/, typo3/ext/ or typo3conf/ext/.

The extension must be programmed so that it does automatically detect where it is located and can work from all three
locations. If it is not possible to make the extension that flexible, it is possible to lock its installation requirement to one of
these locations in the emconf.php file (see “lockType”)

7

 TYPO3 Core APIs - doc_core_api Extension Architecture

Type Path Description

Local typo3conf/ext/ This is where to put extensions which are local for a particular TYPO3 installation. The typo3conf/
dir is always local, containing local configuration (e.g. localconf.php), local modules etc. If you
put an extension here it will be available for a single TYPO3 installation only. This is a “per-
database” way to install an extension.

Notice about symlinking: Local extension can successfully be symlinked to other local
extensions on a server as long as they are running under the same TYPO3 source version (which
would typically also be symlinked). This method is useful for maintenance of the same local
extension running under several sites on a server.

Global typo3/ext/ This is a “per-server” way to install an extension; they are global for the TYPO3 source code on
the web server. These extensions will be available for any TYPO3 installation sharing the source
code.

Notice on distribution:
As of version 4.0, TYPO3 is no longer distributed with a fixed set of global extensions. In
previous versions these were distributed for reasons like popularity and sometimes history.

System typo3/sysext/ This is system default extensions which cannot and should not be updated by the EM. They are
distributed with TYPO3 core source code and generally understood to be a part of the core
system.

Loading precedence
Local extensions take precedence which means that if an extension exists both in typo3conf/ext/ and typo3/ext/ the one in
typo3conf/ext/ is loaded. Likewise global extension takes precedence over system extensions. This means that extensions are
loaded in the order of priority local-global-system.

In effect you can therefore have - say - a “stable” version of an extension installed in the global dir (typo3/ext/) which is used
by all your projects on a server sharing source code, but on a single experimental project you can import the same extension
in a newer “experimental” version and for that particular project the locally available extension will be used instead.

Extension key
The “extension key” is a string uniquely identifying the extension. The folder where the extension resides is named by this
string. The string can contain characters a-z0-9 and underscore. No uppercase characters should be used (keeps folder-,file-
and table/field-names in lowercase). Furthermore the name must not start with an “tx” or “u” (this is prefixes used for
modules) and because backend modules related to the extension should be named by the extension name without
underscores, the extension name must still be unique even if underscores are removed (underscores are allowed to make the
extension key easily readable).

The naming conventions of extension keys are automatically validated by the registration at the repository, so you have
nothing to worry about here.

There are two ways to name an extension:

• Project specific extensions (not generally usable or shareable): Select any name you like and prepend it “user_”
(which is the only allowed use of a key starting with “u”). This prefix denotes that this extension is a local one which does
not come from the central TYPO3 Extension Repository or is ever intended to be shared. Probably this is an “adhoc”
extension you have made for some special occasion.

• General extensions: Register an extension name online at the TYPO3 Extension Repository. Your extension name will
automatically be validated and you are sure to have a unique name returned which nobody else in the world uses. This
makes it very easy to share your extension later on with every one else, because it ensures that no conflicts with other
extension will happen. But by default a new extension you make is defined “private” which means nobody else but you
have access to it until you permit it to be public.
It's free of charge to register an extension name. By definition all code in the TYPO3 Extension Repository is covered by
the GPL license because it interfaces with TYPO3. You should really consider making general extensions!

Suggestion: It is far the easiest to settle for the right extension key from the beginning. Changing it later involves a cascade
of name changes to tables, modules, configuration files etc.

About GPL and extensions: Remember that TYPO3 is GPL software and at the same moment you extend TYPO3 your
extensions are legally covered by GPL. This does not force you to share your extension, but it should inspire you to do so and
legally you cannot prevent anyone who gets hold of your extension code from using it and further develop it.
The TYPO3 Extension API is designed to make sharing of your work easy as well as using others work easy. Remember
TYPO3 is Open Source Software and we rely on each other in the community to develop it further.

Responsibility: It's also your responsibility to make sure that all content of your extensions is legally covered by GPL. The
webmaster of TYPO3.org reserves the right to kick out any extension without notice that is reported to contain non-GPL

8

 TYPO3 Core APIs - doc_core_api Extension Architecture

material.

Security: You are responsible for security issues in your extensions. People may report security issues either directly to you
or to the TYPO3 Security Team. Whatever the case you should get in touch with the Security Team who will validate the
security fixes. They will also include information about your (fixed) extension in their next Security bulletin. If you don't
respond to requests from the Security Team, your extension will be forcibly removed from the TYPO3 Extension Repository.

More details on the security team's policy on handling security issues can be found at
http://typo3.org/teams/security/extension-security-policy/.

Naming conventions
Based on the extension key of an extension these naming conventions should be followed:

General Example User specific Example

Extension key
(Lowercase “alnum” +
underscores.)

Assigned by the TYPO3
Extension Repository.

cool_shop Determined by
yourself, but prefixed
“user_”

user_my_shop

Database tables and
fields

Prefix with “tx_[key]_” where
key is without underscores!

Prefix: tx_coolshop_
Examples:
tx_coolshop_products
tx_coolshop_categories

Prefix with “[key]_” Prefix: user_my_shop_
Examples:
user_my_shop_products
user_my_shop_categories

Backend module
(Names are always
without underscores!)

Name: The extension key
name without underscores,
prefixed “tx”

txcoolshop Name: No
underscores, prefixed
“u”

uMyShop or umyshop or ...

Frontend PHP classes (Same as database tables and fields. Prepend class file names “class.” though.)

You may also want to refer to the TYPO3 Core Coding Guidelines for more on general naming conventions in TYPO3.

Best practice on using underscores
If you study the naming conventions above closely you will find that they are complicated due to varying rules for
underscores in key names. Sometimes the underscores are stripped off, sometimes not.

The best practice you can follow is to avoid using underscores in your extensions keys at all! That will make the rules simpler.
This is highly encouraged.

Note on “old” and default extensions:
Some the “classic” extensions from before the extension structure came about does not comply with these naming
conventions. That is an exception made for backwards compatibility. The assignment of new keys from the TYPO3 Extension
Repository will make sure that any of these old names are not accidentially reassigned to new extensions.

Further, some of the classic plugins (tt_board, tt_guest etc) users the “user_” prefix for their classes as well.

Import and install of extensions
There are only two (maybe three) simple steps involved in using extensions with TYPO3:

1. You must import it.
This simply means to copy the extensions files into the correct directory in either typo3/ext/ (global) or typo3conf/ext/
(local). More commonly you import an extension directly from the online TYPO3 Extension Repository. When an extension
is found located in one of the extension locations, it is available to the system.
The EM should take care of this process, including updates to newer versions if needed.
Notice that backend modules will have their “conf.php” file modified in the install process depending on whether they are
installed locally or globally!

2. You must install it.
An extension is loaded only if its extension key is listed in comma list of the variable $TYPO3_CONF_VARS["EXT"]
["extList"]. The list of enabled extensions must be set and modified from inside typo3conf/localconf.php. Extensions are
loaded in the order they appear in this list. Any extensions listed in $TYPO3_CONF_VARS["EXT"]["requiredExt"] will be
forcibly loaded before any extensions in $TYPO3_CONF_VARS["EXT"]["extList"].
An enabled extension is always global to the TYPO3 Installation - you cannot disable an extension from being loaded in a
particular branch of the page tree.
The EM takes care enabling extensions. It's highly recommended that the EM is doing this, because the EM will make sure
the priorities, dependencies and conflicts are managed according to the extension characteristics, including clearing of the
cache-files if any.

9

 TYPO3 Core APIs - doc_core_api Extension Architecture

3. You might need to configure it.
Certain extensions may allow you to configure some settings. Again the EM is able to handle the configuration of the
extensions based on a certain API for this. Any settings - if present - configured for an extension is available as an array in
the variable $TYPO3_CONF_VARS["EXT"]["extConf"][extension key].

Loaded extensions are registered in a global variable, $TYPO3_LOADED_EXT, available in both frontend and backend of
TYPO3. The loading and registration process happens in t3lib/config_default.php. Since TYPO3 4.3, when rendering FE
content (TYPO3_MODE = FE), $TYPO3_LOADED_EXT contains only extensions where the $EM_CONF option "doNotLoadInFE"
is not set.

This is how the data structure for an extension in this array looks:

$TYPO3_LOADED_EXT[extension key] = array(
“type” => S, G, L for system, global or local type of availability.
“siteRelPath” => Path of extension dir relative to the PATH_site constant

e.g. “typo3/ext/my_ext/” or “typo3conf/ext/my_ext/”
“typo3RelPath” => Path of extension dir relative to the “typo3/” admin folder

e.g. “ext/my_ext/” or “../typo3conf/ext/my_ext/”
“ext_localconf” => Contains absolute path to 'ext_localconf.php' file if present
“ext_tables” => [same]
“ext_tables_sql” => [same]
“ext_tables_static+adt.sql” => [same]
“ext_typoscript_constants.txt” => [same]
“ext_typoscript_setup.txt” => [same]
“ext_typoscript_editorcfg.txt” => [same]

)

The order of the registered extensions in this array corresponds to the order they were listed in TYPO3_CONF_VARS["EXT"]
["requiredExt"].TYPO3_CONF_VARS["EXT"]["extList"] with duplicates removed of course.

The inclusion of ext_tables.php or ext_localconf.php files are done by traversing (a copy of) the $TYPO3_LOADED_EXT array.

ext_tables.php and ext_localconf.php
These two files are the most important for the execution of extensions to TYPO3. They contain configuration used within the
system on almost every request. Therefore they should be optimized for speed.

• ext_localconf.php is always included in global scope of the script, either frontend or backend.
You can put functions and classes into the script, but you should consider doing that in other ways because such classes
and functions would always be available - and it would be better if they were included only when needed.
So stick to change values in TYPO3_CONF_VARS only!

• ext_tables.php is not always included in global scope on the other hand (in the frontend)
Don't put functions and classes - or include other files which does - into this script!

• Use the API of the class extMgm for various manipulative tasks such as adding tables, merging information into arrays etc.

• Before the inclusion of any of the two files, the variables $_EXTKEY is set to the extention-key name of the module and
$_EXTCONF is set to the configuration from $TYPO3_CONF_VARS["EXT”]["extConf"][extension key]

• $TYPO3_LOADED_EXT[extension key] contains information about whether the module is loaded as local, global or system
type, including the proper paths you might use, absolute and relative.

• The inclusion can happen in two ways:

• 1) Either the files are included individually on each request (many file includes) ($TYPO3_CONF_VARS["EXT”]
["extCache"]=0;)

• 2) or (better) the files are automatically imploded into one single temporary file (cached) in typo3conf/ directory (only
one file include) ($TYPO3_CONF_VARS["EXT”]["extCache"]=1; [or 2]). This is default (value “1”)

In effect this means:

• Your ext_tables.php / ext_localconf.php file must be designed so that it can safely be read and subsequently imploded
into one single file with all the other configuration scripts!

• You must NEVER use a “return” statement in the files global scope - that would make the cached script concept break.

• You should NOT rely on the PHP constant __FILE__ for detection of include path of the script - the configuration might
be executed from a cached script and therefore such information should be derived from the
$TYPO3_LOADED_EXT[extension key] array. E.g. $TYPO3_LOADED_EXT[$_EXTKEY][“siteRelPath”]

10

 TYPO3 Core APIs - doc_core_api Extension Architecture

ext_emconf.php
This script configures the extension manager. The only thing included is an array, $EM_CONF[extension_key] with these
associative keys (below in table).

When extensions are imported from the online repository this file is auto-written! So don't put any custom stuff in there - only
change values in the $EM_CONF array if needed.

Key Data type Description

title string, required The name of the extension in English.

description string, required Short and precise description in English of what the extension does and for whom it might be
useful.

category string Which category the extension belongs to:

• be
Backend (Generally backend oriented, but not a module)

• module
Backend modules (When something is a module or connects with one)

• fe
Frontend (Generally frontend oriented, but not a “true” plugin)

• plugin
Frontend plugins (Plugins inserted as a “Insert Plugin” content element)

• misc
Miscellaneous stuff (Where not easily placed elsewhere)

• services
Contains TYPO3 services

• templates
Contains website templates

• example
Example extension (Which serves as examples etc.)

• doc
Documentation (e.g. tutorials, FAQ's etc.)

shy boolean If set, the extension will normally be hidden in the EM because it might be a default
extension or otherwise something which is not so important. Use this flag if an extension is
of “rare interest” (which is not the same as unimportant - just an extension not sought for
very often...)
It does not affect whether or not it's enabled. Only display in EM.
Normally “shy” is set for all extensions loaded by default according to TYPO3_CONF_VARS.

dependencies list of extension-keys This is a list of other extension keys which this extension depends on being loaded before
itself. The EM will manage that dependency while writing the extension list to localconf.php.

Deprecated, use “constraints” instead.

conflicts list of extension-keys List of extension keys of extensions with which this extension does not work (and so cannot
be enabled before those other extensions are un-installed)

Deprecated, use “constraints” instead.

constraints array List of requirements, suggestions or conflicts with other extensions or TYPO3 or PHP version.
Here's how a typical setup might look:

'constraints' => array(
'dependencies' => array(

'typo3' => '0.0.0-4.2.0',
'php' => '5.0.0-0.0.0'

),
'conflicts' => array(

'dam' => ''
),
'suggests' => array(

'tt_news' => '2.5.0-0.0.0'
)

)

“dependencies” lists extensions that this extension depends on. “conflicts” lists extensions
which will not work with this extension. “suggests” is just suggestions of extensions that
work together or enhance this extension.

In the example above, it is indicated that the extension depends on a version of TYPO3 lower
than 4.2 and a PHP version of at least 5.0. It will conflict with the DAM (any version) and it is
suggested that it might be worth installing “tt_news” (version at least 2.5.0).

11

 TYPO3 Core APIs - doc_core_api Extension Architecture

Key Data type Description

priority “top”, “bottom” This tells the EM to try to put the extensions as the very first in the list.

doNotLoadInFE boolean If set, the extension will not be included in the list of extensions to be loaded in the frontend
($TYPO3_CONF_VARS['extListFE']).

New in TYPO3 4.3.

Background: In TYPO3 versions before 4.3 the temp_CACHED* files in folder
typo3conf/ did always contain the content of the ext_tables.php and
ext_localconf.php files of all installed extensions. However not all installed extensions
are needed to render frontend output (e.g. wizard_sortpages, tstemplate_analyzer and
others) and so their $EM_CONF array has the flag doNotLoadInFE set. This will prevent
TYPO3 from adding the extension's ext_localconf.php and ext_tables.php to the
temp_CACHED files when rendering frontend content.
Since 'extListFE' is shorter than the list of all extensions this will result in 2 new
temp_CACHED_FE* files which are smaller than the files containing all extensions settings.
This can save some precious milliseconds when delivering content.

loadOrder (Not used)

module list of strings If any subfolders to an extension contains backend modules, those folder names should be
listed here. It allows the EM to know about the existence of the module, which is important
because the EM has to update the conf.php file of the module in order to set the correct
TYPO3_MOD_PATH constant.

Note: this is not needed anymore if you use the dispatch mechanism for BE modules (see
“Inside TYPO3”, chapter “Backend modules using typo3/mod.php”).

state string Which state is the extension in?

• alpha
Alpha state is used for very initial work, basically the state is has during the very process
of creating its foundation.

• beta
Under current development. Beta extensions are functional but not complete in
functionality. Most likely beta-extensions will not be reviewed.

• stable
Stable extensions are complete, mature and ready for production environment. You will
be approached for a review. Authors of stable extensions carry a responsibility to be
maintain and improve them.

• experimental
Experimental state is useful for anything experimental - of course. Nobody knows if this
is going anywhere yet... Maybe still just an idea.

• test
Test extension, demonstrates concepts etc.

• obsolete
The extension is obsolete or deprecated. This can be due to other extensions solving the
same problem but in a better way or if the extension is not being maintained anymore.

• excludeFromUpdates
This state makes it impossible to update the extension through the extension manager
(neither by the Update mechanism, nor by uploading a newer version to the installation).
This is very useful if you made local changes to an extension for a specific installation
and don't want any admin to overwrite them. New in TYPO3 4.3.

internal boolean This flag indicates that the core source code is specifically aware of the extension. In other
words this flag should convey the message that “this extension could not be written
independently of core source code modifications”.
An extension is not internal just because it uses TYPO3 general classes e.g. those from t3lib/.
True non-internal extensions are characterized by the fact that they could be written without
making core source code changes, but rely only on existing classes in TYPO3 and/or other
extensions, plus its own scripts in the extension folder.

uploadfolder boolean If set, then the folder named “uploads/tx_[extKey-with-no-underscore]” should be present!

createDirs list of strings Comma list of directories to create upon extension installation.

modify_tables list of tables List of table names which are only modified - not fully created - by this extension. Tables
from this list found in the ext_tables.sql file of the extension.

lockType char; L, G or S Locks the extension to be installed in a specific position of the three posible:
• L = local (typo3conf/ext/)
• G = global (typo3/ext/)
• S = system (typo3/sysext/)

12

 TYPO3 Core APIs - doc_core_api Extension Architecture

Key Data type Description

clearCacheOnLoad boolean If set, the EM will request the cache to be cleared when this extension is loaded.

author string Author name (Use a-z)

author_email email address Author email address

author_company string Author company (if any company sponsors the extension).

CGLcompliance keyword Compliance level that the extension claims to adhere to. A compliance defines certain coding
guidelines, level of documentation, technical requirements (like XHTML, DBAL usage etc).

Possible values are:
• CGL360

Please see the Project Coding Guidelines for a description of each compliance keyword (and
the full allowed list).

Deprecated

CGLcompliance_note string Any remarks to the compliance status. Might describe some minor incompatibilities or other
reservations.

Deprecated

private boolean If set, this version of the extension is not included in the public list!

(Not supported anymore)

download_password string If set, this password must additionally be specified if people want to access (import or see
details for) this the extension.

(Not supported anymore)

version main.sub.dev Version of the extension. Automatically managed by EM / TER. Format is [int].[int].[int]

Extension configuration options (ext_conf_template.txt)
In this file configuration options for an extension can be defined. They will be accessible from the TYPO3 BE in the Extension
Manager (EM), in the Information view of the extension.

There's a specific syntax to declare these options properly, which is similar to the one used for TypoScript constants (see
“Declaring constants for the Constant editor” in “TypoScript Syntax and In-depth Study”). This syntax applies to the comment
line that should be placed just before the constant. Consider the following example (taken from system extension
“saltedpasswords”):

cat=basic/enable; type=boolean; label=Enable FE: Enable SaltedPasswords in the frontend
FE.enabled = 1

First a category (cat) is defined (“basic”) with the subcategory “enable”. Then a type is given (“boolean”) and finally a label,
which is itself split (on the colon “:”) into a title and a description. The above example will be rendered like this in the EM:

13

 TYPO3 Core APIs - doc_core_api Extension Architecture

The options screen displays all options from a single category. A selector is available to switch between categories. Inside an
option screen, options are grouped by subcategory. At the bottom of the screenshot, the label – split between header and
description – is visible. Then comes the field itself, in this case a checkbox, because the option's type is “boolean”.

Extending “extensions-classes”
A rather exotic thing to do but nevertheless...

If you are programming extensions yourself you should as a standard procedure include the “class extension code” in the
bottom of the class file:

if (defined("TYPO3_MODE") && $TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["ext/class.cool_shop.php"])
{

include_once($TYPO3_CONF_VARS[TYPO3_MODE]["XCLASS"]["ext/class.cool_shop.php"]);
}

Normally the key used as example here (“ext/class.cool_shop.php”) would be the full path to the script relative to the
PATH_site constant. However because modules are required to work from both typo3/sysext/, typo3/ext/ and typo3conf/ext/
it is policy that any path before “ext/” is omitted.

The Extension Manager (EM)
Extensions are managed from the Extension Manager inside TYPO3 by "admin" users. The module is located at "Admin tools
> Ext Manager" and offers a menu with options to see loaded extensions (those that are installed or activated), available
extensions on the server and the possibility to import extensions from online resources, typically the TER (TYPO3 Extension
Repository) located at typo3.org.

The interface looks like this for the list of available extensions:

The interface is really easy to use. You just click the +/- icon to the left of an extension in order to install it and follow the
instructions.

14

 TYPO3 Core APIs - doc_core_api Extension Architecture

Basic framework for a new extension
This document will not describe into details how to create extensions. It only aims to be a reference for the facts regarding
the rules of how extensions register with the system.

To learn to create extensions you should read one of the extension tutorials that are available. They will take you through the
process step by step and explain best-practices for you.

To start up a new extension the most popular tool is the Extension Kickstarter. From a series of menus it allows you to
configure a basic set of features you want to get into your extension and a selection of default files will be created. The idea
is that you continue to develop these files into your specific application.

Registering an extension key
Before starting a new extension you should register an extension key on typo3.org (unless you plan to make an
implementation-specific extension – of course – which it does not make sense to share).

Go to typo3.org, log in with your (pre-created) username / password and go to Extensions > Extension Keys and click on the
“Register keys” tab. On that page you can enter the key name you want to register.

Enabling the Extension Kickstarter
Before you can use the Extension Kickstarter you will have to enable it. The "Kickstarter" is an extension like any other (key:
"kickstarter") so it must be installed first:

After the installation of the extension you will find a new menu item named "Create new extension" in the selector box menu
of the Extension Manager.

15

 TYPO3 Core APIs - doc_core_api Extension Architecture

Using the Extension Kickstarter

In the Kickstarter you should always fill in the General Information which includes the title, description, author name etc for
the extension. But the most important thing is to enter the extension key as the very first thing!

After entering this information you can begin to create new tables and fields in the database, you can configure backend
modules and frontend plugins etc. Basically this is what tutorials will cover in detail.

When you are through with the configuration you click the button to the left called "View result". This will let you preview the
content of the files the Kickstarter will write to the server.

It is important that you write the extension to the correct location. Most likely that will be "Local" in your case.

16

 TYPO3 Core APIs - doc_core_api Extension Architecture

Finally, if there already is an extension with the same extension key every file from that extension will be overwritten with the
Kickstarter's output! Remember: This is a kickstarter, not an editor! It is meant to kick you off with the development of your
new TYPO3 extension and nothing more! So of course it overwrites all existing files!

Enabling your newly created extension
After the extension is written to the server's disk you should see a message like this, which allows you to install your
extension immediately:

Re-edit the extension
In the process of creating an extension it is rather typical to go back to the Kickstarter a few times to fine tune the base code.
Experience suggests that this is especially useful to tuning the configuration of database tables and fields.

The Kickstarter generates 2 files while it is working: doc/wizard_form.dat and doc/wizard_form.html. As long as these

17

 TYPO3 Core APIs - doc_core_api Extension Architecture

two files are present, the extension can be edited again. Obviously you should remove those files once you are done with the
Kickstarter.

If you want to load the Kickstarter with the original configuration used for your extension so you can add or edit features, just
click the extension title in the list of loaded/available extensions and select "Edit in Kickstarter" from the menu:

You should be back to the Kickstarter with all the original configuration used (provided the files mentioned above still exist).

Warning about re-editing
This feature is potentially dangerous as it may give the impression that the Kickstarter is an editor. So once more:
theKickstarter is not an editor for your extensions! Whatever custom changes have been made to the scripts of your
new extension will be overwritten when you write back the extension from the Kickstarter.

A good workflow for using the Kickstarter would be like this:

• Start by setting up all the features you need for your extension and write it with the Kickstarter.

• Begin to fill in dummy information in the database tables your extension contains. You will most likely find that you
forgot something or misconfigured a database field. Since you have not yet done any changes to the files in the
extension you can safely re-load the extension configuration (see above) and add the missing fields or whatever.
Your dummy database content will not be affected by this operation.

• When you have tested that your database configuration works for your purpose you can begin to edit the PHP-
scripts by hand (i.e. programming the extension itself). This is the "point-of-no-return" where you cannot safely
return to the Kickstarter because you have now changed scripts manually.

18

 TYPO3 Core APIs - doc_core_api TYPO3 API overview

TYPO3 API overview

Introduction

The source is the documentation!

(General wisdom)

The TYPO3 APIs are first and foremost documented inside of the source scripts. It would be impossible to maintain
documentation at more than one location given the fact that things change and sometimes fast. This chapter describes the
most important elements of the API. Some other elements have their own chapter further on.

Inline documentation
We have dedicated ourselves to document the classes and methods inside the source scripts (JavaDoc style). This means that
you can use any phpDoc compliant documentor program to extract API documentation from the source. You can also install
the extension "extdeveval" which provides a menu in the top bar with links to the most important APIs in TYPO3 from within
the TYPO3 backend:

Clicking a link like "div" will bring up a new window with the full API of that class:

19

 TYPO3 Core APIs - doc_core_api Introduction

Pointers in the right direction
The point of this documentation is to help you understand which parts of the API are particularly important or useful for your
TYPO3 hacking. The next pages will highlight functions and classes which you should make yourself familiar with.

General functions
There are a few core classes in TYPO3 which contain general functionality. These classes are (typically) just a collection of
individual functions you call non-instantiated, like [class name]::[method name].

These are the most important classes to know about in TYPO3:

Class name: Description: Usage:

t3lib_DB Database Abstraction Base API
All access to the database must go through this object. That is the first step
towards DBAL compliance in your code. The class contains MySQL wrapper
functions which can almost be search/replaced with your existing calls.

$GLOBALS['TYPO3_DB'] in
both frontend and backend

t3lib_cs Character Set handling API
Contains native PHP code to handle character set conversion based on charset
tables from Unicode.org. It is not certain that you will have to use this class
directly but if you need to do charset conversion at any time you should use
this class.

In backend,
$GLOBALS['LANG']-
>csConvObj
In frontend,
$GLOBALS['TSFE']-
>csConvObj

t3lib_div General Purpose Functions
A collection of multi-purpose PHP functions. Some are TYPO3 specific but not
all.

t3lib_div::
(Non-instantiated!)

20

 TYPO3 Core APIs - doc_core_api General functions

Class name: Description: Usage:

t3lib_BEfunc Backend Specific Functions
Contains functions specific for the backend of TYPO3. You will typically need
these when programming backend modules or other backend functionality.
This class is NOT available in the frontend!

t3lib_BEfunc::
(Non-instantiated!)

t3lib_extMgm Extension API functions
Functions for extensions to interface with the core system. Many of these
functions are used in ext_localconf.php and ext_tables.php files of extensions.
They let extensions register their features with the system.
See extension programming tutorials for more details.

t3lib_extMgm::
(Non-instantiated!)

t3lib_iconWorks Icons / Part of skinning API
Contains a few functions for getting the right icon for a database table record
or the skinned version of any other icon.
This class is NOT available in the frontend!

t3lib_iconWorks::
(Non-instantiated!)

template Backend Template Class
Contains functions for producing the layout of backend modules, setting up
HTML headers, wrapping JavaScript sections correctly for XHTML etc.

$GLOBALS['TBE_TEMPLATE']
or
$GLOBALS['SOBE'] or
$this->doc (inside of Script
Classes)

These classes are always included and available in the TYPO3 backend and frontend (except "t3lib_BEfunc" and
"t3lib_iconWorks").

The following pages will list methods from these classes in priority of importance. You should at least acquaint yourself with
all High-priority functions since these are a part of the Coding Guidelines requirements. In addition you might like to know
about other functions which are very often used since they might be very helpful to you (they were to others!).

High priority functions (CGL requirements)
The functions listed in this table is of high priority. Generally they provide APIs to functionality which TYPO3 should always
handle in the same way. This will help you to code TYPO3 applications with less bugs and greater compatibility with various
system conditions it will run under.

Remember, this list only serves to point out important functions! The real documentation is found in the source scripts. The
comments given is only a supplement to that.

Function Comments

t3lib_div::_GP
t3lib_div::_GET
t3lib_div::_POST

Getting values from GET or POST vars

APIs for getting values in GET or POST variables with slashes stripped regardless of PHP environment.
Always use these functions instead of direct access to $_GET or $_POST.

t3lib_div::_GP($varname) will give you the value of either the GET or POST variable with priority to
POST if present. This is useful if you don't know whether a parameter is passed as GET or POST. Many
scripts will use this function to read variables in the init function:

 // Setting GPvars:
$this->file = t3lib_div::_GP('file');
$this->size = t3lib_div::_GP('size');

t3lib_div::_GET() will give you GET vars. For security reasons you should use this if you know your
parameters are passed as GET variables. This example gives you the whole $_GET array:

$params = t3lib_div::_GET();

t3lib_div::POST() will give you POST variables. Works like t3lib_div::_GET(). For security reasons you
should use this if you know your parameters are passed as POST variables.
This example gives you the content of the POST variable TSFE_ADMIN_PANEL, for instance it could
come from a form field like "<input name="TSFE_ADMIN_PANEL[command]"/>

$input = t3lib_div::_POST('TSFE_ADMIN_PANEL');

21

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::makeInstance Creating objects

Factory API for creating an object instance of a class name. This function makes sure the "XCLASS
extension" principle can be used on (almost) any class in TYPO3. You must use this function when
creating objects in TYPO3.

Examples:

// Making an instance of class "t3lib_TSparser":
$parseObj = t3lib_div::makeInstance('t3lib_TSparser');

// Make an object with an argument passed to the constructor (TYPO3 4.3+):
$xmlObj = t3lib_div::makeInstance('t3lib_xml', 'typo3_export');

NOTE: t3lib_div::makeInstanceClassName() has been deprecated in TYPO3 4.3 and should not be used
anymore.

t3lib_div::getIndpEnv Environment-safe server and environment variables.

API function for delivery of system and environment variables on any web-server brand and server OS.
Always use this API instead of $_ENV/$_SERVER or getenv() if possible.

Examples:

if (t3lib_div::getIndpEnv('HTTP_ACCEPT_LANGUAGE') == $test)...
if (t3lib_div::cmpIP(t3lib_div::getIndpEnv('REMOTE_ADDR'), $pcs[1]))...
$prefix = t3lib_div::getIndpEnv('TYPO3_REQUEST_URL');
$redirectTo = t3lib_div::getIndpEnv('TYPO3_SITE_URL').$redirectTo;
if (!t3lib_div::getIndpEnv('TYPO3_SSL')) ...

t3lib_div::loadTCA Loading full table description into $TCA

If you want to access or change any part of the $TCA array for a table except the ['ctrl'] part then you
should call this function first. The $TCA might not contain the full configuration for the table
(depending on configuration of the table) and to make sure it is loaded if it isn't already you call this
function.

Examples of PHP code which traverses the ['columns'] part of an unknown table and loads the table
before.

t3lib_div::loadTCA($this->table);
foreach ($TCA[$this->table]['columns'] as $fN) {
 $fieldListArr[] = $fN;
}

t3lib_BEfunc::deleteClause Get SQL WHERE-clause filtering "deleted" records

Tables from $TCA might be configured to set an integer flag when deleted instead of being physically
deleted from the database. In any case records with the deleted-flag set must never be selected in
TYPO3. To make sure you never make that mistake always call this function which will pass you a SQL
WHERE-clause like " AND deleted=0" if the table given as argument has been configured with a
deleted-field.
(Notice: In the frontend this is build into the "enableFields()" function.)

Example:

$res = $GLOBALS['TYPO3_DB']->exec_SELECTquery(
 'pid,uid,title,TSconfig,is_siteroot,storage_pid',
 'pages',
 'uid='.intval($uid).' '.
 t3lib_BEfunc::deleteClause('pages').' '.
 $clause
);

22

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_extMgm::isLoaded Returns true if an extension is loaded (installed)

If you need to check if an extension is loaded in a TYPO3 installation simply use this function to ask for
that.

Example:

 // If the extension "sys_note" is loaded, then...
if (t3lib_extMgm::isLoaded('sys_note')) ...
 // If the "cms" extension is NOT loaded, return false
if (!t3lib_extMgm::isLoaded('cms')) return;
 // Check if the "indexed_search" extension is loaded. If not, exit PHP!
t3lib_extMgm::isLoaded('indexed_search', TRUE);
 // Assign value "popup" if extension "tsconfig_help" is loaded
$type = t3lib_extMgm::isLoaded('tsconfig_help') ? 'popup' : '';

t3lib_extMgm::extPath
t3lib_extMgm::extRelPath
t3lib_extMgm::siteRelPath

Get file path to an extension directory

If you need to get the absolute or relative filepaths to an extension you should use these functions.
Extension can be located in three different positions in the filesystem whether they are local, global or
system extensions. These functions will always give you the right path.

Examples:
 // Include a PHP file from the extension "extrep_wizard".
 // t3lib_extMgm::extPath() returns the absolute path to the
 // extension directory.
require_once(
 t3lib_extMgm::extPath('extrep_wizard') .
 'pi/class.tx_extrepwizard.php'
);
 // Get relative path (relative to PATH_typo3) to an icon (backend)
$icon = t3lib_extMgm::extRelPath('tt_rating') . 'rating.gif';
 // Get relative path (relative to PATH_site) to an icon (frontend)
return '<img src="'.
 t3lib_extMgm::siteRelPath('indexed_search') . 'pi/res/locked.gif'
 ... />';

23

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::getFileAbsFileName
t3lib_div::validPathStr
t3lib_div::isAbsPath
t3lib_div::isAllowedAbsPath
t3lib_div::fixWindowsFilePath

Evaluate files and directories for security reasons

When you allow references to files to be inputted from users there is always the risk that they try to
cheat the system to include something else than intended. These functions makes it easy for you to
evaluate filenames for validity before reading, writing or including them.

Here the functions are described in order of importance:

t3lib_div::getFileAbsFileName() - Returns the absolute filename of a relative reference, resolves
the "EXT:" prefix (way of referring to files inside extensions) and checks that the file is inside the
PATH_site of the TYPO3 installation and implies a check with t3lib_div::validPathStr(). Returns false if
checks failed. Does not check if the file exists.

 // Getting absolute path of a temporary file:
$cacheFile = t3lib_div::getFileAbsFileName('typo3temp/tempfile.tmp');
 // Include file if it exists:
$file = t3lib_div::getFileAbsFileName($fileRef);
if (@is_file($file)) {
 include($file);
}

t3lib_div::validPathStr() - Checks for malicious file paths. Returns true if no '//', '..' or '\' is in the
$theFile. This should make sure that the path is not pointing 'backwards' and further doesn't contain
double/back slashes.

 // If the path is true and validates as a valid path string:
if ($path && t3lib_div::validPathStr($path)) ...

t3lib_div::isAbsPath() - Checks if the input path is absolute or relative (detecting either '/' or 'x:/' as
first part of string) and returns true if so.

 // Returns relative filename for icon:
if (t3lib_div::isAbsPath($Ifilename)) {
 $Ifilename = '../' . substr($Ifilename, strlen(PATH_site));
}

t3lib_div::isAllowedAbsPath() - Returns true if the path is absolute, without backpath '..' and
within the PATH_site OR within the lockRootPath. Contrary to t3lib_div::getFileAbsFileName() this
function can also validate files in filemounts outside the web-root of the installation, but this is rarely
used!

if (@file_exists($path) && t3lib_div::isAllowedAbsPath($path)) {
 $fI = pathinfo($path);

t3lib_div::fixWindowsFilePath() - Fixes a path for Windows-backslashes and reduces double-
slashes to single slashes

t3lib_div::mkdir Creates directory

One would think that creating directories is one thing you can do directly with PHP. Well, it turns out to
be quite error-prone if it should be compatible with Windows servers and safe-mode at the same time.
So TYPO3 offers a substitution function you should always use.

Example:

$root.=$dirParts . '/';
if (!is_dir($extDirPath . $root)) {
 t3lib_div::mkdir($extDirPath . $root);
 if (!@is_dir($extDirPath.$root)) {
 return 'Error: The directory "' .
 $extDirPath.$root.
 '" could not be created...';
 }
}

24

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::upload_to_tempfile
t3lib_div::unlink_tempfile
t3lib_div::tempnam

Functions for handling uploads and temporary files

You need to use these functions for managing uploaded files you want to access as well as creating
temporary files within the same session. These functions are safe_mode and open_basedir compatible
which is the main point of you using them!

t3lib_div::upload_to_tempfile() - Will move an uploaded file (normally in "/tmp/xxxxx") to a
temporary filename in PATH_site."typo3temp/" from where TYPO3 can use it under safe_mode.
Remember to use t3lib_div::unlink_tempfile() afterwards - otherwise temp-files will build up! They are
not automatically deleted in PATH_site."typo3temp/"!

t3lib_div::unlink_tempfile() - Deletes (unlink) a temporary filename in 'PATH_site."typo3temp/"'
given as input. The function will check that the file exists, is in PATH_site."typo3temp/" and does not
contain back-spaces ("../") so it should be pretty safe. Use this after upload_to_tempfile() or
tempnam() from this class!

This example shows how to handle an uploaded file you just want to read and then delete again:

 // Read uploaded file:
$uploadedTempFile = t3lib_div::upload_to_tempfile(
 $GLOBALS['HTTP_POST_FILES']['upload_ext_file']['tmp_name']
);
$fileContent = t3lib_div::getUrl($uploadedTempFile);
t3lib_div::unlink_tempfile($uploadedTempFile);

t3lib_div::tempnam() - Create temporary filename (creates file with unique file name). This function
should be used for getting temporary filenames - will make your applications safe for "open_basedir =
on". Remember to delete the temporary files after use! This is done by t3lib_div::unlink_tempfile()
In the following example it is shown how two temporary filenames are created for being processed
with an external program (diff) after which they are deleted again:

 // Create file 1 and write string
$file1 = t3lib_div::tempnam('diff1_');
t3lib_div::writeFile($file1, $str1);
 // Create file 2 and write string
$file2 = t3lib_div::tempnam('diff2_');
t3lib_div::writeFile($file2, $str2);
 // Perform diff.
$cmd = $GLOBALS['TYPO3_CONF_VARS']['BE']['diff_path'].
 ' '.$this->diffOptions . ' ' . $file1 . ' ' . $file2;
exec($cmd, $res);
unlink($file1);
unlink($file2);

t3lib_div::fixed_lgd_cs Truncating a string for visual display, observing the character set (backend only)

This function allows you to truncate a string from e.g. "Hello World" to "Hello Wo..." so for example
very long titles of records etc. will not break the visual appearance of your backend modules.
Since text strings cannot be cropped at any byte if the character set is utf-8 or another multibyte
charset this function will process the string assuming the character set to be the one used in the
backend.
It is recommended to use $BE_USER->uc['titleLen'] for the length parameter.

 // Limits Record title to 30 chars
t3lib_div::fixed_lgd_cs($thisRecTitle, 30);
 // Limits string to title-length configured for backend user:
$title = t3lib_div::fixed_lgd_cs(
 $row['title'],
 $this->BE_USER->uc['titleLen']
);

t3lib_div::formatForTextarea Preparing a string for output between <textarea> tags.

Use this function to prepare content for <textarea> tags. Then you will avoid extra / stripped
whitespace when the form is submitted multiple times.

 // Create item:
$item = '
 <textarea>' .
 t3lib_div::formatForTextarea($value) .
 '</textarea>';

25

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::locationHeaderUrl Preparing a URL for a HTTP location-header

Use this to prepare redirection URLs for location-headers. It will convert the URL to be absolute. This is
also useful in other cases where an absolute URL must be used, for example when passing a callback
URL to some third-party software. Redirection example:

header('Location: ' . t3lib_div::locationHeaderUrl($this->retUrl));
exit;

t3lib_BEfunc::getFuncMenu
t3lib_BEfunc::getFuncCheck

Create "Function menu" in backend modules

Creates a selector box menu or checkbox with states automatically saved in the backend user session.
Such a function menu could look like this:

The selector box is made by this function call. It sets the ID variable (zero if not available), the GET
var name, "SET[mode]", the current value from MOD_SETTINGS and finally the array of menu options,
MOD_MENU['mode']:

t3lib_BEfunc::getFuncMenu(
 $this->id,
 'SET[mode]',
 $this->MOD_SETTINGS['mode'],
 $this->MOD_MENU['mode']
)

Prior to making the menu it is required that the MOD_MENU array is set up with an array of options.
This could look like this (getting some labels from the "locallang" system). In addition the incoming
"SET" GET-variable must be registered in the session which is also done in this listing:

$this->MOD_MENU = array(
 'mode' => array(
 0 => $LANG->getLL('user_overview'),
 'perms' => $LANG->getLL('permissions')
)
);
 // Clean up settings:
$this->MOD_SETTINGS = t3lib_BEfunc::getModuleData(
 $this->MOD_MENU,
 t3lib_div::_GP('SET'),
 $this->MCONF['name']
);

You can have a checkbox as well:

Then the function call looks like this. Notice the fourth argument is gone because a checkbox does not
have any information about options like a selector box would have.

t3lib_BEfunc::getFuncCheck(
 0,
 'SET[own_member_only]',
 $this->MOD_SETTINGS['own_member_only']
);

For checkboxes you must set the key in the MOD_MENU array as well. Otherwise the values are not
registered in the user session:

'own_member_only' => '',

26

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_BEfunc::editOnClick Create onclick-JavaScript code that links to edit form for a record

Use this function to create a link to the "alt_doc.php" core script which can generate editing forms for
any $TCA configured record. The actual editing command is passed to "alt_doc.php" through the GET
parameter "&edit".
See the section with "Various examples" for detailed examples of this!

Example:

$params = '&edit[pages][' . $row['uid'] . ']=edit';
$link = '<a href="#" onclick="' .
 htmlspecialchars(t3lib_BEfunc::editOnClick($params, '', -1)).
 '">Edit';

t3lib_BEfunc::viewOnClick Create onclick-JavaScript code that opens a page in the frontend

It will detect the correct domain name if needed and provide the link with the right back path. Also it
will re-use any window already open.

 // "View page" link is added:
$link = '<a href="#" onclick="' .
 htmlspecialchars(t3lib_BEfunc::viewOnClick(
 $pageId,
 $GLOBALS['BACK_PATH'],
 t3lib_BEfunc::BEgetRootLine($pageId)
)) . '">View page';

$GLOBALS['TBE_TEMPLATE']->
issueCommand

Creates a link to "tce_db.php" (with a command like copy, move,delete for records)

Creates a URL to the TYPO3 Core Engine interface provided from the core script, "tce_db.php". The
$params array is filled with date or cmd values. For detailed list of options see section about TCE
elsewhere in this document.

Example:

 // Delete
$params = '&cmd[tt_content][' . $row['uid'] . '][delete]=1';
$out .= '<a href="' .
 htmlspecialchars($GLOBALS['SOBE']->doc->issueCommand($params)).
 '" onclick="' .
 htmlspecialchars("return confirm('Want to delete?');").
 '">Delete record';

27

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_BEfunc::helpTextIcon
t3lib_BEfunc::helpText
t3lib_BEfunc::cshItem

Create icon or short description for Context Sensitive Help (CSH)

You are encouraged to integrate Content Sensitive help in your backend modules and for your
database tables. This will help users to use TYPO3 and your TYPO3 applications more easily.
With these functions you can create content sensitive help texts (and links to more details) like this:

(Note: For the short description to be displayed and not only the icon the user must set up "Field help
mode" in the User>Setup module to "Display full text message".)

Examples:

 // Setting "table name" to module name with prefix
$tableIdent = '_MOD_' . $this->MCONF['name'];

 // Creating CSH icon and short description:
$HTMLcode .=
 t3lib_BEfunc::helpTextIcon($tableIdent, 'quickEdit', $BACK_PATH).
 t3lib_BEfunc::helpText($tableIdent, 'quickEdit', $BACK_PATH).
 '
';

Prior to calling helpTextIcon and helpText you might need to load the description table with:

if ($BE_USER->uc['edit_showFieldHelp']) {
 $LANG->loadSingleTableDescription($tableIdent);
}

Alternatively you can use t3lib_BEfunc::cshItem(). It's a quicker way of integrating the descriptions
since description files are loaded automatically and the text/icon mode is integrated in a single function
call. This is recommended for sporadic usage:

$HTMLcode .=
t3lib_BEfunc::cshItem($tableIdent,'quickEdit', $BACK_PATH);

t3lib_iconWorks::getIconImage
t3lib_iconWorks::getIcon

Getting correct icon for database table record

Always use these functions if you need to get the icon for a record. Works only for records from tables
which are defined in $TCA

 // Getting default icon for the "tt_content" table:
t3lib_iconWorks::getIconImage('tt_content', array(), $this->backPath, '');

 // Getting an icon where record content may define the look:
$icon = t3lib_iconWorks::getIconImage(
 $this->table,
 $row,
 $this->backPath,
 'align="top" class="c-recIcon"'
);

 // Getting the icon filename only:
$ficon = t3lib_iconWorks::getIcon($table, $row);

t3lib_iconWorks::skinImg Processing icons for skin API

Pass the filename and width/height attributes of all images you use in your backend applications
through this function. See Skin API description for more details.

$skin_enabled_icon = '<img' .
 t3lib_iconWorks::skinImg(
 $this->doc->backPath,
 'gfx/recordlock_warning3.gif',
 'width="17" height="12"'
) .
 ' alt="" />';

28

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

$GLOBALS['TYPO3_DB']->
exec_INSERTquery
exec_UPDATEquery
exec_DELETEquery
exec_SELECTquery

Database Access API

To be compatible with Database Abstraction Layers you should always use the global object
$TYPO3_DB for database access. The class "t3lib_db" contains a list of MySQL wrapper functions
(sql(), sql_fetch_assoc(), etc...) which you can use almost out of the box as a start. Just
search/replace.
But it is recommended that you port your application to using the four execution functions directly.
These will both build the query for you and execute it.
See the Coding Guidelines, t3lib_db API and Inside TYPO3 document for more information.

Inserting a record:
Just fill an array with "fieldname => value" pairs and pass it to exec_INSERTquery() along with the
table name in which it should be inserted:

$insertFields = array(
 'md5hash' => $md5,
 'tstamp' => time(),
 'type' => 2,
 'params' => $inUrl
);
$GLOBALS['TYPO3_DB']->exec_INSERTquery(
 'cache_md5params',
 $insertFields
);

Updating a record:
Create an array of "fieldname => value" pairs before calling exec_UPDATEquery(). The function call is
almost like inserting, but you need to add a WHERE clause to target the update to the record you want
to update. It is the second argument you set to a value like "uid=???".

$fields_values = array(
 'title' => $data['sys_todos'][$key]['title'],
 'deadline' => $data['sys_todos'][$key]['deadline'],
 'description' => $data['sys_todos'][$key]['description'],
 'tstamp' => time()
);
$GLOBALS['TYPO3_DB']->exec_UPDATEquery(
 'sys_todos',
 'uid=' . intval($key),
 $fields_values
);

Deleting a record:
Call exec_DELETEquery() with the tablename and the WHERE clause selecting the record to delete:

$GLOBALS['TYPO3_DB']->exec_DELETEquery(
 'sys_todos',
 'uid=' . intval($key)
);

Selecting a record:
Call exec_SELECTquery() with at least the first three arguments (field list to select, table name and
WHERE clause). The return value is a result pointer (or object) which should be passed to
->sql_fetch_assoc() in a loop in order to traverse the result rows.

$res = $GLOBALS['TYPO3_DB']->exec_SELECTquery(
 '*',
 $theTable,
 $theField . '="' .
 $GLOBALS['TYPO3_DB']->quoteStr($theValue, $theTable) . '"' .
 $this->deleteClause($theTable) . ' ' .
 $whereClause,
 $groupBy,
 $orderBy,
 $limit
);
$rows = array();
while(($row = $GLOBALS['TYPO3_DB']->sql_fetch_assoc($res))) {
 $rows[] = $row;
}
$GLOBALS['TYPO3_DB']->sql_free_result($res);
if (count($rows)) return $rows;

29

file:///Users/fsuter/Documents/TYPO3/CoreDocs/SVN/doc_core_api/trunk/doc_core_cgl/doc/manual.sxw#Database%20connectivity%7Coutline

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

$GLOBALS['BE_USER']->
isAdmin

Return true if current backend user is "admin"

Use this if you need to restrict a user from doing something unless he is "admin".

$GLOBALS['BE_USER']->
getPagePermsClause

Return WHERE clause for filtering pages which permission mismatch for current user

The most typical usage of this is to call the function with the value "1". Then the WHERE clause
returned will filter away all pages to which the user has no read-access.

TYPO3 Coding Guidelines
You should also refer to the TYPO3 Core Coding Guidelines (CGL) document which is the authoritative source to know about
which coding practices are required for TYPO3 core and extension programming. It also contains some more information
about recommended API usage.

Functions typically used and nice to know
These functions are generally just nice to know. They provide functionality which you will often need in TYPO3 applications
and therefore they will save you time and make your applications easier for others to understand as well since you use
commonly known functions.

Please take time to learn these functions!

Function Comments

t3lib_div::inList Check if an item exists in a comma-separated list of items.

if (t3lib_div::inList('gif,jpg,png', $ext)) {

t3lib_div::intInRange Forces the input variable (integer) into the boundaries of $min and $max.

t3lib_div::intInRange($row['priority'], 1, 5);

t3lib_div::isFirstPartOfStr Returns true if the first part of input string matches the second argument.

t3lib_div::isFirstPartOfStr($path, PATH_site);

t3lib_div::testInt Tests if the input is an integer.

t3lib_div::shortMD5
t3lib_div::md5int

Creates partial/truncated MD5 hashes. Useful when a 32 byte hash is too long or you rather work with
an integer than a string.

t3lib_div::shortMD5() - Creates a 10 byte short MD5 hash of input string

$addQueryParams.= '&myHash=' . t3lib_div::shortMD5(serialize($myArguments));

t3lib_div::md5int() - Creates an integer from the first 7 hex chars of the MD5 hash string

'mpvar_hash' => t3lib_div::md5int($GLOBALS['TSFE']->MP),

t3lib_div::deHSCentities
t3lib_div::htmlspecialchars_decode

Reverse conversions of htmlspecialchars()

t3lib_div::deHSCentities() - Re-converts HTML entities if they have been converted by
htmlspecialchars(). For instance "&amp;" which should stay "&". Or "&#1234;" to
"Ӓ". Or "&#x1b;" to ""

$value = t3lib_div::deHSCentities(htmlspecialchars($value));

t3lib_div::htmlspecialchars_decode() - Inverse version of htmlspecialchars()

t3lib_div::modifyHTMLColor
t3lib_div::modifyHTMLColorAll

Modifies the RGB values of an 6-digit HTML hex color by adding/subtracting. Useful for increasing or
decreasing brightness of colors.

t3lib_div::modifyHTMLColor('#cca823', +10, +10, +10)
t3lib_div::modifyHTMLColorAll($this->doc->bgColor, -20);

t3lib_div::formatSize Formats a number of bytes as Kb/Mb/Gb for visual output.

$size = ' (' . t3lib_div::formatSize(filesize($v)) . 'bytes)';

t3lib_div::validEmail Evaluates a string as an email address.

if ($email && t3lib_div::validEmail($email)) {

30

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::trimExplode
t3lib_div::intExplode
t3lib_div::revExplode

Various flavors of exploding a string by a token.

t3lib_div::trimExplode() - Explodes a string by a token and trims the whitespace away around each
item. Optionally any zero-length elements are removed. Very often used to explode strings from
configuration, user input etc. where whitespace can be expected between values but is insignificant.

array_unique(t3lib_div::trimExplode(',', $rawExtList, 1));
t3lib_div::trimExplode(chr(10), $content);

t3lib_div::intExplode() - Explodes a by a token and converts each item to an integer value. Very
useful to force integer values out of a value list, for instance for an SQL query.

// Make integer list
implode(t3lib_div::intExplode(',', $row['subgroup']), ',');

t3lib_div::revExplode() - Reverse explode() which allows you to explode a string into X parts but
from the back of the string instead.

$p = t3lib_div::revExplode('/', $path, 2);

t3lib_div::array_merge_recursive_o
verrule
t3lib_div::array_merge

Merging arrays with fixes for "PHP-bugs"

t3lib_div::array_merge_recursive_overrule() - Merges two arrays recursively and "binary safe"
(integer keys are overridden as well), overruling similar the values in the first array ($arr0) with the
values of the second array ($arr1). In case of identical keys, i.e. keeping the values of the second.

t3lib_div::array_merge() - An array_merge function where the keys are NOT renumbered as they
happen to be with the real php-array_merge function. It is "binary safe" in the sense that integer keys
are overridden as well.

t3lib_div::array2xml_cs
t3lib_div::xml2array

Serialization of PHP variables into XML.

These functions are made to serialize and unserialize PHParrays to XML files. They are used for the
FlexForms content in TYPO3, Data Structure definitions etc. The XML output is optimized for readability
since associative keys are used as tagnames. This also means that only alphanumeric characters are
allowed in the tag names and only keys not starting with numbers (so watch your usage of keys!).
However there are options you can set to avoid this problem. Numeric keys are stored with the default
tagname "numIndex" but can be overridden to other formats). The function handles input values from
the PHP array in a binary-safe way; All characters below 32 (except 9,10,13) will trigger the content to
be converted to a base64-string. The PHP variable type of the data is preserved as long as the types
are strings, arrays, integers and booleans. Strings are the default type unless the "type" attribute is
set.

t3lib_div::array2xml_cs() - Converts a PHP array into an XML string.

t3lib_div::array2xml_cs($this->FORMCFG['c'],'T3FormWizard');

t3lib_div::xml2array() - Converts an XML string to a PHP array. This is the reverse function of
array2xml()

if ($this->xmlStorage) {
 $cfgArr = t3lib_div::xml2array($row[$this->P['field']]);
}

NOTE: t3lib_div::array2xml() is deprecated since TYPO3 4.3. Use t3lib_div::array2xml_cs() which takes
care of proper character set conversion.

t3lib_div::getURL
t3lib_div::writeFile

Reading / Writing files

t3lib_div::getURL() - Reads the full content of a file or URL. Used throughout the TYPO3 sources.

$templateCode = t3lib_div::getURL($templateFile);

t3lib_div::writeFile() - Writes a string into an absolute filename.

t3lib_div::writeFile($extDirPath.$theFile,$fileData['content']);

t3lib_div::split_fileref Splits a reference to a file in 5 parts. Alternative to "path_info" and fixes some "PHP-bugs" which
makes page_info() unattractive at times.

31

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::get_dirs
t3lib_div::getFilesInDir
t3lib_div::getAllFilesAndFoldersInP
ath
t3lib_div::removePrefixPathFromLis
t

Read content of file system directories.

t3lib_div::get_dirs() - Returns an array with the names of folders in a specific path

if (@is_dir($path)) {
 $directories = t3lib_div::get_dirs($path);
 if (is_array($directories)) {
 foreach($directories as $dirName) {
 ...
 }
 }
}

t3lib_div::getFilesInDir() - Returns an array with the names of files in a specific path

$sFiles = t3lib_div::getFilesInDir(PATH_typo3conf ,'', 1, 1);
$files = t3lib_div::getFilesInDir($dir, 'png,jpg,gif');

t3lib_div::getAllFilesAndFoldersInPath() - Recursively gather all files and folders of a path.
t3lib_div::removePrefixPathFromList() - Removes the absolute part of all files/folders in fileArr
(useful for post processing of content from t3lib_div::getAllFilesAndFoldersInPath())

 // Get all files with absolute paths prefixed:
$fileList_abs =
 t3lib_div::getAllFilesAndFoldersInPath(array(), $absPath, 'php,inc');

 // Traverse files and remove abs path from each (becomes relative)
$fileList_rel =
 t3lib_div::removePrefixPathFromList($fileList_abs, $absPath);

t3lib_div::implodeArrayForUrl Implodes a multidimensional array into GET-parameters (e.g. ¶m[key][key2]=value2¶m[key]
[key3]=value3)

$pString = t3lib_div::implodeArrayForUrl('', $params);

t3lib_div::get_tag_attributes
t3lib_div::implodeAttributes

Works on HTML tag attributes

t3lib_div::get_tag_attributes() - Returns an array with all attributes of the input HTML tag as
key/value pairs. Attributes are only lowercase a-z

$attribs = t3lib_div::get_tag_attributes('<' . $subparts[0] . '>');

t3lib_div::implodeAttributes() - Implodes attributes in the array $arr for an attribute list in e.g.
and HTML tag (with quotes)

$tag = '';

t3lib_div::resolveBackPath Resolves "../" sections in the input path string. For example "fileadmin/directory/../other_directory/"
will be resolved to "fileadmin/other_directory/"

32

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_div::callUserFunction
t3lib_div::getUserObj

General purpose functions for calling user functions (creating hooks).
See the chapter about Hooks in this document for detailed description of these functions.

t3lib_div::callUserFunction() - Calls a user-defined function/method in class. Such a
function/method should look like this: "function proc(&$params, &$ref) {...}"

function procItems($items,$iArray,$config,$table,$row,$field) {
 global $TCA;
 $params=array();
 $params['items'] = &$items;
 $params['config'] = $config;
 $params['TSconfig'] = $iArray;
 $params['table'] = $table;
 $params['row'] = $row;
 $params['field'] = $field;

 t3lib_div::callUserFunction(
 $config['itemsProcFunc'],
 $params,
 $this
);
 return $items;
}

t3lib_div::getUserObj() - Creates and returns reference to a user defined object.

$_procObj = &t3lib_div::getUserObj($_classRef);
$_procObj->pObj = &$this;
$value = $_procObj->transform_rte($value,$this);

t3lib_div::linkThisScript Returns the URL to the current script. You can pass an array with associative keys corresponding to the
GET-vars you wish to add to the URL. If you set them empty, they will remove existing GET-vars from
the current URL.

t3lib_div::plainMailEncoded
t3lib_div::quoted_printable

Mail sending functions

t3lib_div::plainMailEncoded() - Simple substitute for the PHP function mail() which allows you to
specify encoding and character set.
t3lib_div::quoted_printable() - Implementation of quoted-printable encode.

t3lib_BEfunc::getRecord
t3lib_BEfunc::getRecordsByField

Functions for selecting records by uid or field value.

t3lib_BEfunc::getRecord() - Gets record with uid=$uid from $table

 // Getting array with title field from a page:
t3lib_BEfunc::getRecord('pages', intval($row['shortcut']), 'title');

 // Getting a full record with permission WHERE clause
$pageinfo = t3lib_BEfunc::getRecord(
 'pages',
 $id,
 '*',
 ($perms_clause ? ' AND ' . $perms_clause : '')
);

t3lib_BEfunc::getRecordsByField() - Returns records from table, $theTable, where a field
($theField) equals the value, $theValue

 // Checking if the id-parameter is an alias.
if (!t3lib_div::testInt($id)) {
 list($idPartR) =
 t3lib_BEfunc::getRecordsByField('pages', 'alias', $id);
 $id = intval($idPartR['uid']);
}

t3lib_BEfunc::getRecordPath Returns the path (visually) of a page $uid, fx. "/First page/Second page/Another subpage"

$label = t3lib_BEfunc::getRecordPath(
 intval($row['shortcut']),
 $perms_clause,
 20
);

33

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_BEfunc::readPageAccess Returns a page record (of page with $id) with an extra field "_thePath" set to the record path if the
WHERE clause, $perms_clause, selects the record. Thus is works as an access check that returns a
page record if access was granted, otherwise not.

$perms_clause = $GLOBALS['BE_USER']->getPagePermsClause(1);
$pageinfo = t3lib_BEfunc::readPageAccess($id, $perms_clause);

t3lib_BEfunc::date
t3lib_BEfunc::datetime
t3lib_BEfunc::calcAge

Date/Time formatting functions using date/time format from TYPO3_CONF_VARS.

t3lib_BEfunc::date() - Returns $tstamp formatted as "ddmmyy" (According to
$TYPO3_CONF_VARS['SYS']['ddmmyy'])

t3lib_BEfunc::datetime($row['crdate'])

t3lib_BEfunc::datetime() - Returns $tstamp formatted as "ddmmyy hhmm" (According to
$TYPO3_CONF_VARS['SYS']['ddmmyy'] AND $TYPO3_CONF_VARS['SYS']['hhmm'])

t3lib_BEfunc::datetime($row['item_mtime'])

t3lib_BEfunc::calcAge() - Returns the "age" in minutes / hours / days / years of the number of
$seconds inputted.

$agePrefixes = ' min| hrs| days| yrs';
t3lib_BEfunc::calcAge(time()-$row['crdate'], $agePrefixes);

t3lib_BEfunc::titleAttribForPages Returns title-attribute information for a page-record informing about id, alias, doktype, hidden,
starttime, endtime, fe_group etc.

$out = t3lib_BEfunc::titleAttribForPages($row, '', 0);
$out = t3lib_BEfunc::titleAttribForPages($row, '1=1 ' . $this->clause, 0);

t3lib_BEfunc::thumbCode
t3lib_BEfunc::getThumbNail

Returns image tags for thumbnails

t3lib_BEfunc::thumbCode() - Returns a linked image-tag for thumbnail(s)/fileicons/truetype-font-
previews from a database row with a list of image files in a field. Slightly advanced. It's more likely you
will need t3lib_BEfunc::getThumbNail() to do the job.
t3lib_BEfunc::getThumbNail() - Returns single image tag to thumbnail using a thumbnail script
(like thumbs.php)

t3lib_BEfunc::getThumbNail(
 $this->doc->backPath . 'thumbs.php',
 $filepath,
 'hspace="5" vspace="5" border="1"'
);

t3lib_BEfunc::storeHash
t3lib_BEfunc::getHash

Get/Set cache values.

t3lib_BEfunc::storeHash() - Stores the string value $data in the 'cache_hash' table with the hash
key, $hash, and visual/symbolic identification, $ident
t3lib_BEfunc::getHash() - Retrieves the string content stored with hash key, $hash, in cache_hash

Example of how both functions are used together; first getHash() to fetch any possible content and if
nothing was found how the content is generated and stored in the cache:

 // Parsing the user TS (or getting from cache)
$userTS = implode($TSdataArray,chr(10) . '[GLOBAL]' . chr(10));
$hash = md5('pageTS:' . $userTS);
$cachedContent = t3lib_BEfunc::getHash($hash, 0);
$TSconfig = array();
if (isset($cachedContent)) {
 $TSconfig = unserialize($cachedContent);
} else {
 $parseObj = t3lib_div::makeInstance('t3lib_TSparser');
 $parseObj->parse($userTS);
 $TSconfig = $parseObj->setup;
 t3lib_BEfunc::storeHash($hash,serialize($TSconfig), 'IDENT');
}

34

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_BEfunc::getRecordTitle
t3lib_BEfunc::getProcessedValue

Get processed / output prepared value from record

t3lib_BEfunc::getRecordTitle() - Returns the "title" value from the input records field content.

$line.= t3lib_BEfunc::getRecordTitle('tt_content', $row, 1);

t3lib_BEfunc::getProcessedValue() - Returns a human readable output of a value from a record.
For instance a database record relation would be looked up to display the title-value of that record. A
checkbox with a "1" value would be "Yes", etc.

$outputValue = nl2br(
 htmlspecialchars(
 trim(
 t3lib_div::fixed_lgd_cs(
 t3lib_BEfunc::getProcessedValue(
 $table,
 $fieldName,
 $row[$fieldName]
),
 250
)
)
)
);

t3lib_BEfunc::getFileIcon Returns file icon name (from $FILEICONS) for the file extension $ext

$fI = pathinfo($filePath);
$fileIcon = t3lib_BEfunc::getFileIcon(strtolower($fI['extension']));
$fileIcon = '<img' .
 t3lib_iconWorks::skinImg(
 $this->backPath,
 'gfx/fileicons/' . $fileIcon,
 'width="18" height="16"'
) . ' alt="" />';

t3lib_BEfunc::getPagesTSconfig Returns the Page TSconfig for page with id, $id.
This example shows how an object path, "mod.web_list" is extracted from the Page TSconfig for page
$id:

$modTSconfig = $GLOBALS['BE_USER']->getTSConfig(
 'mod.web_list',
 t3lib_BEfunc::getPagesTSconfig($id)
);

t3lib_extMgm::addTCAcolumns Adding fields to an existing table definition in $TCA
For usage in "ext_tables.php" files

 // tt_address modified
t3lib_div::loadTCA('tt_address');
t3lib_extMgm::addTCAcolumns('tt_address', array(
 'module_sys_dmail_category' =>
 array('config' => array('type' => 'passthrough')),
 'module_sys_dmail_html' =>
 array('config' => array('type' => 'passthrough'))
));

t3lib_extMgm::addToAllTCAtypes Makes fields visible in the TCEforms, adding them to the end of (all) "types"-configurations
For usage in "ext_tables.php" files

t3lib_extMgm::addToAllTCAtypes(
 'fe_users',
 'tx_myext_newfield;;;;1-1-1, tx_myext_another_field'
);

t3lib_extMgm::allowTableOnStanda
rdPages

Add table name to default list of allowed tables on pages (in $PAGES_TYPES)
For usage in "ext_tables.php" files

t3lib_extMgm::allowTableOnStandardPages('tt_board');

35

 TYPO3 Core APIs - doc_core_api General functions

Function Comments

t3lib_extMgm::addModule Adds a module (main or sub) to the backend interface
For usage in "ext_tables.php" files

t3lib_extMgm::addModule(
 'user',
 'setup',
 'after:task',
 t3lib_extMgm::extPath($_EXTKEY) . 'mod/'
);

t3lib_extMgm::addModule(
 'tools',
 'txcoreunittestM1',
 '',
 t3lib_extMgm::extPath($_EXTKEY) . 'mod1/'
);

t3lib_extMgm::insertModuleFunctio
n

Adds a "Function menu module" ('third level module') to an existing function menu for some other
backend module
For usage in "ext_tables.php" files

t3lib_extMgm::insertModuleFunction(
 'web_func',
 'tx_cmsplaintextimport_webfunc',
 t3lib_extMgm::extPath($_EXTKEY) .
 'class.tx_cmsplaintextimport_webfunc.php',
 'LLL:EXT:cms_plaintext_import/locallang.php:menu_1'
);

t3lib_extMgm::addPlugin Adds an entry to the list of plugins in content elements of type "Insert plugin"
For usage in "ext_tables.php" files

t3lib_extMgm::addPlugin(
 array(
 'LLL:EXT:newloginbox/locallang_db.php:tt_content.list_type1',
 $_EXTKEY . '_pi1'
),
 'list_type'
);

t3lib_extMgm::addPItoST43 Add PlugIn to Static Template #43
When adding a frontend plugin you will have to add both an entry to the TCA definition of tt_content
table AND to the TypoScript template which must initiate the rendering. Since the static template with
uid 43 is the "content.default" and practically always used for rendering the content elements it's very
useful to have this function automatically adding the necessary TypoScript for calling your plugin. It will
also work for the extension "css_styled_content"

For usage in "ext_localconf.php" files

t3lib_extMgm::addPItoST43($_EXTKEY);

Programming with workspaces in mind
The concept of workspaces needs attention from extension programmers. The implementation of workspaces is however
made so that no critical problems can appear with old extensions;

● First of all the “Live workspace” is no different from how TYPO3 has been working for years so that will be supported out
of the box (except placeholder records must be filtered out in the frontend with “t3ver_state!=” , see below).

● Secondly, all permission related issues are implemented in TCEmain so the worst your users can experience is an error
message.

However, you probably want to update your extension so that in the backend the current workspace is reflected in the records
shown and the preview of content in the frontend works as well. Therefore this chapter has been written with instructions
and insight into the issues you are facing.

Frontend challenges in general
For the frontend the challenges are mostly related to creating correct previews of content in workspaces. For most extensions
this will work transparently as long as they use the API functions in TYPO3 to request records from the system.

The most basic form of a preview is when a live record is selected and you lookup a future version of that record belonging to
the current workspace of the logged in backend user. This is very easy as long as a record is selected based on its “uid” or
“pid” fields which are not subject to versioning; You simply call “sys_page->versionOL()” after record selection.

36

 TYPO3 Core APIs - doc_core_api General functions

However, when other fields are involved in the where clause it gets dirty. This happens all the time! For instance, all records
displayed in the frontend must be selected with respect to “enableFields” configuration! What if the future version is hidden
and the live version is not? Since the live version is selected first (not hidden) and then overlaid with the content of the future
version (hidden) the effect of the hidden field we wanted to preview is lost unless we also check the overlaid record for its
hidden field (->versionOL() actually does this). But what about the opposite; if the live record was hidden and the future
version not? Since the live version is never selected the future version will never have a chance to display itself! So we must
first select the live records with no regard to the hidden state, then overlay the future version and eventually check if it is
hidden and if so exclude it. The same problem applies to all other “enableFields”, future versions with “delete” flags and
current versions which are invisible placeholders for future records. Anyway, all that is handled by TYPO3s t3lib_page class
which includes functions for “enableFields” and “deleted” so it will work out of the box for you. But as soon as you do
selection based on other fields like email, username, alias etc. it will fail.

Summary:

Challenge: How to preview elements which are disabled by “enableFields” in the live version but not necessarily in the
offline version. Also, how to filter out new live records with “t3ver_state” set to 1 (placeholder for new elements) but only
when not previewed.

Solution: Disable check for “enableFields”/”where_del_hidden” on live records and check for them in versionOL on input
record.

Frontend implementation guidelines
● Any place where enableFields() are not used for selecting in the frontend you must at least check that “t3ver_state!=1” so

placeholders for new records are not displayed.

● Make sure never to select any record with pid = -1! (offline records - related to versioning).

● If you need to detect preview mode for versioning and workspaces you can read these variables:

● $GLOBALS['TSFE']->sys_page->versioningPreview: If true, you are allowed to display previews of other record
versions.

● $GLOBALS['TSFE']->sys_page->versioningWorkspaceId: Will tell you the id of the workspace of the current backend
user. Used for preview of workspaces.

● Use these API functions for support of version previews in the backend:

Function Description

$GLOBALS['TSFE']->sys_page->versionOL($table,&$row,
$unsetMovePointers=FALSE)

Versioning Preview Overlay.
Generally ALWAYS used when records are selected based on uid or pid. If
records are selected on other fields than uid or pid (e.g. "email =") then
usage might produce undesired results and that should be evaluated on
individual basis.

Principle; Record online! => Find offline?

Example:
This is how simple it is to use this record in your frontend plugins when you do
queries directly (not using API functions already using them):

$res = $GLOBALS['TYPO3_DB']->exec_SELECTquery(...);
while (($row = $GLOBALS['TYPO3_DB']-
>sql_fetch_assoc($res))) {
 $GLOBALS['TSFE']->sys_page->versionOL($table,
$row);

 if (is_array($row)) {

...

When the live record is selected, call ->versionOL() and make sure to check if
the input row (passed by reference) is still an array.

The third argument, $unsetMovePointers=FALSE, can be set to TRUE when
selecting records for display ordered by their position in the page tree. Difficult
to explain easily, so only use this option if you don't get a correct preview of
records that has been moved in a workspace (only for “element” type
versioning)

37

 TYPO3 Core APIs - doc_core_api General functions

Function Description

$GLOBALS['TSFE']->sys_page->fixVersioningPid() Finding online PID for offline version record.
Will look if the "pid" value of the input record is -1 (it is an offline version) and
if the table supports versioning; if so, it will translate the -1 PID into the PID of
the original record
Used whenever you are tracking something back, like making the root line. In
fact, it is currently only used by the root line function and chances are that you
will not need this function often.

Principle; Record offline! => Find online?

Frontend scenarios impossible to preview
These issues are not planned to be supported for preview:

● Lookups and searching for records based on other fields than uid,pid,”enableFields” will never reflect workspace content
since overlays happen to online records after they are selected.

● This problem can largely be avoided for versions of new records because versions of a "New"-placeholder can mirror
certain fields down onto the placeholder record. For the "tt_content" table this is configured as
'shadowColumnsForNewPlaceholders' => 'sys_language_uid,l18n_parent,colPos,header', so that these fields used for
column position, language and header title are also updated in the placeholder thus creating a correct preview in the
frontend.

● For versions of existing records the problem is in reality reduced a lot because normally you don't change the column
or language fields after the record is first created anyways! But in theory the preview can fail.

● When changing the type of a page (e.g. from "Standard" to "External URL") the preview might fail in cases where a
look up is done on the "doktype" field of the live record.

● Page shortcuts might not work properly in preview.

● Mount Points might not work properly in preview.

● It is impossible to preview the value of “count(*)” selections since we would have to traverse all records and pass them
through ->versionOL() before we would have a reliable result!

● In tslib_fe::getPageShortcut() sys_page->getMenu() is called with an additional WHERE clause which will not respect if
those fields are changed for a future version. This could be the case other places where getmenu() is used (but a search
shows it is not a big problem). In this case we will for now accept that a wrong shortcut destination can be experienced
during previews.

Backend challenges
The main challenge in the backend is to reflect how the system will look when the workspace gets published. To create a
transparent experience for backend users we have to overlay almost every selected record with any possible new version it
might have. Also when we are tracking records back to the page tree root point we will have to correct pid-values. All issues
related to selecting on fields other than pid and uid also relates to the backend as they did for the frontend.

Workspace related API functions for backend modules

Function Description

t3lib_BEfunc::workspaceOL() Overlaying record with workspace version if any. Works like ->sys_page->versionOL()
does, but for the backend. Input record must have fields only from the table (no pseudo
fields) and the record is passed by reference.

Example:
$result = $GLOBALS['TYPO3_DB']->exec_SELECTquery('*', 'pages',
'uid=' . intval($id) . $delClause);
$row = $GLOBALS['TYPO3_DB']->sql_fetch_assoc($result);
t3lib_BEfunc::workspaceOL('pages', $row);

t3lib_BEfunc::getRecordWSOL() Gets record from table and overlays the record with workspace version if any.

Example:
$row = t3lib_BEfunc::getRecordWSOL($table, $uid);

// This is the same as:
$row = t3lib_BEfunc::getRecord($table, $uid);
t3lib_BEfunc::workspaceOL($table, $row);

38

 TYPO3 Core APIs - doc_core_api General functions

Function Description

t3lib_BEfunc::fixVersioningPid() Translating versioning PID -1 to the pid of the live record. Same as sys_page-
>fixVersioningPid() but for the backend.

t3lib_BEfunc::isPidInVersionizedBranch() Will fetch the rootline for the pid, then check if anywhere in the rootline there is a branch
point. Returns either "branchpoint" (if branch) or "first" (if page) or false if nothing.
Alternatively, it returns the value of "t3ver_stage" for the branchpoint (if any)

t3lib_BEfunc::getWorkspaceVersionOfRecord() Returns offline workspace version of a record, if found.

t3lib_BEfunc::getLiveVersionOfRecord() Returns live version of workspace version.

t3lib_BEfunc::versioningPlaceholderClause() Returns a WHERE-clause which will deselect placeholder records from other workspaces.
This should be implemented almost everywhere records are selected based on other fields
than uid and where t3lib_BEfunc::deleteClause() is used.

Example:

$res = $GLOBALS['TYPO3_DB']->exec_SELECTquery(
 'count(*)',
 $this->table,
 $this->parentField . '=' . $GLOBALS['TYPO3_DB']-
>fullQuoteStr($uid, $this->table) .
 t3lib_BEfunc::deleteClause($this->table) .
 t3lib_BEfunc::versioningPlaceholderClause($this->table) .
 $this->clause
);

$BE_USER->workspaceCannotEditRecord() Checking if editing of an existing record is allowed in current workspace if that is offline.

$BE_USER-
>workspaceCannotEditOfflineVersion()

Like $BE_USER->workspaceCannotEditRecord() but also requires version to be offline
(draft)

$BE_USER->workspaceCreateNewRecord() Checks if new records can be created in a certain page (according to workspace
restrictions).

$BE_USER->workspacePublishAccess($wsid) Returns true if user has access to publish in workspace.

$BE_USER->workspaceSwapAccess() Returns true if user has access to swap versions.

$BE_USER->checkWorkspace() Checks how the users access is for a specific workspace.

$BE_USER->checkWorkspaceCurrent() Like ->checkWorkspace() but returns status for the current workspace.

$BE_USER->setWorkspace() Setting another workspace for backend user.

$BE_USER->setWorkspacePreview() Setting frontend preview state.

Backend module access
You can restrict access to backend modules by using $MCONF['workspaces'] in the conf.php files. The variable is a list of
keywords defining where the module is available:

$MCONF['workspaces'] = online,offline,custom

You can also restrict function menu items to certain workspaces if you like. This is done by an argument sent to the function
t3lib_extMgm::insertModuleFunction(). See that file for more details.

Detecting current workspace
You can always check what the current workspace of the backend user is by reading $GLOBALS['BE_USER']->workspace. If
the workspace is a custom workspace you will find its record loaded in $GLOBALS['BE_USER']->workspaceRec.

The values for workspaces are as following:

● workspace 0 = online (live)

● workspace -1 = offline (draft)

● workspace > 0 = custom (projects)

● workspace -99 = none selected at all (ERROR!)

Using TCEmain with workspaces
Since admin-users are also restricted by the workspace it is not possible to save any live records when in a workspace.
However for very special occasions you might need to bypass this and to do so, you can set the instance variable
t3lib_tcemain::bypassWorkspaceRestrictions to TRUE. An example of this is when users are updating their user profile using
the User > Setup module; that actually allows them to save to a live record (their user record) while in a draft workspace.

39

 TYPO3 Core APIs - doc_core_api General functions

Moving in workspaces
TYPO3 4.2 and beyond supports moving for “Element” type versions in workspaces. Technically this works by creating a new
online placeholder record (like for new elements in a workspace) in the target location with “t3ver_state” = 3 (move-to
placeholder) and a field, “t3ver_move_id”, holding the uid of the record to move (source record) upon publishing. In addition,
a new version of the source record is made and has “t3ver_state” = 4 (move-to pointer). This version is simply necessary in
order for the versioning system to have something to publish for the move operation.

So in summary, two records are created for a move operation in a workspace: The placeholder (online, with state=3 and
t3ver_move_id set) and a new version (state=4) of the online source record (the one being moved).

When the version of the source is published a look up will be made to see if a placeholder exists for a move operation and if
so the record will take over the pid / “sortby” value upon publishing.

Preview of move operations is almost fully functional through the t3lib_page::versionOL() and t3lib_BEfunc::workspaceOL()
functions. When the online placeholder is selected it simply looks up the source record, overlays any version on top and
displays it. When the source record is selected it should simply be discarded in case shown in context where ordering or
position matters (like in menus or column based page content). This is done in the appropriate places.

TYPO3 Core Engine (TCE)

Introduction

Database
The TYPO3 Core Engine is the class that handles all data writing to database tables configured in $TCA. In addition the class
handles commands such as copy, move, delete. It will handle undo/history and versioning of records as well and everything
will be logged to the sys_log. And it will make sure that write permissions are evaluated correctly for the user trying to write
to the database. Generally, any processing specific option in the $TCA array is handled by TCE.

Using TCE for manipulation of the database content in the TCA configured tables guarantees that the data integrity of TYPO3
is respected. This cannot be safely guaranteed if you write to $TCA configured database tables directly. It will also manage
the relations to files and other records.

TCE requires a backend login to work. This is due to the fact that permissions are observed (of course) and thus TCE needs a
backend user to evaluate against. This means you cannot use TCEmain from the frontend scope. Thus writing to tables (such
as a guestbook) will have to be done from the frontend without TCEmain.

The features of the $TCA (Table Configuration Array) array are discussed in the end of this document.

Files
TCE also has a part for handling files. The file operations are normally performed in the File > List module where you can
manage a directory on the server by copying, moving, deleting and editing files and directories. The file operations are
managed by two core classes, t3lib_basicFileFunc and t3lib_extFileFunc.

Database: t3lib_TCEmain basics
When you are using TCE from your backend applications you need to prepare two arrays of information which contain the
instructions to TCEmain of what actions to perform. They fall into two categories: Data and Commands.

"Data" is when you want to write information to a database table or create a new record.

"Commands" is when you want to move, copy or delete a record in the system.

The data and commands are created as multidimensional arrays and to understand the API of TCEmain you simply need to
understand the hierarchy of these two arrays.

Commands Array ($cmd):
Syntax:

$cmd[tablename][uid][command] = value

Description of keywords in syntax:

Key Data type Description

tablename string Name of the database table. Must be configured in $TCA array, otherwise it cannot be
processed.

40

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

Key Data type Description

uid integer The UID of the record that is manipulated. This is always an integer.

command string (command
keyword)

The command type you want to execute.

Notice: Only one command can be executed at a time for each record! The first command in
the array will be taken.

See table below for command keywords and values

value mixed The value for the command
See table below for command keywords and values

Command keywords and values:

Command Data type Value

copy integer The significance of the value depends on whether it is positive or negative:
● Positive value: The value points to a page UID. A copy of the record (and possibly child

elements/tree below) will be inserted inside that page as the first element.
● Negative value: The (absolute) value points to another record from the same table as the

record being copied. The new record will be inserted on the same page as that record and
if $TCA[...]['ctrl']['sortby'] is set, then it will be positioned after.

● Zero value: Record is inserted on tree root level

move integer Works like "copy" but moves the record instead of making a copy.

delete "1" Value should always be "1"
This action will delete the record (or mark the record "deleted" if configured in $TCA)

undelete “1” Value should always be "1".
This action will set the deleted-flag back to 0.

localize integer Pointer to a “sys_language” uid to localize the record into. Basically a localization of a record is
making a copy of the record (possibly excluding certain fields defined with “l10n_mode”) but
changing relevant fields to point to the right sys language / original language record.

Requirements for a successful localization is this:
● [ctrl] options “languageField” and “transOrigPointerField” must be defined for the table
● A “sys_language” record with the given “sys_language_uid” must exist.
● The record to be localized by currently be set to “Default” language and not have any

value set for the “transOrigPointerField” either.
● There cannot exist another localization to the given language for the record (looking in the

original record PID).

Apart from this ordinary permissions apply as if the user wants to make a copy of the record
on the same page.

41

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

Command Data type Value

version array Versioning action.

Keys:
● [action] : Keyword determining the versioning action. Options are:

● “new” : Indicates that a new version of the record should be created.
Additional keys, specific for “new” action:
● [treeLevels] : (Only pages) Integer, -1 to 4, indicating the number of levels of the

page tree to version together with a page. This is also referred to as the
versioning type:
-1 (“element”) means only the page record gets versioned (default)
0 (“page”) means the page + content tables (defined by ctrl-flag
“versioning_followPages”)
>0 (“branch”) means the the whole branch is versioned (full copy of all tables),
down to the level indicated by the value (1= 1 level down, 2= 2 levels down, etc.)
The treeLevel is recorded in the field “t3ver_swapmode” and will be observed
when the record is swapped during publishing.

● [label] : Indicates the version label to apply. If not given, a standard label
including version number and date is added.

● “swap” : Indicates that the current online version should be swapped with another.
Additional keys, specific for “swap” action:
● [swapWith] : Indicates the uid of the record to swap current version with!
● [swapIntoWS]: Boolean, indicates that when a version is published it should be

swapped into the workspace of the offline record.
● “clearWSID” : Indicates that the workspace of the record should be set to zero (0).

This removes versions out of workspaces without publishing them.
● “flush” : Completely deletes a version without publishing it.
● “setStage” : Sets the stage of an element.

Special feature: The id-key in the array can be a comma list of ids in order to perform
the stageChange over a number of records. Also, the internal variable
->generalComment (also available through tce_db.php as "&generalComment") can
be used to set a default comment for all stage changes of an instance of tcemain.
Additional keys for this action is:
● [stageId] : Values are: -1 (rejected), 0 (editing, default), 1 (review), 10 (publish)
● [comment] : Comment string that goes into the log.

Examples of commands:
$cmd['tt_content'][54]['delete'] = 1; // Deletes tt_content record with uid=54
$cmd['pages'][1203]['copy'] = -303; //Copies page id=1203 to the position after page 303
$cmd['pages'][1203]['move'] = 303; // Moves page id=1203 to the first position in page 303

Data Array ($data):
Syntax:

$data[tablename][uid][fieldname] = value

Description of keywords in syntax:

Key Data type Description

tablename string Name of the database table. Must be configured in $TCA array, otherwise it cannot be
processed.

uid mixed The UID of the record that is modified. If the record already exists, this is an integer. If you're
creating new records, use a random string prefixed with "NEW", e.g. "NEW7342abc5e6d".

fieldname string Name of the database field you want to set a value for. Must be configure in $TCA[
tablename]['columns']

value string Value for "fieldname".

(Always make sure $this->stripslashes_values is false before using TCEmain.)

Notice: For FlexForms the data array of the FlexForm field is deeper than three levels. The number of possible levels for
FlexForms is infinite and defined by the data structure of the FlexForm. But FlexForm fields always end with a "regular value"
of course.

Examples of Data submission:

This creates a new page titled "The page title" as the first page inside page id 45:

42

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

$data['pages']['NEW9823be87'] = array(
 'title' => 'The page title',
 'subtitle' => 'Other title stuff',
 'pid' => '45'
);

This creates a new page titled "The page title" right after page id 45 in the tree:

$data['pages']['NEW9823be87'] = array(
 'title' => 'The page title',
 'subtitle' => 'Other title stuff',
 'pid' => '-45'
);

This creates two new pages right after each other, located right after the page id 45:

$data['pages']['NEW9823be87'] = array(
 'title' => 'Page 1',
 'pid' => '-45'
);
$data['pages']['NEWbe68s587'] = array(
 'title' => 'Page 2',
 'pid' => '-NEW9823be87'
);

Notice how the second "pid" value points to the "NEW..." id placeholder of the first record. This works because the new id of
the first record can be accessed by the second record. However it works only when the order in the array is as above since
the processing happens in that order!

This updates the page with uid=9834 to a new title, "New title for this page", and no_cache checked:

$data['pages'][9834] = array(
 'title' => 'New title for this page',
 'no_cache' => '1'
);

Clear cache
TCE also has an API for clearing the cache tables of TYPO3:

Syntax:

$tce->clear_cacheCmd($cacheCmd);

$cacheCmd values Description

[integer] Clear the cache for the page id given.

"all" Clears all cache tables (cache_pages, cache_pagesection, cache_hash).
Only available for admin-users unless explicitly allowed by User TSconfig "options.clearCache.all"

"pages" Clears all pages from cache_pages.
Only available for admin-users unless explicitly allowed by User TSconfig "options.clearCache.pages"

"temp_CACHED" Clears the temp_CACHED files in typo3conf/

Hook for cache post-processing

You can configure cache post-processing with a user defined PHP function. Configuration of the hook can be done from
(ext_)localconf.php. An example might look like:

$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'][] =
'myext_cacheProc->proc';
require_once(t3lib_extMgm::extPath('myext') . 'class.myext_cacheProc.php');

Flags in TCEmain
There are a few internal variables you can set prior to executing commands or data submission. These are the most
significant:

Internal variable Data type Description

->deleteTree Boolean Sets whether a page tree branch can be recursively deleted.
If this is set, then a page is deleted by deleting the whole branch under it (user must have delete
permissions to it all). If not set, then the page is deleted only if it has no branch.
Default is false.

43

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

Internal variable Data type Description

->copyTree Integer Sets the number of branches on a page tree to copy.
If 0 then branch is not copied. If 1 then pages on the 1st level is copied. If 2 then pages on the
second level is copied ... and so on.
Default is zero.

->reverseOrder Boolean If set, the data array is reversed in the order, which is a nice thing if you're creating a whole bunch
of new records.
Default is zero.

->copyWhichTables list of strings
(tables)

This list of tables decides which tables will be copied. If empty then none will. If "*" then all will
(that the user has permission to of course).
Default is "*"

->stripslashes_values boolean If set, then all values will be passed through stripslashes(). This has been the default since the
birth of TYPO3 in times when input from POST forms were always escaped an needed to be
unescaped. Today this is deprecated and values should be passed around without escaped
characters.

It is highly recommended to set this value to zero every time the class is used!

If you set this value to false you can pass values as-is to the class and it is most like that this is
what you want. Otherwise you would have to pass all values through addslashes() first.

Default is (currently) "1" (true) but might be changed in the future!

Using t3lib_TCEmain in scripts
It's really easy to use the class "t3lib_TCEmain" in your own scripts. All you need to do is include the class, build a $data/
$cmd array you want to pass to the class and call a few methods.

However please mind that these scripts have to be run in the backend scope! There must be a global $BE_USER object.

In your script you simply insert this line to include the class:

require_once (PATH_t3lib . 'class.t3lib_tcemain.php');

When that is done you can create an instance of t3lib_TCEmain. Here follows a few code listings with comments which will
provide you with enough knowledge to get started. It is assumed that you have populated the $data and $cmd arrays
correctly prior to these chunks of code. The syntax for these two arrays is explained on the previous pages.

Example: Submitting data

This is the most basic example of how to submit data into the database. It is four lines. Line 1 instantiates the class, line 2
defines that values will be provided without escaped characters (recommended!), line 3 registers the $data array inside the
class and initializes the class internally! Finally line 4 will execute the data submission.

 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values = 0;
 3: $tce->start($data, array());
 4: $tce->process_datamap();

Example: Executing commands

The most basic way of executing commands. Line 1 creates the object, line 2 defines that values will be provided without
escaped characters (recommended), line 3 registers the $cmd array inside the class and initializes the class internally! Finally
line 4 will execute the commands.

 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values=0;
 3: $tce->start(array(), $cmd);
 4: $tce->process_cmdmap();

Example: Clearing cache

In this example the clear-cache API is used. No data is submitted, no commands executed. Still you will have to initialize the
class by calling the start() method (which will initialize internal variables).

Notice: Clearing "all" cache will be possible only for users that are "admin" or for users with specific permissions to do so.

 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->start(array(), array());
 3: $tce->clear_cacheCmd('all');

44

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

Example: Complex data submission

Imagine the $data array something like this:

$data = array(
 'pages' => array(
 'NEW_1' => array(
 'pid' => 456,
 'title' => 'Title for page 1',
),
 'NEW_2' => array(
 'pid' => 456,
 'title' => 'Title for page 2',
),
)
);

This aims to create two new pages in the page with uid "456". In the follow code this is submitted to the database. Notice
how line 3 reverses the order of the array. This is done because otherwise "page 1" is created first, then "page 2" in the same
PID meaning that "page 2" will end up above "page 1" in the order. Reversing the array will create "page 2" first and then
"page 1" so the "expected order" is preserved.

Apart from this line 6 will send a "signal" that the page tree should be updated at the earliest occasion possible. Finally, the
cache for all pages is cleared in line 7.

 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values = 0;
 3: $tce->reverseOrder = 1;
 4: $tce->start($data, array());
 5: $tce->process_datamap();
 6: t3lib_BEfunc::getSetUpdateSignal('updatePageTree');
 7: $tce->clear_cacheCmd('pages');

Example: Both data and commands executed with alternative user object

In this case it is shown how you can use the same object instance to submit both data and execute commands if you like.
The order will depend on the order of line 4 and 5.

In line 3 the start() method is called, but this time with the third possible argument which is an alternative BE_USER object.
This allows you to force another backend user account to create stuff in the database. This may be useful in certain special
cases. Normally you should not set this argument since you want TCE to use the global $BE_USER.

 1: $tce = t3lib_div::makeInstance('t3lib_TCEmain');
 2: $tce->stripslashes_values = 0;
 3: $tce->start($data, $cmd, $alternative_BE_USER);
 4: $tce->process_datamap();
 5: $tce->process_cmdmap();

The "tce_db.php" API
This script is a gateway for POST forms to class.t3lib_TCEmain. It has historically been the script to which data was posted
when you wanted to update something in the database.

Today it is used for editing by only a few scripts, actually only the "Quick Edit" module in "Web>Page" (frontend). The
standard forms you find in TYPO3 are normally rendered and handled by "alt_doc.php" which includes t3lib_TCEmain on its
own.

For commands it is still used from various locations.

You can send data to this file either as GET or POST vars where POST takes precedence. The variable names you can use are:

GP var name: Data type Description

data array Data array on the form [tablename][uid][fieldname] = value

Typically it comes from a POST form which submits a form field like <input
name="data[tt_content][123][header]" value="This is the headline" />

cmd array Command array on the form [tablename][uid][command] = value. This array may get
additional data set internally based on clipboard commands send in CB var!

Typically this comes from GET vars passed to the script like "&cmd[tt_content][123]
[delete]=1" which will delete Content Element with UID 123

cacheCmd string Cache command sent to ->clear_cacheCmd

redirect string Redirect URL. Script will redirect to this location after performing operations (unless errors has
occurred)

45

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

GP var name: Data type Description

flags array Accepts options to be set in TCE object. Currently it supports "reverseOrder" (boolean).

mirror array Example: [mirror][table][11] = '22,33' will look for content in [data][table][11] and copy it to
[data][table][22] and [data][table][33]

prErr boolean If set, errors will be printed on screen instead of redirection. Should always be used, otherwise
you will see no errors if they happen.

CB array Clipboard command array. May trigger changes in "cmd"

vC string Verification code

uPT string Update Page Tree Trigger. If set and the manipulated records are pages then the update page
tree signal will be set.

Files: t3lib_extFileFunctions basics
File operations in TCE is handled by the class "t3lib_extFileFunctions" which extends "t3lib_basicFileFunctions". The
instructions for file manipulation is passed to this class as a multidimensional array.

Files Array ($file):
Syntax:

$file[command][index][key] = value

Description of keywords in syntax:

Key Data type Description

command string (command
keyword)

The command type you want to execute.
See table below for command keywords, keys and values

index integer Integer index in the array which separates multiple commands of the same type.

key string Depending on the command type. The keys will carry the information needed to perform the
action. Typically a "target" key is used to point to the target directory or file while a "data" key
carries the data.
See table below for command keywords, keys and values

value string The value for the command
See table below for command keywords, keys and values

Command keywords and values:

Command Keys Value

delete "data" "data" = Absolute path to the file/folder to delete

copy "data"
"target"
"altName"

"data" = Absolute path to the file/folder to copy
"target" = Absolute path to the folder to copy to (destination)
"altName" = (boolean): If set, a new filename is made by appending numbers/unique-string in
case the target already exists.

move "data"
"target"
"altName"

(Exactly like copy, just replace the word "copy" with "move")

rename "data"
"target"

"data" = New name, max 30 characters alphanumeric
"target" = Absolute path to the target file/folder

newfolder "data"
"target"

"data" = Folder name, max 30 characters alphanumeric
"target" = Absolute path to the folder where to create it

newfile "data"
"target"

"data" = New filename
"target" = Absolute path to the folder where to create it

editfile "data"
"target"

"data" = The new content
"target" = Absolute path to the target file

upload "data"
"target"
upload_$id

"data" = ID-number (points to the global var that holds the filename-ref
($GLOBALS["HTTP_POST_FILES"]["upload_".$id]["name"])
"target" = Absolute path to the target folder (destination)
upload_$id = File reference. $id must equal value of file[upload][...][data]!

See t3lib_t3lib_extFileFunctions::func_upload()

46

 TYPO3 Core APIs - doc_core_api TYPO3 Core Engine (TCE)

Command Keys Value

unzip "data"
"target"

"data" = Absolute path to the zip-file. (fileextension must be "zip")
"target" = The absolute path to the target folder (destination) (if not set, default is the same
as the zip-file)

It is unlikely that you will need to use this internally in your scripts like you will need t3lib_TCEmain. It is fairly uncommon to
need the file manipulations in own scripts unless you make a special application. Therefore the most typical usage of this API
is from tce_file.php and the core scripts that are activated by the "File > List" module.

However, if you need it this is an example (taken from tce_file.php) of how to initialize the usage.

 1: // Initializing:
 2: $this->fileProcessor = t3lib_div::makeInstance('t3lib_extFileFunctions');
 3: $this->fileProcessor->init($FILEMOUNTS, $TYPO3_CONF_VARS['BE']['fileExtensions']);
 4: $this->fileProcessor->init_actionPerms($BE_USER->user['fileoper_perms']);
 5:
 6: $this->fileProcessor->start($this->file);
 7: $this->fileProcessor->processData();

Line 2 makes an instance of the class and line 3 initializes the object with the filemounts of the current user and the array of
allow/deny file extensions in web-space and ftp-space (see below). Then the file operation permissions are loaded from the
user object in line 4. Finally, the file command array is loaded in line 6 (and internally additional configuration takes place
from $TYPO3_CONF_VARS!). In line 7 the command map is executed.

Web-space, FTP-space and $TYPO3_CONF_VARS['BE']['fileExtensions']
The control of file extensions goes in two categories. Webspace and ftpspace. Webspace is folders accessible from a web
browser (below TYPO3_DOCUMENT_ROOT) and ftpspace is everything else.

The control is done like this: if an extension matches 'allow' then the check returns true. If not and an extension matches
'deny' then the check return false. If no match at all, returns true.

You list extensions comma-separated. If the value is a '*' every extension is matched. If no file extension, true is returned if
'allow' is '*', false if 'deny' is '*' and true if none of these matches. This (default) configuration below accepts everything in
ftpspace and everything in webspace except php files:

$TYPO3_CONF_VARS['BE']['fileExtensions'] = array (
 'webspace' => array('allow' => '', 'deny' => 'php'),
 'ftpspace' => array('allow' => '*', 'deny' => '')
);

The "tce_file.php" API
This script serves as the file administration part of the TYPO3 Core Engine. It's a gateway for TCE (TYPO3 Core Engine) file-
handling through POST forms. It uses "t3lib_extfilefunc" for the manipulation of the files.

This script is used from the File > List module where you can rename, create, delete etc. files and directories on the server.

You can send data to this file either as GET or POST vars where POST takes precedence. The variable names you can use are:

GP var name: Data type Description

file array Array of file operations. See previous information about "t3lib_extFileFunctions"

This could typically be a GET var like "&file[delete][0][data]=[absolute file path]" or a POST
form field like "<input type="text" name="file[newfolder][0][data]" value=""/><input
type="hidden" name="file[newfolder][0][target]" value="[absolute path to folder to create
in]"/>"

redirect string Redirect URL. Script will redirect to this location after performing operations.

CB array Clipboard command array. May trigger changes in "file"

vC string Verification code

overwriteExistingFiles boolean If existing files should be overridden.

47

 TYPO3 Core APIs - doc_core_api Hooks

Hooks

The concept of "hooks"
Hooks are basically places in the source code where a user function will be called for processing if such has been configured.
Hooks provide a way to extend functionality of TYPO3 and extensions easily and without blocking for others to do the same.

Hooks vs. XCLASS extensions
Hooks are the recommended way of extending TYPO3 compared to extending the PHP classes with a child class (see "XCLASS
extensions"). It is so because only one extension of a PHP class can exist at a time while hooks may allow many different
user-designed processing functions to occur. On the other hand hooks have to be implemented in the core before you can use
them while extending a PHP class via the XCLASS method allows you to extend anything spontaneously.

Proposing hooks
If you need to extend something which has no hook yet, then you should suggest implementing a hook. Normally that is
rather easily done by the author of the source you want to extend.

How a hook looks
The two lines of code below are an example of how a hook is used for clear-cache post-processing. The objective of this need
could be to perform additional actions whenever the cache is cleared for a specific page.

require_once(t3lib_extMgm::extPath('myext') . 'class.myext_cacheProc.php');
$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'][] =
'myext_cacheProc->proc';

Line 1 includes a class which contains the user-defined PHP code to be called by the hook.

Line 2 registers the class/method name from the included file with a hook inside of "t3lib_TCEmain". The hook will call the
user function after the clear-cache command has been executed. The user function will receive parameters which allows it to
see what clear-cache action was performed and typically also an object reference to the parent object. Then the user function
can take additional actions as needed.

If we take a look inside of t3lib_TCEmain we find the hook to be activated like this:

 1: // Call post processing function for clear-cache:
 2: if (is_array($TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']
['clearCachePostProc'])) {
 3: $_params = array('cacheCmd' => $cacheCmd);
 4: foreach($TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc']
as $_funcRef) {
 5: t3lib_div::callUserFunction($_funcRef, $_params, $this);
 6: }
 7: }

This is how hooks are typically constructed. The main action happens in line 5 where the function
"t3lib_div::callUserFunction()" is called. The user function is called with two arguments, an array with variable parameters and
the parent object.

In line 3 the contents of the parameter array is prepared. This is of high interest to you because this is where you see what
data is passed to you and what data might possibly be passed by reference and thereby possible to manipulate from your
hook function.

Finally, notice how the array $TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'] is
traversed and for each entry the value is expected to be a function reference which will be called. This allows many hooks to
be called at the same place. The hooks can even rearrange the calling order if they dare.

The syntax of a function reference (or object reference if t3lib_div::getUserObj is used in the hook instead) can be seen in
the API documentation of t3lib_div.

Hook configuration
There is no complete index of hooks in the core. But they are easy to search for and find. And typically it comes quite
naturally since you will find the hooks in the code you want to extend - if they exist.

This index will list the main variable spaces for configuration of hooks. By the names of these you can easily scan the source
code to find which hooks are available or might be interesting for you.

48

 TYPO3 Core APIs - doc_core_api Hooks

The index below also includes some variable spaces which do not only carry hook configuration but might be used for other
purposes as well.

$TYPO3_CONF_VARS['EXTCONF']
Configuration space for extensions.

This will contain all kinds of configuration options for specific extensions including possible hooks in them! What options are
available to you will depend on a search in the documentation for that particular extension.

$TYPO3_CONF_VARS['EXTCONF'][extension_key][sub_key] = value

● extension_key : The unique extension key

● sub_key : Whatever the script defines. Typically it identifies the context of the hook

● value : It is up to the extension what the values mean, if they are mere configuration options or hooks or whatever and
how deep the arrays go. Read the source code where the options are implemented to see. Or the documentation of the
extension, if available.

Notice: $TYPO3_CONF_VARS['EXTCONF'] is the recommended place to put hook configuration that are available inside your
extensions!

Here is an example of how the EXTCONF array is used inside an extension. Notice, this example is not a hook (sorry, couldn't
find a better example) but it is based on the same principles. It is just an example of configuration of additional "root line
fields" that can be used during indexing (line 8-12). It shows the versatility of the EXTCONF array:

 1: function getRootLineFields(&$fieldArr) {
 2: $rl = $this->rootLevel;
 3:
 4: $fieldArr['rl0'] = intval($rl[0]['uid']);
 5: $fieldArr['rl1'] = intval($rl[1]['uid']);
 6: $fieldArr['rl2'] = intval($rl[2]['uid']);
 7:
 8: if (is_array($GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['indexed_search']
['addRootLineFields'])) {
 9: foreach($GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['indexed_search']['addRootLineFields'] as
$fieldName => $rootLineLevel) {
 10: $fieldArr[$fieldName] = intval($rl[$rootLineLevel]['uid']);
 11: }
 12: }
 13: }

$TYPO3_CONF_VARS['SC_OPTIONS']
Configuration space for core scripts.

This array is created as an ad hoc space for creating hooks from any script. This will typically be used from the core scripts of
TYPO3 which do not have a natural identifier like extensions have their extension keys.

$TYPO3_CONF_VARS['SC_OPTIONS'][main_key][sub_key][index] = function_reference

● main_key : The relative path of a script (for output scripts it should be the "script ID" as found in a comment in the
HTML header)

● sub_key : Whatever the script defines. Typically it identifies the context of the hook.

● index : Integer index typically. Can be unique string if you have a reason to use that. Normally it has no greater
significance since the value of the key is not used. The hooks normally traverse over the array and uses only the value
(function reference)

● function_reference : A function reference using the syntax of t3lib_div::callUserFunction() or t3lib_div::getUserObj()
depending on implementation of the hook.

The above syntax is how a hook is typically defined but it might differ and it might not be a hook at all, but just configuration.
Depends on implementation in any case.

The following example shows a hook from tslib_fe. In this case the function t3lib_div::getUserObj() is used for the hook. The
function_reference is referring to the class name only since the function returns an object instance of that class. The method
name to call is predefined by the hook, in this case "sendFormmail_preProcessVariables()". This method allows to pass any
number of variables along instead of the limited $params and $pObj variables from t3lib_div::callUserFunction().

 1: // Hook for preprocessing of the content for formmails:
 2: if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'])) {

49

 TYPO3 Core APIs - doc_core_api Hooks

 3: foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'] as $_classRef) {
 4: $_procObj = &t3lib_div::getUserObj($_classRef);
 5: $EMAIL_VARS = $_procObj->sendFormmail_preProcessVariables($EMAIL_VARS, $this);
 6: }
 7: }

In this example we are looking at a special hook, namely the one for RTE transformations. Well, maybe this is not a "hook" in
the normal sense, but the same principles are used. In this case the "index" key is defined to be the transformation key
name, not a random integer since we do not iterate over the array as usual. In this case t3lib_div::getUserObj() is also used.

 1: if ($_classRef = $GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['t3lib/class.t3lib_parsehtml_proc.php']
['transformation'][$cmd]) {
 2: $_procObj = &t3lib_div::getUserObj($_classRef);
 3: $_procObj->pObj = &$this;
 4: $_procObj->transformationKey = $cmd;
 5: $value = $_procObj->transform_db($value, $this);
 6: }

A classic hook also from tslib_fe. This is also based on t3lib_div::callUserFunction() and it passes a reference to $this along to
the function via $_params. In the user defined function $_params['pObj']->content is meant to be manipulated in some way.
The return value is insignificant - everything works by the reference to the parent object.

 1: // Hook for post-processing of page content cached/non-cached:
 2: if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['contentPostProc-
all'])) {
 3: $_params = array('pObj' => &$this);
 4: foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['contentPostProc-
all'] as $_funcRef) {
 5: t3lib_div::callUserFunction($_funcRef, $_params, $this);
 6: }
 7: }

$TYPO3_CONF_VARS['TBE_MODULES_EXT']
Configuration space for backend modules.

Among these configuration options you might find entry points for hooks in the backend. This somehow overlaps the intention
of "SC_OPTIONS" above but this array is an older invention and slightly outdated.

$TBE_MODULES_EXT[backend_module_key][sub_key] = value

● backend_module_key : The backend module key for which the configuration is used.

● sub_key : Whatever the backend module defines.

● value : Whatever the backend module defines.

The following example shows TBE_MODULES_EXT being used for adding items to the Context Sensitive Menus (Clickmenu) in
the backend. The hook value is an array with a key pointing to a file reference to class file to include. Later each class is
instantiated and a fixed method inside is called to do processing on the array of menu items. This kind of hook is non-
standard in the way it is made.

 1: // Setting internal array of classes for extending the clickmenu:
 2: $this->extClassArray = $GLOBALS['TBE_MODULES_EXT']['xMOD_alt_clickmenu']['extendCMclasses'];
 3:
 4: // Traversing that array and setting files for inclusion:
 5: if (is_array($this->extClassArray)) {
 6: foreach($this->extClassArray as $extClassConf) {
 7: if ($extClassConf['path']) $this->include_once[]=$extClassConf['path'];
 8: }
 9: }

The following code listings works in the same way. First, a list of class files to include is registered. Then in the second code
listing the same array is traversed and each class is instantiated and a fixed function name is called for processing.

 1: // Setting class files to include:
 2: if (is_array($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses'])) {
 3: $this->include_once = array_merge($this->include_once,
$TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses']);
 4: }

50

 TYPO3 Core APIs - doc_core_api Hooks

 1: // PLUG-INS:
 2: if (is_array($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses'])) {
 3: reset($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses']);
 4: while(list($class,$path)=each($TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses'])) {
 5: $modObj = t3lib_div::makeInstance($class);
 6: $wizardItems = $modObj->proc($wizardItems);
 7: }
 8: }

Creating hooks
You are encouraged to create hooks in your extensions if they seem meaningful. Typically someone would request a hook
somewhere. Before you implement it, consider if it is the right place to put it etc. On the one hand we want to have many
hooks but not more than needed. Redundant hooks or hooks which are implemented in the wrong context is just confusing.
So put a little thought into it first, but be generous.

There are two main methods of calling a user defined function in TYPO3.

● t3lib_div::callUserFunction() - The classic way. Takes a file/class/method reference as value and calls that function. The
argument list is fixed to a parameter array and a parent object. So this is the limitation. The freedom is that the reference
defines the function name to call. This method is mostly useful for small-scale hooks in the sources.

● t3lib_div::getUserObject() - Create an object from a user defined file/class. The method called in the object is fixed by the
hook, so this is the non-flexible part. But it is cleaner in other ways, in particular that you can even call many methods in
the object and you can pass an arbitrary argument list which makes the API more beautiful. You can also define the
objects to be singletons, instantiated only once in the global scope.

Here follows some examples.

Hook made with t3lib_div::getUserObj()
 // Hook for preprocessing of the content for formmails:
if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'])) {
 foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['sendFormmail-
PreProcClass'] as $_classRef) {
 $_procObj = &t3lib_div::getUserObj($_classRef);
 $EMAIL_VARS = $_procObj->sendFormmail_preProcessVariables($EMAIL_VARS, $this);
 }
}

Hook made with t3lib_div::callUserFunction()
 // Call post processing function for constructor:
if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['tslib_fe-PostProc'])) {
 $_params = array('pObj' => &$this);
 foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_fe.php']['tslib_fe-PostProc'] as
$_funcRef) {
 t3lib_div::callUserFunction($_funcRef,$_params, $this);
 }
}

Variables and Constants
After init.php has been included in the backend there is a set of variables, constants and classes available to the parent script.

The column "Avail. in FE" is an indicator that tells you if the constant, variable or class mentioned is also available to scripts
running under the frontend of the "cms" extension.

Constants
Constants normally define paths and database information. These values are global and cannot be changed when they are
first defined. This is why constants are used for such vital information.

These constants are defined by either init.php or scripts included from that script.

Notice: Constants in italics may be set in a script prior to inclusion of init.php so they are optional.

Constant Defined in Description Avail. in
FE

TYPO3_OS init.php Operating systen; Windows = “WIN”, other = “” (presumed to be some
sort of Unix)

YES

51

 TYPO3 Core APIs - doc_core_api Variables and Constants

Constant Defined in Description Avail. in
FE

TYPO3_MODE init.php Mode of TYPO3: Set to either “FE” or “BE” depending on frontend or
backend execution. So in "init.php" and "thumbs.php" this value is "BE"

YES
value = "FE"

PATH_thisScript init.php Abs. path to current script. YES

TYPO3_mainDir init.php This is the directory of the backend administration for the sites of this
TYPO3 installation. Hardcoded to “typo3/”. Must be a subdirectory to
the website. See elsewhere for descriptions on how to change the
default admin directory, "typo3/", to something else.

YES

PATH_typo3 init.php Abs. path of the TYPO3 admin dir (PATH_site + TYPO3_mainDir). -

PATH_typo3_mod init.php Relative path (from the PATH_typo3) to a properly configured module.
Based on TYPO3_MOD_PATH.

-

PATH_site init.php Abs. path to directory with the frontend (one directory above
PATH_typo3)

YES

PATH_t3lib init.php Abs. path to "t3lib/" (general TYPO3 library) within the TYPO3 admin dir YES

PATH_typo3conf init.php Abs. TYPO3 configuration path (local, not part of source)
Must be defined in order for "t3lib/config_default.php" to return!

YES

TYPO3_db config_default.php Name of the database, for example "t3_coreinstall". Is defined after the
inclusion of "typo3conf/localconf.php" (same for the other TYPO3_*
constants below

YES

TYPO3_db_username config_default.php Database username YES

TYPO3_db_password config_default.php Database password YES

TYPO3_db_host config_default.php Database hostname, e.g. “localhost” YES

TYPO3_tables_script config_default.php By default "t3lib/stddb/tables.php" is included as the main table
definition file. Alternatively this constant can be set to the filename of
an alternative "tables.php" file. Must be located in "typo3conf/"
Deprecated. Make Extensions instead.

YES

TYPO3_extTableDef_script config_default.php Name of a php-include script found in "typo3conf/" that contains php-
code that further modifies the variables set by "t3lib/stddb/tables.php"
Deprecated. Make Extensions instead.

YES

TYPO3_languages config_default.php Defines the system language keys in TYPO3s backend. YES

TYPO3_DLOG config_default.php If true, calls to t3lib_div::devLog() can be made in both frontend and
backend; This is event logging which can help to track debugging in
general.

YES

TYPO3_MOD_PATH [prior to init.php] Path to module relative to PATH_typo3 (as defined in the module
configuration). Must be defined prior to "init.php".

-

TYPO3_enterInstallScript [prior to init.php] If defined and set true the Install Tool is activated and the script exits
after that. Used in "typo3/install/index.php":

Example:

define('TYPO3_enterInstallScript', '1');

-

TYPO3_PROCEED_IF_NO_US
ER

[prior to init.php] If defined and set true the "init.php" script will return to the parent
script even if no backend user was authenticated!

This constant is set by for instance the "index.php" script so it can
include "init.php" and still show the login form:

define("TYPO3_PROCEED_IF_NO_USER", 1);
require ("init.php");

Please be very careful with this feature - use it only when you have
total control of what you are doing!

-

TYPO3_cliMode [prior to init.php] Initiates CLI (Command Line Interface) mode. This is used when you
want a shell executable PHP script to initialize a TYPO3 backend.
For more details see section about “Initialize TYPO3 backend in a PHP
shell script” in “Inside TYPO3”

TYPO3_version config_default.php The TYPO3 version:
x.x.x for released versions,
x.x.x-dev for development versions leading up to releases
x.x.x-bx for beta-versions

YES

52

 TYPO3 Core APIs - doc_core_api Variables and Constants

Global variables
Notice: Variables in italics may be set in a script prior to inclusion of "init.php" so they are optional.

Notice: The variables from "t3lib/stddb/tables.php" are only available in the frontend occasionally or partly. Please read more
in the documentation of the "cms" extension on this issue.

Global variable Defined in Description Avail. in FE

$TYPO3_CONF_VARS config_default.php TYPO3 configuration array. Please refer to the source code of
"t3lib/config_default.php" where each option is described in detail as
comments. The same comments are also available in the Install Tool
under the menu "All Configuration"

YES

$TYPO3_LOADED_EXT config_default.php Array with all loaded extensions listed with a set of paths. You can
check if an extension is loaded by the function
t3lib_extMgm::isLoaded($key) where $key is the extension key of the
module.

YES

$TYPO3_DB init.php An instance of the TYPO3 DB wrapper class, t3lib_db.
You have to use this object for all interaction with the database.
t3lib_db contains mysql wrapper functions so you easily swap all
hardcoded MySQL calls with function calls to $GLOBALS['TYPO3_DB']-
>

YES

$EXEC_TIME config_default.php Is set to "time()" so that the rest of the script has a common value for
the script execution time.

YES

$SIM_EXEC_TIME config_default.php Is set to $EXEC_TIME but can be altered later in the script if we want
to simulate another execution-time when selecting from e.g. a
database (used in the frontend for preview of future and past dates)

YES

$TYPO_VERSION config_default.php Deprecated - used constant “TYPO3_version” instead! YES

$TYPO3_AJAX ajax.php Set to true to indicate that an AJAX call is being processed -

$CLIENT init.php Array with browser information (based on HTTP_USER_AGENT). Array
keys:
“BROWSER” = msie,net,opera or blank,
“VERSION” = browser version as double,
“SYSTEM” = win,mac,unix

YES

$PARSETIME_START init.php Time in milliseconds right after inclusion of the configuration. -

$PAGES_TYPES t3lib/stddb/tables.php See section on $TCA (occastionally)

$ICON_TYPES t3lib/stddb/tables.php See section on $TCA (occastionally)

$LANG_GENERAL_LABELS t3lib/stddb/tables.php See section on $TCA (occastionally)

$TCA t3lib/stddb/tables.php See section on $TCA YES, partly

$TBE_MODULES t3lib/stddb/tables.php The backend main/sub module structure. See section elsewhere plus
sourcecode of "class.t3lib_loadmodules.php" which also includes some
examples.

(occastionally)

$TBE_STYLES t3lib/stddb/tables.php (occastionally)

$T3_SERVICES t3lib/stddb/tables.php Global registration of services.

$T3_VAR config_default.php Space for various internal global data storage in TYPO3. Each key in
this array is a data space for an application. Keys currently defined for
use is:

['callUserFunction'] + ['callUserFunction_classPool']: Used by
t3lib_div::callUserFunction to store persistent objects.
['getUserObj'] : User by t3lib_div::getUserObj to store persistent
objects.
['RTEobj'] : Used to hold the current RTE object if any. See
t3lib_BEfunc.
['ext'][extension-key] : Free space for extensions.

$FILEICONS t3lib/stddb/tables.php Assoc. array; keys are the type (e.g. "tif") and values are the filename
(without path)

(occastionally)

$WEBMOUNTS init.php Array of uid's to be mounted in the page-tree (depends)

$FILEMOUNTS init.php Array of filepaths on the server to be mountet in the directory tree (depends)

$BE_USER init.php Backend user object (depends)

$temp_* - Various temporary variables are allowed to use global variables
prefixed $temp_

-

53

 TYPO3 Core APIs - doc_core_api Variables and Constants

Global variable Defined in Description Avail. in FE

$typo_db* [config_default.php
but N/A!]

Variables used inside of "typo3conf/localconf.php" to configure the
database.
Notice: These values are unset again by "config_default.php".

-

$TBE_MODULES_EXT [In ext_tables.php files
of extensions]

Used to store information about modules from extensions that should
be included in "function menus" of real modules. See the Extension
API for details.
Unset in "config_default.php"

(occasionally)

$TCA_DESCR [tables.php files] Can be set to contain file references to local lang files containing
TCA_DESCR labels. See section about Context Sensitive Help.
Unset in "config_default.php"

Backend User Object

Checking user access for $BE_USER from PHP
The backend user of a session is always available to the backend scripts as the global variable $BE_USER. The object is
created in init.php and is an instance of the class "t3lib_beUserAuth" (which extends "t3lib_userAuthGroup" which extends
"t3lib_userAuth").

In addition to $BE_USER two other global variables are of interest - $WEBMOUNTS and $FILEMOUNTS, each holding an array
with the DB mounts and File mounts of the $BE_USER.

In order to introduce how the $BE_USER object can be helpful to your backend scripts/modules, this is a few examples:

Checking access to current backend module

$MCONF is module configuration and the key $MCONF["access"] determines the access scope for the module. This function
call will check if the $BE_USER is allowed to access the module and if not, the function will exit with an error message.

$BE_USER->modAccess($MCONF, 1);

Checking access to any backend module

If you know the module key you can check if the module is included in the access list by this function call:

$BE_USER->check('modules', 'web_list');

Here access to the module "Web>List" is checked.

Access to tables and fields?

The same function ->check() can actually check all the ->groupLists inside $BE_USER. For instance:

Checking modify access to the table "pages":

$BE_USER->check('tables_modify', 'pages');

Checking selecting access to the table "tt_content":

$BE_USER->check('tables_select', 'tt_content');

Checking if a table/field pair is allowed explicitly through the "Allowed Excludefields":

$BE_USER->check('non_exclude_fields', $table . ':' . $field);

Is "admin"?

If you want to know if a user is an "admin" user (has complete access), just call this method:

$BE_USER->isAdmin();

Read access to a page?

This function call will return true if the user has read access to a page (represented by its database record, $pageRec):

$BE_USER->doesUserHaveAccess($pageRec, 1);

Changing the "1" for other values will check other permissions. For example "2" will check id the user may edit the page and
"4" will check if the page can be deleted.

54

 TYPO3 Core APIs - doc_core_api Backend User Object

Is a page inside a DB mount?

Access to a page should not be checked only based on page permissions but also if a page is found within a DB mount for
ther user. This can be checked by this function call ($id is the page uid):

$BE_USER->isInWebMount($id)

Selecting readable pages from database?

If you wish to make a SQL statement which selects pages from the database and you want it to be only pages that the user
has read access to, you can have a proper WHERE clause returned by this function call:

$BE_USER->getPagePermsClause(1);

Again the number "1" represents the "read" permission; "2" would represent "edit" permission and "4" would be delete
permission and so on. The result from the above query could be this string:

((pages.perms_everybody & 1 = 1)OR(pages.perms_userid = 2 AND pages.perms_user & 1 =
1)OR(pages.perms_groupid in (1) AND pages.perms_group & 1 = 1))

Saving module data

This stores the input variable $compareFlags (an array!) with the key "tools_beuser/index.php/compare"

 $compareFlags = t3lib_div::GPvar('compareFlags');
 $BE_USER->pushModuleData('tools_beuser/index.php/compare', $compareFlags);

Getting module data

This gets the module data with the key "tools_beuser/index.php/compare" (lasting only for the session)

 $compareFlags = $BE_USER->getModuleData('tools_beuser/index.php/compare', 'ses');

Returning object script from TSconfig

This function can return a value from the "User TSconfig" structure of the user. In this case the value for
"options.clipboardNumberPads":

$BE_USER->getTSConfigVal('options.clipboardNumberPads');

Getting the username

The full "be_users" record of a authenticated user is available in $BE_USER->user as an array. This will return the
"username":

$BE_USER->user['username']

Get User Configuration value

The internal ->uc array contains options which are managed by the User>Setup module (extensions "setup"). These values
are accessible in the $BE_USER->uc array. This will return the current state of "Condensed mode" for the user:

$BE_USER->uc['condensedMode']

Using the system log

The log table (sys_log)
Writing to the system log is done using the backend user object:

$this->BE_USER->writelog($type, $action, $error, $details_nr, $details, $data, $table, $recuid, $recpid,
$event_pid, $NEWid);

Here are description of the arguments to this function call:

55

 TYPO3 Core APIs - doc_core_api Using the system log

Field Type Var Description

type tinyint $type Value telling which module in TYPO3 set the log entry. The type values are paired with an
action-integer which is telling in more detail what the event was. Here type and action values
are arranged hierarchically (type on first level, action on second level):

● 1 : t3lib_TCEmain (“TYPO3 Core Engine” where database records are manipulated)
● Action values are for new, updated, copy, move, delete etc.

● 2 : “tce_file” (File handling in fileadmin/ and absolute filemounts)
● Action values are for various file handling types like upload, rename, edit etc.

● 3 : System (e.g. sys_history save)
● 4 : Modules: This is the mode you may use for extensions having backend module

functionality. Probably you would like to use BE_USER->simplelog() for your extensions.
● 254 : Personal settings changed
● 255 : Login or Logout action

● 1=login
● 2=logout
● 3=failed login (+ errorcode 3)
● 4=failure_warning_email sent

action tinyint $action See “type” above

When not available, use value “0”

error tinyint $error Error level:
● 0 = message, a notice of an action that happened.
● 1 = error, typically a permission problem for the user
● 2 = System Error, something which should not happen for technical reasons.
● 3 = Security notice, like login failures

details_nr tinyint $details_nr Number of “detail” message. This number should be unique for the combination of type/action

-1 is a temporary detail number you can use while developing and error messages are not fixed
yet.
0 is a value that means the message is not supposed to be translated
>=1 means the message is fixed and ready for translation.

details tinytext $details The log message text (in english). By identification through type/action/details_nr this can be
translated through the localization system.
If you insert “%s” markers in the details message and set $data to an array the first 5 entries
(keys 0-4) from $data will substitute the markers sequentially (using sprintf)

log_data tinyblob $data Data that follows the log entry. Can be an array. See “details” for more info.

tablename varchar(40) $table Table name. Special field used by tce_main.php.

recuid int $recuid Record UID. Special field used by tce_main.php.

recpid int $recpid Record PID. Special field used by tce_main.php. [OBSOLETE; not used anymore.]

event_pid int $event_pid The page ID (pid) where the event occurred. Used to select log-content for specific pages.

NEWid varchar(20) $NEWid Special field used by tce_main.php. NEWid string of newly created records.

tstamp int - EXEC_TIME of event, UNIX time in seconds.

uid int - Unique ID for log entry, automatically inserted

userid int - User ID of backend user, automatically set for you

IP varchar(39) - REMOTE_ADDR of client

workspace int - Workspace ID

Making logging simple
While it is nice to have log message categorized and numbered during development and sometimes beyond that point a
simpler logging API is necessary. Therefore you can also call this function:

BE_USER->simplelog($message, $extKey='', $error=0);

All you need is to set $message to store a log message. If you call it from an extension it is good practice to also supply the
extension key. Finally you can add the error number (according to the table above) if you need to signal an error.

56

 TYPO3 Core APIs - doc_core_api Using the system registry

Using the system registry
The purpose of the registry (introduced in TYPO3 4.3) is to hold key-value pairs of information. You can actually think of it
being an equivalent to the Windows registry (just not as complicated).

You might use the registry to store information that your script needs to store across sessions or request.

An example would be a setting that needs to be altered by a PHP script, which currently is not possible with TypoScript.

Another example: The scheduler system extension stores when it ran the last time. The reports system extension then checks
that value, in case it determines that the scheduler hasn't run for a while it issues a warning. While this might not be of great
use to anyone with an actual cron job set up for the scheduler, it is of use for users that have to run the scheduler tasks by
hand due to missing access to a cron job.

The registry is not meant to store things that are supposed to go into a session or a cache, use the appropriate API for these
instead.

The registry table (sys_registry)
Here's a description of the fields found in the sys_registry table:

Field Type Description

uid int Primary key, needed for replication and also usfull as an index.

entry_namespace varchar (128) Represents an entry's namespace. In general the namespace is an extension key starting
with “tx_”, a user script's prefix “user_”, or “core” for entries that belong to the core.

The point of namespaces is that entries with the same key can exist inside different
namespaces.

entry_key varchar (255) The entry's key. Together with the namespace the key is unique for the whole table. The
key can be any string to identify the entry. It's recommended to use dots as dividers if
necessary. This way the naming is similar to the already known syntax in TypoScript.

entry_value blob The entry's actual value. The value is stored as a serialized string, thus you can even store
arrays or objects in a registry entry – it's not recommended though.
Using phpMyAdmin's Show BLOB option you can check the value in that field although
being stored as a binary.

The registry API
To use the registry, there's an easy to use API. Simply use t3lib_div::makeInstance('t3lib_Registry')
to retrieve an instance of the registry. The instance returned will always be the same as the registry is a singleton:

$registry = t3lib_div::makeInstance('t3lib_Registry');

After retrieving an instance of the registry you can access the registry values through its get() method. The get() method
offers an interesting third parameter to specify a default value, that value is returned in case the requested entry was not
found in the registry. That happens when accessing an entry for the first time for example. Setting a value is easy as well by
using the set() method.

Method Parameters Description

set $namespace: namespace in which to set the
value
$key: the key of the value to set
$value: the value to store

Represents an entry's namespace. In general the namespace
is an extension key starting with “tx_”, a user script's prefix
“user_”, or “core” for entries that belong to the core.

get $namespace: namespace to get the value from
$key: the key of the value to retrieve
$defaultValue: a default value if the key was not
found in the given namespace

Used to get a value from the registry.

remove $namespace: namespace to remove the value
from
$key: the key of the value to remove

Remove an entry from a given namespace.

removeAllByNamespace $namespace: namespace to empty Deletes all value for a given namespace.

Note that you should not store binary data into the registry, it's not designed to do that. Use the filesystem instead, if you
have such needs.

57

 TYPO3 Core APIs - doc_core_api Using the system registry

Examples
Here's an example taken from the Scheduler system extension:

$registry = t3lib_div::makeInstance('t3lib_Registry');
$runInformation = array('start' => $GLOBALS['EXEC_TIME'], 'end' => time(), 'type' => $type);
$registry->set('tx_scheduler', 'lastRun', $runInformation);

It is retrieved later using:

$registry = t3lib_div::makeInstance('t3lib_Registry');
$lastRun = $registry->get('tx_scheduler', 'lastRun');

PHP Class Extension

Introduction
Practically all important scripts have their main code encapsulated in a class (typically named SC_[scriptname] and
instantiated as the global object $SOBE) and almost all library classes used in TYPO3 - both frontend and backend - can be
extended by user defined classes. Extension of TYPO3 PHP classes may also be referred to as an "XCLASS extension".

Extending TYPO3s PHP classes is recommended mostly for special needs in individual projects. This is due to the limitation
that a class can only be extended once. Thus, if many extensions try to extend the same class, only one of them will succeed
and in turn the others will not function correctly.

So, extending classes is a great option for individual projects where special "hacks" are needed. But generally it is a poor way
of programming TYPO3 extensions in which case you should look for a system hook or request a system hook to be made for
your purpose if generally meaningful.

Configuring user-classes works like this:

1. In (ext_)localconf.php you configure for either frontend or backend that you wish to include a file with the extension of
the class. This inclusion is usually done in the end of the class-file itself based on a lookup in TYPO3_CONF_VARS.

2. Whenever the class is instantiated as an object, the source code checks if a user-extension of that class exists. If so, then
that class (or an extension of the extended class) is instantiated and not the “normal” (parent) class.
Getting the correct instance of a class is done by using the function t3lib_div::makeInstance() instead of "new ..." when
an object is created.

Example

Say you wish to make an addition to the stdWrap method found in the class “tslib_cObj” (found in the class file
typo3/sysext/cms/tslib/class.tslib_content.php).

The first thing to do is to create the extension class. So you create a file in the typo3conf/ directory named
“class.ux_tslib_content.php”. “ux” is a prefix meaning “user-extension”. This file may look like this:

<?php
/**
* User-Extension of tslib_cObj class.
*
* @author Kasper Skårhøj <kasper@typo3.com>
*/

class ux_tslib_cObj extends tslib_cObj {
 function stdWrap($content,$conf) {
 // Call the real stdWrap function in the parent class:
 $content = parent::stdWrap($content,$conf);
 // Process according to my user-defined property:
 if ($conf['userDefined_wrapInRed']) {
 $content='' . $content . '';
 }
 return $content;
 }
}
?>

The next thing is to configure TYPO3 to include this class file as well after the original file tslib/class.tslib_content.php:

$TYPO3_CONF_VARS['FE']['XCLASS']['tslib/class.tslib_content.php']=
 PATH_typo3conf . 'class.ux_tslib_content.php';

So when the file “tslib/class.tslib_content.php” is included inside of class.tslib_pagegen.php, the extension class is included

58

 TYPO3 Core APIs - doc_core_api PHP Class Extension

immediately from inside the “tslib/class.tslib_content.php” file (this is from the bottom of the file):

if (defined('TYPO3_MODE') &&
$TYPO3_CONF_VARS[TYPO3_MODE]['XCLASS']['tslib/class.tslib_content.php']) {

 include_once($TYPO3_CONF_VARS[TYPO3_MODE]['XCLASS']['tslib/class.tslib_content.php']);
}

The last thing which remains is to instantiate the class ux_tslib_cObj instead of tslib_cObj. This is done automatically, because
everywhere tslib_cObj is instantiated, it is first examined if ux_tslib_cObj exists and if so, that class is instantiated instead!

This is done by instantiating the object with "t3lib_div::makeInstance()":

$cObj = t3lib_div::makeInstance('tslib_cObj');

Originally it looked like this:

$cObj = new tslib_cObj;

Internally "t3lib_div::makeInstance()" does this:

$cObj = class_exists('ux_tslib_cObj') ? new ux_tslib_cObj : new tslib_cObj;

IMPORTANT
When setting up the file to include, in particular from t3lib/, notice the difference between $TYPO3_CONF_VARS["BE"]
["XCLASS"][...] and $TYPO3_CONF_VARS["FE"]["XCLASS"][...]. The key “FE” is used when the class is included by a front-end
script (those initialized by tslib/index_ts.php and tslib/showpic.php - both also known as index.php and showpic.php in the
root of the website), “BE” is used by backend scripts (those initialized by typo3/init.php or typo3/thumbs.php). This feature
allows you to include a different extension when the (t3lib/-) class is used in the frontend and in the backend.

Which classes?
Most code in TYPO3 resides in classes and therefore anything in the system can be extended. So you should rather say to
yourself: In which script (and thereby which class) is it that I'm going to extend/change something. When you know which
script, you simply open it, look inside and somewhere you'll find the lines of code which are responsible for the inclusion of
the extension, typically in the bottom of the script.

The exceptions to this rule is classes like "t3lib_div", "t3lib_extMgm" or "t3lib_BEfunc". These classes contain methods which
are designed to be call non-instantiated, like "t3lib_div::fixed_lgd_cs()". Whether a class works on this basis is normally noted
in the header of the class file. When methods in a class is called non-instantiated there is no way you can extend that
method/class.

Example - Adding a small feature in the interface
Say you wish to add a little section with help text in the bottom of the “New” dialog:

So this is what you do:

1. Find out that the script in question is “typo3/db_new.php” (right-click frame, select “Properties” and look at URL...:-)

2. Then examine the scripts for its classes and methods. In this case you'll find two classes in the file; “localPageTree”
(extends t3lib_pageTree) and “SC_db_new”. The class “SC_db_new” is the so called “Script Class” - this will hold the code
specifically for this script.
You also find that the only code executed in the global scope is this:

$SOBE = t3lib_div::makeInstance('SC_db_new');
$SOBE->init();
$SOBE->main();
$SOBE->printContent();

3. When you examine the SC_db_new class you find that the main() method is the one you would like to extend.

4. Finally you find that immediately after the definition of the two classes there is three lines of code which will provide you
with the final piece of knowledge you need:

// Include extension?

59

 TYPO3 Core APIs - doc_core_api PHP Class Extension

if (defined('TYPO3_MODE') && $TYPO3_CONF_VARS[TYPO3_MODE]['XCLASS']['typo3/db_new.php']) {
 include_once($TYPO3_CONF_VARS[TYPO3_MODE]['XCLASS']['typo3/db_new.php']);
}

So now you know that the key to use is “typo3/db_new.php” when you wish to define a script which should be included
as the extension.

Let's see what happens then in the extension “examples”:

1. First we have a class that extends the SC_db_new (xclasses/class.tx_examples_scdbnew.php):

function regularNew() {
parent::regularNew();
$this->code .= $this->doc->section($GLOBALS['LANG']->sL('LLL:EXT:examples/locallang.xml:help'),

$GLOBALS['LANG']->sL('LLL:EXT:examples/locallang.xml:make_choice'), 0, 1);
}

2. The XCLASS is then registered in the extension's ext_localconf.php file:

$TYPO3_CONF_VARS['BE']['XCLASS']['typo3/db_new.php'] = t3lib_extMgm::extPath($_EXTKEY,
'xclasses/class.tx_examples_scdbnew.php');

There is no “table of extendable classes” in this document because 1) all classes are extendable and 2) the number of classes
will grow as TYPO3 is further developed and extensions are made and 3) finally you cannot extend a class unless you know it
exists and have analyzed some of its internal structure (methods / variables) - so you'll have to dig into the source anyway!

Therefore, if you wish to extend something, follow this suggestion for an analysis of the situation and you'll end up with the
knowledge needed in order to extend that class and thereby extend TYPO3 without loosing backwards compatibility with
future updates. Great.

Notes on SC_* classes (script classes)

There is one more thing to note about especially the SC_* classes in the backend:

1. Global vars: They use a lot of variables from the global scope. This is due to historical reasons; The code formerly
resided in the global scope and a quick conversion into classes demanded this approach. Future policy is to keep as many
variables internal as possible and if any of these SC_* classes are developed further in the future, some of the globals
might on that occasion be internalized.

2. Large methods: There are typically a init(), main() and printContent() method in the SC-classes. Each of these, in
particular the main() method may grow large. Processing stuff in the start and end of the methods is easy - you just call
parent::[methodname]() from your extension. But if you want to extend or process something in the middle of one of
these methods, it would be necessary to call a dummy method at that point in the parent class. Such a dummy method
would then be used for processing in your class, but would not affect the general use of the parent class. Such dummy-
method calls are not widely included yet, but will be as suggestions for them appears. And you are very welcome to give
in such suggestions.

I'll just give an example to illustrate what I mean:

class SC_example {
 function main() {
 $number = 100;
 echo 'The number is ' . $number;
 }
}

This class prints the text “The number is 100”. If you wish to do some calculations to the $number-variable before it is
printed, you are forced to simply include the whole original main-method in your extension script. Here it would be no
problem because the method is 2 lines long. But it could be 200 lines! So what you do is that you suggest to the TYPO3
development to call a “harmless” dummy method in the main() method...

class SC_example {
 function main() {
 $number = 100;
 $number = $this->processNumber($number);
 echo 'The number is ' . $number;
 }
 function processNumber($theNumber) {
 return $theNumber;
 }
}

... and then you extend the class as follows:

60

 TYPO3 Core APIs - doc_core_api PHP Class Extension

class ux_SC_example extends SC_example {
 function processNumber($theNumber) {
 return ($theNumber < 100) ? 'less than 100' : 'greater than 100';
 }
}

... and now the main() method would print “The number is greater than 100” instead.

Notice that you'll have to make such suggestions for dummy method calls because we will include them only as people
need them.

Extending methods
When extending a method like in the case above with stdWrap() please observe that such a method might gain new
parameters in the future without further notice. For instance stdWrap is currently defined like this:

function stdWrap($content, $conf) {

... but maybe some day this method will have another parameter added, eg:

function stdWrap($content, $conf, $yet_a_parameter=0) {

This means if you want to override stdWrap(), but still call the parent class' method, you must extend your own method call
from...:

 function stdWrap($content, $conf) {
 // Call the real stdWrap method in the parent class:
 $content = parent::stdWrap($content, $conf);

...

... to:

 function stdWrap($content, $conf, $yet_a_parameter=0) {
 // Call the real stdWrap method in the parent class:
 $content = parent::stdWrap($content, $conf,$ yet_a_parameter);

...

Also be aware of constructors. If you have a constructor in your extension class you must observe if there is a constructor in
the parent class which you should call first / after. In case, you can do it by “parent::[original class name]”

For instance the class tslib_fe is instantiated into the global object $TSFE. This class has a constructor looking like this:

/**
 * Class constructor
 */
function tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache='', $cHash='', $jumpurl='') {
 // Setting some variables:
 $this->id = $id;
 $this->type = $type;
 $this->no_cache = $no_cache ? 1 : 0;
 $this->cHash = $cHash;
 $this->jumpurl = $jumpurl;
 $this->TYPO3_CONF_VARS = $TYPO3_CONF_VARS;
 $this->clientInfo = t3lib_div::clientInfo();
 $this->uniqueString=md5(microtime());
 $this->makeCacheHash();
}

So as you see, you probably want to call this method. But let's also say you wish to make sure the $no_cache parameter is
always set to 1 (for some strange reason...). So you make an extension class like this with a new constructor, ux_tslib_fe(),
overriding the $no_cache variable and then calling the parent class constructor:

class ux_tslib_fe extends tslib_fe {
 function ux_tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache='', $cHash='', $jumpurl='') {
 $no_cache=1;
 parent::tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache, $cHash, $jumpurl);
 }
}

User defined methods in classes
Prefix user defined methods and internal variables with “ux_”! Thus you don't risk to choose a method name which may later
be added to the parent class in the TYPO3 distribution!

Example, continued from above:

61

 TYPO3 Core APIs - doc_core_api PHP Class Extension

class ux_tslib_fe extends tslib_fe {
 var $ux_fLPmode = 1; // If you "feelLuckyPunk" this is the no_cache value

 function ux_tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache='', $cHash='', $jumpurl='') {
 // setting no_cache?
 $no_cache=$this->ux_settingNoCache();
 // Calling parent constructor:
 parent::tslib_fe($TYPO3_CONF_VARS, $id, $type, $no_cache, $cHash, $jumpurl);
 }
 /**
 * Setting the no_cache value based on user-input in GET/POST var, feelLuckyPunk
 */
 function ux_settingNoCache() {
 return t3lib_div::GPvar('feelLuckyPunk') ? $this->ux_fLPmode : 0;
 }
}

(User defined methods and variables are in purple)

A few examples of extending the backend classes
The concept of extending classes in the backend can come in handy in many cases. First of all it's a brilliant way to make your
own project specific extensions to TYPO3 without spoiling the compatibility with the distribution! This is a very important
point! Stated another way: By making an "XCLASS extension" you can change one method in a TYPO3 class and next time
you update TYPO3, your method is still there - but all the other TYPO3 code has been updated! Great!

Also for development and experimental situations is great. Generally the concept offers you quite a lot of freedom, because
you are seriously able to take action if you need something solved here and now which cannot be fixed in the main
distribution at the moment.

Anyway, here's a few simple examples:

1) Say you wish to have the backend user time out after 30 seconds instead of the default 6000.

1. In your extension's (named “test”) ext_localconf.php fiel, insert:
 $TYPO3_CONF_VARS['BE']['XCLASS']['t3lib/class.t3lib_beuserauth.php']
 = t3lib_extMgm::extPath('test') . 'class.ux_myBackendUserExtension.php';

2. Create the file “class.ux_myBackendUserExtension.php” in your extension's folder and put this content in:

<?php

class ux_t3lib_beUserAuth extends t3lib_beUserAuth {
 var $auth_timeout_field = 30;
}
?>

Of course you need to know why it's the variable auth_timeout_field which must be set, but you are a bright person, so of
course you go directly to the file t3lib/class.t3lib_beuserauth.php, open it and find that var $auth_timeout_field = 6000;
there!

You could also easily insert an IP-filter (which is already present though...). Here you have to take a little adventure a bit
further. As you see in “class.t3lib_beuserauth.php” extends “t3lib_userAuthGroup” which extends “t3lib_userAuth” the method
start() is the place where the users are authenticated. This could quickly be exploited to make this IP filter for the backend:

<?php

class ux_t3lib_beUserAuth extends t3lib_beUserAuth {
 var $auth_timeout_field = 30;

 function start() {
 if (!t3lib_div::cmpIP(getenv('REMOTE_ADDR'), '192.168.*.*')) {
 die('Wrong IP, you cannot be authenticated!');
 } else {
 return parent::start();
 }
 }
}
?>

So now only users with client IP numbers in the 192.168.*.* series will gain access to the backend. If that is the case, notice
how the parent start() method is called and any result is returned. Thus your overriding method is a wrapped for the original.
Brilliant, right!

2) Here's another one (from the “examples” extension, file “xclasses/class.tx_examples_tceforms.php”):

function formWidth($size = 48, $textarea = FALSE) {
$size = round($size * 1.5);

62

 TYPO3 Core APIs - doc_core_api PHP Class Extension

return parent::formWidth($size, $textarea);
}

function printPalette($palArr) {
// Change all field labels in the palette to uppercase

foreach ($palArr as $key => $palette) {
$palArr[$key]['NAME'] = strtoupper($palArr[$key]['NAME']);

}
return parent::printPalette($palArr);

}

... and configured in ext_localconf.php as this:

$TYPO3_CONF_VARS['BE']['XCLASS']['t3lib/class.t3lib_tceforms.php'] = t3lib_extMgm::extPath($_EXTKEY,
'xclasses/class.tx_examples_tceforms.php');

What is the result? A typical part of the backend form for a page will look like this:

But the extension does two things: 1) textarea form fields have their width multiplied with 1.5 so they are wider (other field
types are unaffected due to different rendering mechanisms), 2) the titles of the palette-fields are converted for uppercase.
The result looks like this:

So as you see you can do really stupid details - in fact almost any extension.

Warnings
There are a few warnings about using XCLASS extensions:

● Avoid using XCLASS extensions in your (public) extensions!
A PHP class can only be extended by one extension class at a time. Thus, having two extension classes set up, only the
latter one will be enabled. There is no way to work around this technologically in PHP. However
"t3lib_div::makeInstance()" supports "cascaded" extension classes, meaning that you can do "ux_ux_someclass" which
will extend "ux_someclass" but this requires an internal awareness of the extension class "ux_someclass" in the first place.
The conclusion is that XCLASS extensions are best suited for project development where you need a quick hack of
something in the core which should still stay backwards compatible with TYPO3 core upgrades.

● Check if child classes are instantiated
Quite often people have been confused about extending for instance the "tslib_menu" class when they want to add a
feature for "TMENU". But actually the class to extend is "tslib_tmenu" which is an extension of "tslib_menu". So make
sure you are extending the right class name (and always make sure your extension class is included also).

● Strange opcode caching behaviors when you upgrade TYPO3 core
When you upgrade the TYPO3 core and you have an extension which extends a core class, the upgraded core underneath
might not be detected by opcode caches. In particular PHP-Accelerator is known for this behavior producing "undefined
function...." errors. The solution is: Always clear "/tmp/php_a_*" files and restart your web server after upgrading source.

63

 TYPO3 Core APIs - doc_core_api AJAX in the TYPO3 Backend

AJAX in the TYPO3 Backend

In TYPO3 4.2 a new model for writing AJAX code in the TYPO3 Backend was introduced. Although there were some parts in
the TYPO3 Backend that used AJAX already, they are now unified into a single interface that handles errors and dispatches
the different calls to their final locations. This way it is ensured that e.g. a BE user is logged in and all TYPO3 variables are
loaded.

The whole architecture builds on top of successful techniques developers already know. It's a mixture between the eID
concept from the TYPO3 Frontend, the hooking idea we know from other places in TYPO3, piped through a single small AJAX
file "typo3/ajax.php" that creates a PHP AJAX object to see if an error occurred or not. If something went wrong, the X-JSON
header is set to false and the client-side AJAX request (an AJAX responder in the Prototype Javascript framework) will know
that there is an error.

In-depth presentation

Client-Side programming
On the client-side we are using the Prototype JS library (located in typo3/contrib/prototype/prototype.js). If you have used it
already, you know that you can make AJAX calls with AJAX.Request, AJAX.Updater and AJAX.PeriodicalUpdater. We extended
the library and hooked in these objects, or better: in the callbacks users can define. If an AJAX request is made to our server-
side component (typo3/ajax.php), everything developers need to do is to call this URL and add a unique, already registered
parameter for their ajaxID. Their defined "onComplete" and "onSuccess" are only rendered if the X-JSON header is set to true
by the server-side script. If the X-JSON header is set to false, the Responder checks if there is a callback function named
"onT3Error" and executes it instead of the “onComplete” method. If the "onT3Error" method is not defined, the default
TYPO3 error handler will be displaying the error in the TYPO3 backend. If the X-JSON header is set to false, the "onSuccess"
callback will not be executed as well as but an error message will be shown in the notification area. This behaviour is done
automatically with every AJAX call to "ajax.php" made through Prototype's AJAX classes. This responder is also only active if
"typo3/js/common.js" is added to the base script.

Server-side programming
If you look into "typo3/ajax.php", it is only a small dispatcher script. It checks for an ajaxID in the TYPO3_CONF_VARS['BE']
['AJAX'] array and tries to execute the function pointer. The function has two parameters, where the first (an array) is not
used yet. The second parameter is the TYPO3 AJAX Object (located in typo3/classes/typo3ajax.php) that is used to add the
content that should be returned as the server-response to the Javascript part, or the error message that should be displayed.
The X-JSON header will be set depending on whether "setError()" was called on this AJAX object. You can also specify if the
object should return the result in a valid XML object tree, as text/html (default) or as a JSON object, see below.

The "ajaxID" is a unique identifier and can be used to override the existing AJAX calls. Therefore you can extend existing
AJAX calls that already exist in the backend by redirecting it to your function. But be aware of the side-effects of this feature:
Other extensions could overwrite this function as well (similar problem as with XCLASSing or single inheritance in OOP).

Also, for every TYPO3 request, you will now have a TYPO3_REQUESTTYPE variable that can be used for bitwise comparison.
You can now check if you're in Backend or Frontend or in an valid AJAX request with

if (TYPO3_REQUESTTYPE & TYPO3_REQUESTTYPE_AJAX)

to see if you're calling through the new AJAX interface.

Different Content Formats
As with every AJAX response you can send it in different response formats.

• text/html - plain text

• text/xml - strict XML formatting

• application/json - JSON notation

You can also specify the contentFormat in the AJAX object like this:

$ajaxObj->setContentFormat('json');

For the keyword you can choose between "plain" (default), "xml" and "json", "jsonbody" and "jsonhead".

Here are the specifics for each format.

64

 TYPO3 Core APIs - doc_core_api AJAX in the TYPO3 Backend

Plain Text

The content array in the backend will be concatenated and returned uninterpreted.

The result will be available in the transport object as a string through "xhr.responseText".

XML

The content needs to be valid XML and will be available in javascript as "xhr.responseXML".

JSON

The content is put through the service in "typo3/contrib/json/json.php" and is then available in JSON notation through the
second parameter in the onComplete / onSuccess methods, and additionally in the "responseText" part of the transport object
("xhr.responseText"). If it is set to "jsonbody", only the latter variable is filled, if "jsonhead" is set, it is only in the second
parameter. This is useful to save traffic and you can use it with whatever format you like.

Developing with AJAX in the TYPO3 Backend
This is a small guide for you to use this feature in your AJAX scripts.

How to choose the right ajaxID
The ajaxID consists of two parts, the class name and the action name, delimited by "::" ("<class>::<action>").

Please note that the ajaxID is just a system-wide identifier to register your AJAX handler. Even if it looks like a static function
call, it won't be executed and has no technical dependencies. But it is required for all developers to use a common naming
scheme as described above, since it might prevent from using identical names in different extensions.

Some good examples for an ajaxID:

• SC_alt_db_navframe::expandCollapse

• t3lib_TCEforms_inline::processAjaxRequest

• tx_myext_module1::executeSomething

Some bad examples for an ajaxID:

• search::findRecordByTitle

• core::reloadReferences

• inline::processAjaxRequest

• updateRecordList

Server-Side
1) Register your unique ajaxID, at best prepended with your extension ID, in the TYPO3 backend by adding the following line
to your "ext_localconf.php" (this way you can also overwrite existing AJAX calls):

$TYPO3_CONF_VARS['BE']['AJAX']['tx_myext::ajaxID'] = 'filename:object->method';

A working example would be:

$TYPO3_CONF_VARS['BE']['AJAX']['SC_alt_db_navframe::expandCollapse'] =
'typo3/alt_db_navframe.php:SC_alt_db_navframe->ajaxExpandCollapse';

2) Create a target method to do the logic on the server-side: similarly to the existing hooking mechanism, as with every
"callUserFunction", the target method (here: ajaxExpandCollapse) will have two function parameters. The first one is an array
of params (not used right now), the second is the TYPO3 AJAX Object (see typo3/classes/class.typo3ajax.php for all available
methods). You should use this to set the content you want to output or to write the error message if something went wrong.

public function ajaxExpandCollapse($params, &$ajaxObj) {
 $this->init();
 // do the logic...
 if (empty($this->tree)) {
 $ajaxObj->setError('An error occurred');
 } else {
 // the content is an array that can be set through $key / $value pairs as parameter
 $ajaxObj->addContent('tree', 'The tree works...');
 }
}

So, the server-side part is now complete. Let's move over to the client-side.

65

 TYPO3 Core APIs - doc_core_api AJAX in the TYPO3 Backend

Client-part
3) In order for you to use client-side AJAX Javascript you have to add these two lines of PHP code to your PHP script
(available in template.php, your template document):

$this->doc->loadJavascriptLib('contrib/prototype/prototype.js');
$this->doc->loadJavascriptLib('js/common.js');

4) With prototype on the client side, it's quite simple to add a new AJAX request in Javascript:

new Ajax.Request('ajax.php', {
 method: 'get',
 parameters: 'ajaxID=SC_alt_db_navframe::expandCollapse',
 onComplete: function(xhr, json) {
 // display results, should be "The tree works"
 }.bind(this),
 onT3Error: function(xhr, json) {
 // display error message, will be "An error occurred" if an error occurred
 }.bind(this)
});

You can see, that it's almost the same, except that we introduce a new callback function "onT3Error", which is optional. It is
called if the method "setError" on the server-side was called. Otherwise "onComplete" will be called. If you do not define
"onT3Error", then the error message will be shown in the TYPO3 notification area in the backend. Our AJAX responders also
work with the "onSuccess" callback, but the onT3Error is only executed with "onComplete".

This should be all. Please note that our TYPO3 BE AJAX mechanism works best with the prototype JS library. If you want to
create similar approaches for other JS frameworks, have a look at "typo3/js/common.js".

Using third-party JavaScript libraries in the TYPO3
Backend

Since TYPO3 4.3, it is very easy to use third-party JavaScript libraries in the TYPO3 BE. A simple API is provided by template
class (which all modules use). Third-party JS libraries are those which are available in the “typo3/contrib” folder. Note that use
of Prototype/Scriptaculous is now discouraged. Use ExtJS instead. Prototype/Scriptaculous support may be removed in future
versions of TYPO3.

Inside a module, the instance of template.php is normally available as

$this->doc

Using Prototype
To load the Prototype library use this syntax:

$this->doc->loadPrototype();

That's all, prototype will be added to the head of the document, any double inclusion will be prevented.

Using Scriptaculous
To load the Scriptaculous library use this syntax:

$this->doc->loadScriptaculous();

To load modules, just pass some module's name to the above call. Possible modules are: “builder”, “effects”, “dragdrop”,
“controls”, “slider”.

Example:
$this->doc->loadScriptaculous('slider');
$this->doc->loadScriptaculous('effects,dragdrop');

If a module depends on other modules, those will automatically be added. The calling order doesn't matter. Proper load order
is taken care of by the API.

To load all available modules, use the keyword “all”:

$this->doc->loadScriptaculous('all');

When loading Scriptaculous, Prototype is automatically added.

66

 TYPO3 Core APIs - doc_core_api Using third-party JavaScript libraries in the TYPO3 Backend

Using ExtJS
To load the ExtJS library use this syntax:

$this->doc->loadExtJS();

There are 2 optional parameters in this call:

$this->doc->loadExtJS($css = TRUE, $theme = TRUE);

• The first parameter is a boolean. If set to true, “ext-all.css” is added automatically.

• The second parameter is also a boolean. If set to true, theme-grey is added automatically.

Additionally the function takes care of:

• adding the correct adapter

• adding the localization file of BE-User language

• adding Ext.BLANK_IMAGE_URL

To do debugging in the ExtJS library, use the following call to force the debug variant to be loaded:

$this->doc->setExtJSdebug();

Flash messages
Since TYPO3 4.3 there is a generic system to show users that an action was performed successfully, or more importantly,
failed. This system is known as “flash messages”. The screenshot below shows the various severity levels of messages that
can be emitted. It also shows that flash messages can include a header or not.

The different severity levels are described below:

• Notifications are used to show very low severity information. Such information usually is so unimportant that it can
be left out, unless running in some kind of debug mode.

• Information messages are to give the user some information that might be good to know.

67

 TYPO3 Core APIs - doc_core_api Flash messages

• OK messages are to signal a user about a successfully executed action

• Warning messages show a user that some action might be dangerous, cause trouble or might have partially failed.

• Error messages are to signal failed actions, security issues, errors and the like.

Flash messages API
Creating a flash message is achieved by simply instantiating an object of class t3lib_FlashMessage:

$message = t3lib_div::makeInstance('t3lib_FlashMessage',
'My message text',
'Message Header', // the header is optional
t3lib_FlashMessage::WARNING, // the severity is optional as well and defaults to

t3lib_FlashMessage::OK
TRUE // optional, whether the message should be stored in the session or only in the

t3lib_MessageQueue object (default is FALSE)
);

The severity is defined by using class constants provided by t3lib_FlashMessage:

• t3lib_FlashMessage::NOTICE for notifications

• t3lib_FlashMessage::INFO for information messages

• t3lib_FlashMessage::OK for success messages

• t3lib_FlashMessage::WARNING for warnings

• t3lib_FlashMessage::ERROR for errors

The fourth parameter passed to the constructor is a flag that indicates whether the message should be stored in session or
not (the default is not). Storage in session should be used if you need the message to be still present after a redirection.

In backend modules you can then make that message appear on top of the module after a page refresh / the rendering of
the next page request or render it on your own where ever you want.

This example adds the flash message at the top of modules when rendering the next request:

t3lib_FlashMessageQueue::addMessage($message);

The message is added to the queue and then the template class calls t3lib_FlashMessageQueue::renderFlashMessages()
which renders all messages from the queue. Here's how such a message looks like in a module:

By default flash messages are shown atop the content of a module. However, if needed, you can change where the messages
are shown by manipulating a module's template and inserting the ###FLASHMESSAGES### marker. Messages will then
replace that marker instead of appearing at the top of the module.

It is also possible to render a single message directly, instead of adding it to the queue. This makes it possible to display flash
messages absolutely anywhere. Here's how this is achieved:

$message->render();

Various examples

Introduction
The following pages present some examples of how you can use the APIs of core libraries. Remember, ultimately the source is
the documentation and the only point here is to show examples. Whenever you would like to use core features that are not
shown here you should search in the core and system extensions for implementations that can work as an example for you.

Debugging with debug()
A very common tool used by TYPO3 developers is the debug() function. It basically prints out the content of a variable in a

68

 TYPO3 Core APIs - doc_core_api Various examples

nicely formatted table. There are extensions available which extends the view from the debug() function to something more
fancy. Here I will just present the basic version.

Use the debug() function whenever you want to look "inside" an array or parameters passed to a user processing function.
Usually it makes it very easy to understand the parameters. For instance, lets say you call a script with the GET parameter
string "?id=123&test[key]=A&test[key2]=B". How will the GET vars look to your application inside? Well, using the debug
function makes that easy:

debug(t3lib_div::_GET(),'GET variables:');

The output in the browser will look like:

Notice that the debug() function is a wrapper for t3lib_div::debug() and the difference is that debug() (defined in
"t3lib/config_default.php") will only output information if your IP address is within a certain range typical for internal
networks.

Rendering page trees
In your backend modules you might like to show information or perform processing for a part of the page tree. There is a
whole family of libraries in the core for making trees from records, static page trees or page trees that can be browsed
(open/close nodes).

In this simple example I will show how to get the HTML for a static page tree, using the class "t3lib_pageTree" (child of
"t3lib_treeView"). The output will look like this (missing the normal TYPO3 styles though):

The PHP code that generates this looks like:

 1: require_once(PATH_t3lib . 'class.t3lib_pagetree.php');
 2:
 3: // Initialize starting point of page tree:
 4: $treeStartingPoint = 1135;
 5: $treeStartingRecord = t3lib_BEfunc::getRecord('pages', $treeStartingPoint);
 6: $depth = 2;
 7:
 8: // Initialize tree object:
 9: $tree = t3lib_div::makeInstance('t3lib_pageTree');
 10: $tree->init('AND ' . $GLOBALS['BE_USER']->getPagePermsClause(1));
 11:
 12: // Creating top icon; the current page
 13: $HTML = t3lib_iconWorks::getIconImage('pages', $treeStartingRecord, $GLOBALS['BACK_PATH'],
'align="top"');
 14: $tree->tree[] = array(
 15: 'row' => $treeStartingRecord,
 16: 'HTML'=>$HTML
 17:);
 18:
 19: // Create the tree from starting point:
 20: $tree->getTree($treeStartingPoint, $depth, '');
 21: #debug($tree->tree);
 22:
 23: // Put together the tree HTML:
 24: $output = '
 25: <tr bgcolor="#999999">
 26: <td>Icon / Title:</td>

69

 TYPO3 Core APIs - doc_core_api Various examples

 27: <td>Page UID:</td>
 28: </tr>';
 29: foreach($tree->tree as $data) {
 30: $output.='
 31: <tr bgcolor="#cccccc">
 32: <td nowrap="nowrap">' . $data['HTML'] . htmlspecialchars($data['row']['title']) .
'</td>
 33: <td>' . htmlspecialchars($data['row']['uid']) . '</td>
 34: </tr>';
 35: }
 36:
 37: $output = '<table border="0" cellspacing="1" cellpadding="0">' . $output . '</table>';

● In line 1 the class is included.
Notice how the constant "PATH_t3lib" is used to set the path for "t3lib/".

● Line 4-5 sets up the starting point. You need a page id for that and additionally you must select that page record.
Notice how another important API function, t3lib_BEfunc::getRecord(), is used to get the record array for the page!

● Line 6 defines that the page tree will go 2 levels down from the starting point.

● Line 9-10 initializes the class.
Notice how the BE_USER object is called to get an SQL where clause that will ensure that only pages that are accessible
for the user will be shown in the tree!
Notice how t3lib_div::makeInstance() is used to create the object. This is required by the TYPO3 CGL.

● Line 13-17 sets up the starting point page in the tree. This must be done externally if you would like your tree to include
the root page (which is not always the case).
Notice how line 13 calls the function t3lib_iconWorks::getIconImage() to get the correct icon image for the pages table
record! Also, $GLOBALS['BACK_PATH'] is used to make sure the icon has a correct "back-path" to the location where the
icon is on the server.

● Line 20 renders the page tree from the starting point and $depth levels down (at least 1 level)

● The rendered page tree is stored in a data array inside of the tree object. We need to traverse the tree data to create the
tree in HTML. This gives us the chance to organize the tree in a table for instance. That is very useful if you need to show
additional information for each page.

● Lines 24-28 renders a table row with headings for the tree.

● Lines 29-35 traverses the tree data and for each element a table row will be rendered with the icon/title and an
additional cell containing the uid.

● Line 37 wraps the table rows in a table tag.

Local extensions of the page tree classes
If you search in the source for other places where this class is used you will often find that the class is extended locally in
those scripts. This is because it is possible to override certain functions that generate for instance the icon or wraps the title
in some way.

Accessing the clipboard
You can easily access the internal clipboard in TYPO3 from your backend modules.

 1: require_once(PATH_t3lib . 'class.t3lib_clipboard.php');
 2:
 3: // Clipboard is initialized:
 4: $clipObj = t3lib_div::makeInstance('t3lib_clipboard'); // Start clipboard
 5: $clipObj->initializeClipboard(); // Initialize - reads the clipboard content from the user
session
 6: debug($clipObj->clipData);

• Line 1 includes the clipboard library

• Line 4-5 initializes it.

• Line 6 outputs the content of the internal variables, ->clipData. That will look like what you see below:

This tells us what objects are registered on the "normal" tab (page record with id 1146 in "copy" mode) and the numeric tabs
(can contain more than one element). The current clipboard (Pad 2 active) looks like this:

70

 TYPO3 Core APIs - doc_core_api Various examples

The correct way of accessing clipboard content is to the method, elFromTable(), in the clipboard object.

 debug($clipObj->elFromTable('_FILE'), 'Files available:');
 debug($clipObj->elFromTable('pages'), 'Page records:');
 $clipObj->setCurrentPad('normal');
 echo 'Changed to "normal" pad...';
 debug($clipObj->elFromTable('_FILE'), 'Files available:');
 debug($clipObj->elFromTable('pages'), 'Page records:');

Here we first try to get all files and then all page records on the current pad (which is pad 2). Then we change to the
"Normal" pad, call the elFromTable() method again and output the results. The output shows that in the first attempt we get
the list of files but no page records while in the second attempt after having changed to the normal pad we will get no files
but the page record on the normal pad in return:

Setting elements on the clipboard
This is too complicated to describe in detail. The following codelisting is from the Web > List module where selections for the
clipboard is posted from a form and registered.

 // Clipboard actions are handled:
$CB = t3lib_div::_GET('CB'); // CB is the clipboard command array
if ($this->cmd=='setCB') {
 // CBH is all the fields selected for the clipboard, CBC is the checkbox fields which were
checked. By merging we get a full array of checked/unchecked elements
 // This is set to the 'el' array of the CB after being parsed so only the table in question is
registered.
 $CB['el'] = $dblist->clipObj->cleanUpCBC(array_merge(t3lib_div::_POST('CBH'),
t3lib_div::_POST('CBC')), $this->cmd_table);
}
if (!$this->MOD_SETTINGS['clipBoard']) {
 $CB['setP'] = 'normal'; // If the clipboard is NOT shown, set the pad to 'normal'.
}
$dblist->clipObj->setCmd($CB); // Execute commands.
$dblist->clipObj->cleanCurrent(); // Clean up pad
$dblist->clipObj->endClipboard(); // Save the clipboard content

Adding Context Sensitive Menu items
When the CSM is being generated in the "alt_clickmenu.php" script an array with the elements is created. Before the array is
passed over to the final rendering function that will create the menu HTML, the array will be passed in turns to external
processing scripts. These scripts are configured in this global array:

$GLOBALS['TBE_MODULES_EXT']['xMOD_alt_clickmenu']['extendCMclasses'];

Each script will then have a chance to manipulate the content of the array and add/remove items as the script wants. This is

71

 TYPO3 Core APIs - doc_core_api Various examples

what makes it possible to add custom options to CSM.

The extensions "extra_page_cm_options" adds a lot of CSM options. The extension has an "ext_tables.php" file and it
contains code that adds an entry in the array mentioned above:

<?php
if (!defined ('TYPO3_MODE')) die ('Access denied.');
if (TYPO3_MODE=='BE') {
 $GLOBALS['TBE_MODULES_EXT']['xMOD_alt_clickmenu']['extendCMclasses'][] = array(
 'name' => 'tx_extrapagecmoptions',
 'path' => t3lib_extMgm::extPath($_EXTKEY) . 'class.tx_extrapagecmoptions.php'
);
}
?>

The value of the "path" key is pointed to the absolute path of the class file that contains code for manipulation of the CSM
array. This file must contain a class by the name of "name" and inside that class a "main()" method that will be called for
manipulation. The basic skeleton looks like this:

/**
 * Class, adding extra context menu options
 *
 * @author Kasper Skaarhoj <kasper@typo3.com>
 * @package TYPO3
 * @subpackage tx_extrapagecmoptions
 */
class tx_extrapagecmoptions {
 /**
 * Adding various standard options to the context menu.
 * This includes both first and second level.
 *
 * @param object The calling object. Value by reference.
 * @param array Array with the currently collected menu items to show.
 * @param string Table name of clicked item.
 * @param integer UID of clicked item.
 * @return array Modified $menuItems array
 */
 function main(&$backRef, $menuItems, $table, $uid) {
 global $BE_USER,$TCA,$LANG;
 $localItems = array(); // Accumulation of local items.
 ...
 $menuItems = array_merge($menuItems, $localItems);
 return $menuItems;
 }
 }
}

The "extra_page_cm_options" is a slightly special since it produces additional CSM elements by calls back to the parent object
where rendering functions exists. This is due to historical reasons. Better examples of handcrafted menu items can be found
in extensions such as "templavoila" (1st level additions for specific table) and "impexp" (2nd level addition). Finally, the best
way to initiate adding elements is using the Kickstarter Wizard which contains an options for creating CSMs:

72

 TYPO3 Core APIs - doc_core_api Various examples

Implementing Context Sensitive Menus
If you want to implement a CSM for an element in your own backend modules you have to do two things:

● Include standard JavaScript and HTML code in the HTML document for all CSM instances.

● Wrap the icon / element title with a link that opens the CSM.

The standard JavaScript and HTML can be fetched from the backend document template object. In a typical backend module
environment this object is available as $this->doc and these four lines will do the trick:

 1: // Setting up the context sensitive menu:
 2: $CMparts = $this->doc->getContextMenuCode();
 3: $this->doc->bodyTagAdditions = $CMparts[1];
 4: $this->doc->JScode .= $CMparts[0];
 5: $this->doc->postCode.= $CMparts[2];

These lines must be executed before calling "$this->doc->startPage()".

• Line 2 asks the template object to generate the standard content. It is returned in an array.

• Line 3 adds event handlers for the <body> tag:

 onmousemove="GL_getMouse(event);" onload="initLayer();"

• Line 4 adds JavaScript functions in the <head> of the HTML output

• Line 5 adds the <div> layers in the bottom of the page:

 <div id="contentMenu0" style="z-index:1; position:absolute;visibility:hidden"></div>
 <div id="contentMenu1" style="z-index:2; position:absolute;visibility:hidden"></div>

73

 TYPO3 Core APIs - doc_core_api Various examples

CSM for database elements
Linking icons to open the CSM is easy:

 // Get icon with CSM:
$icon = t3lib_iconworks::getIconImage('tx_templavoila_datastructure', $row, $GLOBALS['BACK_PATH'],
'align="top"');
$content .= $this->doc->wrapClickMenuOnIcon($icon, 'tx_templavoila_datastructure', $row['uid'], 1);

In this example the first line creates an tag with the icon of a record from the table "tx_templavoila_datastructure".
The variable $row must be the record array of an element from this database table.

The second line wraps the icon ($icon) in a link that will open the CSM over it. This is done by calling
"template::wrapClickMenuOnIcon()" with $icon HTML, table name and element uid. The fourth argument is a boolean you
should set if your script is shown in the list frame of the backend. This will tell "alt_clickmenu.php" which generates the HTML
content that it should be written back to the list frame and not the navigation frame for instance.

Result:

CSM for files
Activating a CSM for a file is also easy. As for database elements it requires that the standard content is added to the HTML
document. From that point you just call the same function, "template::wrapClickMenuOnIcon()" but set the second argument
to the absolute path of the file (and keep the third argument, the uid, blank).

$GLOBALS['SOBE']->doc->wrapClickMenuOnIcon($theIcon,$path);

Notice, that in this case the document template object used is the global variable $SOBE which is normally available in
backend modules as well. You might also use the default instance found in $TBE_TEMPLATE.

For more information see the inline documentation of the function wrapClickMenuOnIcon(). It is found in the file
"template.php" in the typo3/ folder.

Parsing HTML: t3lib_parsehtml
This class is very handy for various processing needs of HTML. In the future it might be obsolete if the "tidy" extension
becomes standard in PHP but for now there are no native features in PHP which lets us parse HTML.

Extracting blocks from an HTML document
In the first example it is shown how we can extract parts of an HTML document.

 1: require_once(PATH_t3lib . 'class.t3lib_parsehtml.php');
 2:
 3: $testHTML = '
 4: <DIV>
 5:
 6: <p>Line 1</p>
 7: <p>Line <B class="test">2</p>
 8: <p>Line <i>3</i></p>
 9:
 10:

 11: <TABLE>
 12: <tr>
 13: <td>Another line here</td>
 14: </tr>
 15: </TABLE>
 16: </div>
 17: Text outside div tag
 18: <table>

74

 TYPO3 Core APIs - doc_core_api Various examples

 19: <tr>
 20: <td>Another line here</td>
 21: </tr>
 22: </table>
 23: ';
 24:
 25: // Splitting HTML into blocks defined by <div> and <table> tags
 26: $parseObj = t3lib_div::makeInstance('t3lib_parsehtml');
 27: $result = $parseObj->splitIntoBlock('div,table', $testHTML);
 28: debug($result, 'Splitting by <div> and <table> tags');
 29:

• Line 1 includes the library.

• Line 3-23 loads the HTML sample code into a variable.

• Line 36 creates an instance of the parser-class.
Notice how t3lib_div::makeInstance() is used (required).

• Line 27 splits the HTML content into an array dividing it by <div> or <table> tags.

• Line 28 outputs the result array with the debug() function:

As you can see the HTML source has been divided so the <div> section and the <table> is found in key 1 and 3. The keys of
the extracted content is always the odd keys while the even keys are the "outside" content.

Notice that the table inside of the <div> section was not "found". So when you split content like this you get only elements
on the same block-level in the source. You have to traverse the content recursively to find all tables - or just split on <table>
only (which will not give you tables nested inside of tables though).

Extracting single tags
You can split the content by tag as well. This is done in the next example. Here all and
 tags are found:

 30: // Splitting HTML into blocks defined by and
 tags
 31: $result = $parseObj->splitTags('img,br', $testHTML);
 32: debug($result,'Extracting and
 tags');
 33:

Line 31 performs the splitting operation. This is the output:

Again, all the odd keys in the array contains the tags that were found. If you wanted to do processing on this content you just
traverse the array, process all odd keys and implode the array again. A code listing for that might look like this:

75

 TYPO3 Core APIs - doc_core_api Various examples

foreach($result as $intKey => $HTMLvalue) {
 // Find all ODD keys:
 if ($intKey%2) {
 $result[$intKey] = '--'.$result[$intKey].'--';
 }
}
$newContent = implode('',$result);

Cleaning HTML content
You can also do processing on the HTML content by the HTMLcleaner() method. This code listings shows a basic example of
how you can configure it. There are a lot of features hidden in the $tagCfg array and you should refer to the inline
documentation of the method in the class.

 34: // Cleaning HTML:
 35: $tagCfg = array_flip(explode(',', 'b,img,div,br,p'));
 36: $tagCfg['b'] = array(
 37: 'nesting' => 1,
 38: 'remap' => 'strong',
 39: 'allowedAttribs' => 0
 40:);
 41: $tagCfg['p'] = array(
 42: 'fixAttrib' => array(
 43: 'class' => array(
 44: 'set' => 'bodytext'
 45:)
 46:)
 47:);
 48: $result = $parseObj->HTMLcleaner($testHTML, $tagCfg, FALSE, FALSE, array('xhtml' => 1));
 49: debug(array($result), 'Cleaning to XHTML, removing non-allowed tags and attributes');

• Line 35 initializes the $tagCfg array by setting the five allowed tags as keys. Only these tag names are allowed! All
others are removed (HTMLcleaner() can be configured to keep all unknown tags though).

• Line 36-40 configures additional options for the "b" tag. First of all correct nesting is required. This means that the
single tag in one of the paragraphs will be removed. Then the "remap" key is set which means that all
occurencies of tags will be substituted with tags instead. Finally the allowed attributes are set to false
which means that any attributes set for tags are removed.

• Line 41-47 configures additional options for the "p" tag. In this case it just hardcodes that the attribute "class" must
exist and it must have the value "bodytext".

• Line 48 calls the HTMLcleaner() method - and notice the extra options being set where "xhtml" cleaning is enabled.
This will convert all tag an attribute names to lowercase and "close" tags like and
 to <img.../> and

76

 TYPO3 Core APIs - doc_core_api Various examples

This is the output:

Advanced call back processing
This code listing shows how you can register call back functions for recursive processing of an HTML source:

 1: class user_processing {
 2: function process($str) {
 3: $this->parseObj = t3lib_div::makeInstance('t3lib_parsehtml_proc');
 4:
 5: $outStr = $this->parseObj->splitIntoBlockRecursiveProc(
 6: 'div|table|blockquote|caption|tr|td|th|h1|h2|h3|h4|h5|h6|ol|ul',
 7: $str,
 8: $this,
 9: 'callBackContent',
 10: 'callBackTags'
 11:);
 12:
 13: return $outStr;
 14: }
 15:
 16: function callBackContent($str, $level) {
 17: if (trim($str)) {
 18:
 19: // Fixing <P>
 20: $pSections = $this->parseObj->splitTags('p', $str);
 21: foreach($pSections as $k => $v) {
 22: $pSections[$k] = trim(ereg_replace('[[:space:]]+', ' ', $pSections[$k]));
 23: if (!($k%2)) {
 24:
 25: if ($k && !strstr(strtolower($pSections[$k]), '</p>')) {
 26: $pSections[$k] = trim($pSections[$k]) . '</p>';
 27: }
 28:
 29: $pSections[$k].=chr(10);
 30: }
 31: }
 32: $str = implode('',$pSections);
 33: }
 34:
 35: if (trim($str)) {
 36: $str = $this->parseObj->indentLines(trim($str),$level) . chr(10);
 37: } else {
 38: $str = trim($str);
 39: }
 40:
 41: return $str;
 42: }
 43:
 44: function callBackTags($tags,$level) {
 45:
 46: if (substr($tags['tag_name'],0,1) == 'h') {
 47: $tags['tag_end'] .= chr(10);
 48: $tags['content'] = trim($tags['content']);
 49: // Removing the <hx> tags if they content nothing when tags are stripped:
 50: if (!strlen(trim(strip_tags($tags['content'])))) {
 51: $tags['tag_start'] = $tags['tag_end'] = '';

77

 TYPO3 Core APIs - doc_core_api Various examples

 52: $tags['add_level'] = 0;
 53: $tags['content'] = '';
 54: return $tags;
 55: }
 56: } elseif ($tags['tag_name'] == 'div' || $tags['tag_name'] == 'blockquote') {
 57: $tags['tag_start'] = $tags['tag_end'] = '';
 58: $tags['add_level'] = 0;
 59: } else {
 60: $tags['tag_start'] = $this->parseObj->indentLines(trim($tags['tag_start']),$level) .
chr(10);
 61: $tags['tag_end'] = $this->parseObj->indentLines(trim($tags['tag_end']),$level) .
chr(10);
 62: }
 63: return $tags;
 64: }
 65: }

In the method "process()" processing is started. Like when splitting HTML content you define a list of tags to split by. Each of
these will be processed by the call back functions "callBackContent" and "callBackTags" for processing of both the content
between the splitted tags and the tags themselves.

Notice how it is all within the same class which is a requirement for the call back functions.

I'll not explain this listing in further detail. Explore it yourself if you are interested in call back processing of HTML sources.

Links to edit records
Quite often in your backend modules you might like to create a link to edit a record. This is easily done with an API function
call to t3lib_BEfunc::editOnClick(). This script will create an onclick-JavaScript event linking you to the "alt_doc.php" script in
the "PATH_typo3" directory.

All you need to do is prepare GET parameters for the "alt_doc.php" script. Please look inside of "alt_doc.php" for more details
of possible GET vars you can use and what they mean. In this example I have shown the most typical options.

The result of the code listing will be three links like these:

The code listing looks like this:

 1: $editUid = 1135;
 2: $editTable = 'pages';
 3:
 4: // Edit whole record:
 5: $params = '&edit[' . $editTable . '][' . $editUid . ']=edit';
 6: $output.= '<a href="#" onclick="' . htmlspecialchars(t3lib_BEfunc::editOnClick($params,
$GLOBALS['BACK_PATH'])) . '">' .
 7: '<img'.t3lib_iconWorks::skinImg($GLOBALS['BACK_PATH'], 'gfx/edit2.gif', 'width="11"
height="12"') . ' title="Edit me" border="0" alt="" />'.
 8: 'Edit record ' . $editUid . ' from the "' . $editTable . '" table' .
 9: '

';
 10:
 11: // Edit only "title" and "hidden" fields from record:
 12: $params = '&edit[' . $editTable . '][' . $editUid.']=edit&columnsOnly=title,hidden';
 13: $output .= '<a href="#" onclick="' . htmlspecialchars(t3lib_BEfunc::editOnClick($params,
$GLOBALS['BACK_PATH'])) . '">'.
 14: 'Edit "title" and "hidden" fields from record ' . $editUid . ' from the "' . $editTable .
'" table' .
 15: '

';
 16:
 17: // Create new "Content Element" record in PID 1135
 18: $params = '&edit[tt_content][' . $editUid . ']=new&defVals[tt_content][header]=New%20Element';
 19: $output .= '<a href="#" onclick="' . htmlspecialchars(t3lib_BEfunc::editOnClick($params,
$GLOBALS['BACK_PATH'])) . '">' .
 20: 'Create new Content Element inside page ' . $editUid.
 21: '
';

Editing a record
In line 5 you see the basic GET parameter you need to set up to edit a record. You need to know the database table name,
record uid in advance. The syntax is "&edit[tablename][uid]=edit". You can specify as many tables and uids you like and

78

 TYPO3 Core APIs - doc_core_api Various examples

you will get them all in one single form! The "uid" variable can even be a comma list of uids (short way of editing more
records from the same table at once).

The lines 5-9 produces a link which shows this form:

Editing only a few fields from a record
Lines 11-15 creates the same link but with additional information that only the field names "title" and "hidden" should be
edited! That is done by adding the GET parameters "&columnsOnly=title,hidden". This means the form will look like this:

Creating a form for new elements
Lines 17-21 creates a link which will make a new content element inside the page with "pid" 1135. The syntax for creating
new records is "&edit[table_name_of_new_record][pid_reference]=new". The pid reference is special: If it is a negative
value it points to another record from the same table after which the new record should be created. If it is positive or zero it
just points to the page id where the record should be created (as the top element).

Another feature is that a custom default value for the header field is automatically passed along. This is done by the

79

 TYPO3 Core APIs - doc_core_api Various examples

additional GET parameter "&defVals[tt_content][header]=New%20Element" and you can see how the Header field is pre-
filled with this value below.

The result of the "create new" will be this form.

Support for custom tables in the Page module
In the Web > Page module you can have listings of other records than Content Elements and guest book items. If you want
your custom table to be listed there you can configure it using the $TYPO3_CONF_VARS["EXTCONF"]['cms'] array. This is a
configuration option offered from within the Page module.

In this example the tt_news extension is configured for listing in the Page module. It would look like this:

The configuration required is as simple as this, put into (ext_)localconf.php:

$TYPO3_CONF_VARS['EXTCONF']['cms']['db_layout']['addTables']['tt_news'][0] = array(
 'fList' => 'title,short;author',
 'icon' => TRUE
);

80

 TYPO3 Core APIs - doc_core_api Various examples

The "fList" key value is a list of field names separated first by comma and then ";" (semi-colon). The comma separates table
columns while the semi-colon allows you to list more than one field to be displayed inside a single column.

Adding elements to the Content Element Wizard
Since TYPO3 4.3 the new content element wizard can be fully configured using TSConfig. The example below describes the
base method for adding a plugin to the list of plugins in the wizard.

Adding elements under the “Plugins” header
If you want to add elements in the wizard under the plugins header there is native support in the script for this.

Basically, what you do is to set content in the global variable $TBE_MODULES_EXT['xMOD_db_new_content_el']
['addElClasses']. The keys in this array must be class names and the values is the absolute path of the class. When the script
is run the class files will be included during initialization. Then, during the building of the array of wizard elements the default
wizard array is passed to the class you have configured through the method proc() in your class.

For details the most easy thing will be to look into the script in the function wizardArray() - this will make it clear to you how
it works.

Example

As an example of how this works from an extension you can take a look at the extension tt_guest. This extension adds itself
in the plugin category by inserting these lines in its ext_tables.php file:

if (TYPO3_MODE=='BE') {
 $TBE_MODULES_EXT['xMOD_db_new_content_el']['addElClasses']['tx_ttguest_wizicon'] =
 t3lib_extMgm::extPath($_EXTKEY) . 'class.tx_ttguest_wizicon.php';
}

In the file class.tx_ttguest_wizicon.php you will find a class looking like this:

/**
 * Class, containing function for adding an element to the content element wizard.
 *
 * @author Kasper Skaarhoj <kasper@typo3.com>
 * @package TYPO3
 * @subpackage tx_ttguest
 */
class tx_ttguest_wizicon {

 /**
 * Processing the wizard-item array from db_new_content_el.php
 *
 * @param array Wizard item array
 * @return array Wizard item array, processed (adding a plugin for tt_guest extension)
 */
 function proc($wizardItems) {
 global $LANG;

 // Include the locallang information.
 $LL = $this->includeLocalLang();

 // Adding the item:
 $wizardItems['plugins_ttguest'] = array(
 'icon' => t3lib_extMgm::extRelPath('tt_guest') . 'guestbook.gif',
 'title' => $LANG->getLLL('plugins_title', $LL),
 'description' => $LANG->getLLL('plugins_description', $LL),
 'params' => '&defVals[tt_content][CType]=list&defVals[tt_content]
[list_type]=3&defVals[tt_content][select_key]=' . rawurlencode('GUESTBOOK, POSTFORM')
);

 return $wizardItems;
 }

 /**
 * Include locallang file for the tt_guest book extension (containing the description and title for
the element)
 *
 * @return array LOCAL_LANG array
 */
 function includeLocalLang() {
 include(t3lib_extMgm::extPath('tt_guest') . 'locallang.xml');
 return $LOCAL_LANG;
 }
}

81

 TYPO3 Core APIs - doc_core_api Various examples

As you can see this class modifies the wizard array with an additional item. This is how you can also add / modify elements in
the array using this API.

Using custom permission options
TYPO3 (3.7.0+) offers extension developers to register their own permission options to be automatically managed by TYPO3s
user group access lists. The options can be grouped in categories. A custom permission option is always a checkbox (on/off).
The scope of such options is for use in the backend of TYPO3 only.

Registering a header and options
You configure options in the global variable $TYPO3_CONF_VARS['BE']['customPermOptions']. You can read the comment
inside “config_default.php” regarding the syntax of the array.

This example shows how three options are registered under a new category:

$TYPO3_CONF_VARS['BE']['customPermOptions'] = array(
 'tx_coreunittest_cat1' => array(
 'header' => '[Core Unittest] Category 1',
 'items' => array(
 'key1' => array('Key 1 header'),
 'key2' => array('Key 2 header'),
 'key3' => array('Key 3 header'),
)
)
);

The result is that these options appear in the group access lists like this:

You can also add icons, a description and use references to locallang values. Such a detailed configuration could look like this
(also just an example):

...
'tx_coreunittest_cat2' => array(
 'header' => 'LLL:EXT:coreunittest/locallang_test.php:test_header',
 'items' => array(
 'keyA' => array('Key a header', 'icon_ok.gif', 'This is a description....'),
 'keyB' => array('LLL:EXT:coreunittest/locallang_test.php:test_item',
'../typo3/gfx/icon_ok2.gif', 'LLL:EXT:coreunittest/locallang_test.php:test_description'),
 'key3' => array('Key 3 header', 'EXT:coreunittest/ext_icon.gif'),
)
)
...

Evaluating the options
Checking if a custom permission option is set you simply call this API function in the user object:

$BE_USER->check('custom_options', $catKey . ':' . $itemKey);

$catKey is the category in which the option resides. From the example above this would be “tx_coreunittest_cat1”

$itemKey is the key of the item in the category you are evaluating. From the example above this could be “key1”, “key2” or
“key3” depending on which one of them you want to evaluated.

The function returns true if the option is set, otherwise false.

Keys in the array
It is good practice to use the extension keys prefixed with “tx_” on the first level of the array. This will help to make sure you
do not pick a key which someone else picked as well!

Also you should never pick a key containing any of the characters “,:|” since they are reserved delimiter characters.

82

 TYPO3 Core APIs - doc_core_api Table Control Array, $TCA

Table Control Array, $TCA

The reference to the $TCA (Table Control Array) was extracted from here and moved to its own manual, called "TCA
Reference" (doc_core_tca). Please refere to http://typo3.org/documentation/document-library/core-
documentation/doc_core_tca/current/.

83

 TYPO3 Core APIs - doc_core_api Page types

Page types

$PAGES_TYPES
$PAGES_TYPES defines the various types of pages (field: doktype) the system can handle and what restrictions may apply to
them. Here you can set the icon and especially you can define which tables are allowed on a certain page type (doktype).

NOTE: The "default" entry in the $PAGES_TYPES-array is the "base" for all types, and for every type the entries simply
overrides the entries in the "default" type!!

This is the default array as set in t3lib/stddb/tables.php:

$PAGES_TYPES = array(
'254' => array(// Doktype 254 is a 'sysFolder' - a general purpose storage folder

'type' => 'sys',
'icon' => 'sysf.gif',
'allowedTables' => '*'

),
'255' => array(// Doktype 255 is a recycle-bin.

'type' => 'sys',
'icon' => 'recycler.gif',
'allowedTables' => '*'

),
'default' => array(

'type' => 'web',
'icon' => 'pages.gif',
'allowedTables' => 'pages',
'onlyAllowedTables' => '0'

)
);

Each array has the following options available:

Key Description

type Can be "sys" or "web"

icon Alternative icon.
The file reference is on the same format "iconfile" in [ctrl] section of TCA

allowedTables The tables that may reside on pages with that "doktype".
Comma-separated list of tables allowed on this page doktype. "*" = all

onlyAllowedTables Boolean. If set, the tce_main class will not allow a shift of doktype if unallowed records are on
the page.

Notice: All four options must be set for the default type while the rest can choose as they like.

84

 TYPO3 Core APIs - doc_core_api User Settings Configuration

User Settings Configuration

Introduction
The User settings module has the most complex form in the TYPO3 BE not to be driven by TCA/TCEforms. As such it has its
own configuration array that is quite similar to the $TCA, but with less options.

Reference

$TYPO3_USER_SETTINGS['ctrl']
Just like with the $TCA, the “ctrl” section contains some general options that affect the global rendering of the form.

Key Datatype Description Default

dividers2tabs int Render user setup with or without tabs. Possible values are:

• 0 = no tabs,
• 1 = tabs, empty tabs are hidden
• 2 = tabs, empty tabs are disabled

1

$TYPO3_USER_SETTINGS['columns'][fieldname]
This contains the configuration array for single fields in the user settings. This array allows the following configurations:

Key Datatype Description

type string Defines the type of the input field
If type=user you need to define userFunc too.

Example:

'installToolEnableFile' => array(
'type' => 'user',
'label' =>

'LLL:EXT:setup/mod/locallang.xml:InstallToolEnableFileButton',
'userFunc' => 'SC_mod_user_setup_index-

>renderInstallToolEnableFileButton',
'access' => 'admin',

)

Allowed values: text, password, check, select, user

label string Label for the input field

csh string CSH key for the input field

access string Access control. At the moment only a admin-check is implemented

Allowed values: admin

table string If the user setting is saved in a DB table, this property sets the table. At the moment only be_users
is implemented.

Allowed values: be_users

eval string Evaluates a field with a given function. Currently only md5 is implemented, for password field.

Allowed values: md5

items array Array of key-value pair for select items Only used by type=select.

itemsProcFunc string Defines an external method for rendering items of select-type fields. Contrary to what is done with
the TCA you have to render the <select> tag too. Only used by type=select.
Use the usual class->method syntax.

85

 TYPO3 Core APIs - doc_core_api Reference

$TYPO3_USER_SETTINGS['showitem']
This string is used for rendering the form in the user setup module. Fields are rendered in the order of this string containing a
comma-separated list of field names.

To use a tab insert a "--div--;LABEL" item in the list.

Checking the User Settings Configuration
It is possible to check the configuration via the Admin Tools > Configuration module, just like for the $TCA.

86

 TYPO3 Core APIs - doc_core_api RTE API

RTE API

Rich Text Editors in the TYPO3 backend

Introduction
When you configure a table in $TCA and add a field of the type “text” which is edited by a <textarea> you can choose to use
a Rich Text Editor (RTE) instead of the <textarea> field. A RTE enables the users to use visual formatting aids to create bold,
italic, paragraphs, tables etc. In other words, it gives normal text processing features in the web browser.

It is not within the scope of this chapter to describe how you set up a text field to use an RTE. As was discussed before, the
quickest way is to add the key “defaultExtras” to the configuration of the column and add the string “richtext[]” as value:

'poem' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.poem',
'config' => array(

'type' => 'text',
'cols' => 40,
'rows' => 6

),
'defaultExtras' => 'richtext[]'

),

This works for FlexForms too.

RTEs in Extensions
TYPO3 supports any Rich Text Editor for which someone might write a connector to the RTE API. This means that you can
freely choose whatever RTE you want to use among those available from the Extension Repository on typo3.org.

TYPO3 comes with a built-in RTE called “rtehtmlarea”, but other RTEs are available in the TYPO3 Extension Repository.

You can enable more than one RTE if you like but only one will be active at a time. Since Rich Text Editors often depend on
browser versions, operating systems etc. each RTE must have a method in the API class which reports back to the system if
the RTE is available in the current environment. The Rich Text Editor available to the backend user will be the first loaded RTE
which reports back to TYPO3 that it is available in the environment. If the RTE is not available, the next RTE Extension loaded

87

 TYPO3 Core APIs - doc_core_api Rich Text Editors in the TYPO3 backend

will be asked.

For example the RTE “rtehtmlarea” is available under Windows and Linux and under both MSIE and Mozilla. Opposite the
“rte” extension is only available under MSIE / Windows. If the “rtehtmlarea” extension is loaded before the “rte” extension
then the “rtehtmlarea” RTE is always used. But if “rte” is loaded first then it is also asked for availability first; the result is that
under Windows / MSIE the “rte” (the “traditional” RTE in TYPO3) is used while “rtehtmlarea” will be used in other
environments.

API for Rich Text Editors
Connecting an RTE in an extension to TYPO3 is easy.

• Create a class file in your extensions, named “class.tx_[extensionkey minus underscores]_base.php”. Make the class
inside an extension of the system class, “t3lib_rteapi” (which you should include first of course) and override
functions from the parent class to the degree needed.

• In the “ext_localconf.php” file you put an entry in $TYPO3_CONF_VARS['BE']['RTE_reg'] which registers the new RTE
with the system. For example;
$TYPO3_CONF_VARS['BE']['RTE_reg']['myrte'] = array('objRef' =>
'EXT:myrte/class.tx_myrte_base.php:&tx_myrte_base');

The object reference in “objRef” consists of a filename reference (for the class file) and then the name of the class prefixed
with “&” which ensures that you get the same instance (global) of the object each time you ask for it. "myrte" is the
extension key of your RTE extension (with underscores stripped).

class.t3lib_rteapi.php
In the base class for the RTE API there are three main methods of interest:

• function isAvailable()
This method is asked for the availability of the RTE; This is where you should check for environmental requirements
that is needed for your RTE. Basically the method must return TRUE if the RTE is available. If it is not, the RTE can
put text entries in the internal array ->errorLog which is used to report back the reason why it was not available.

• function drawRTE(&$pObj,$table,$field,$row,$PA,$specConf,$thisConfig,$RTEtypeVal,$RTErelPath,
$thePidValue)
This method draws the content for the editing form of the RTE. It is called from the “t3lib_TCEforms” class which
also passes a reference to itself in $pObj. For details on the arguments in the method call, please see inside
“class.t3lib_rteapi.php”.

• function transformContent($dirRTE,$value,$table,$field,$row,$specConf,$thisConfig,$RTErelPath,
$pid)
This method is used both from ->drawRTE() and from t3lib_tcemain to transform the content between the database
and RTE. When content is loaded from the database to the RTE (and vice versa) it may need some degree of
transformation. For instance references to links and images in the database might have to be relative while the RTE
requires absolute references. This is just a simple example of what “transformations” can do for you and why you
need them. There are plenty of details on this topic later.

Example: The “rte” extension

The “rte” extension has a “ext_localconf.php” file which looks like this:

if (!defined ('TYPO3_MODE')) die ('Access denied.');

$TYPO3_CONF_VARS['BE']['RTE_reg']['rte'] = array('objRef' =>
'EXT:rte/class.tx_rte_base.php:&tx_rte_base');

As you can see it registers the API class to the system. In the class “tx_rte_base” the three methods from the list above is
available.

The file “class.tx_rte_base.php” looks like this:

 4: require_once(PATH_t3lib.'class.t3lib_rteapi.php');
 5: /**
 6: * RTE base class (Traditional RTE for MSIE 5+ on windows only!)
 7: *
 8: * @author Kasper Skaarhoj <kasper@typo3.com>
 9: * @package TYPO3
 10: * @subpackage tx_rte

88

 TYPO3 Core APIs - doc_core_api Rich Text Editors in the TYPO3 backend

 11: */
 12: class tx_rte_base extends t3lib_rteapi {
 13:
 14: // External:
 15: var $RTEdivStyle; // Alternative style for RTE <div> tag.
 16:
 17: // Internal, static:
 18: var $ID = 'rte'; // Identifies the RTE ...
 19: var $debugMode = FALSE; // Debug mode
 20:
 21:
 22: /**
 23: * Returns true if the RTE is available. Here you check if the browser requirements are met.
 24: * If there are reasons why the RTE cannot be displayed you simply enter them as text in
->errorLog
 25: *
 26: * @return boolean TRUE if this RTE object offers an RTE
 27: */
 28: function isAvailable() {
 29: global $CLIENT;
 30:
 31: if (TYPO3_DLOG) t3lib_div::devLog('Checking for availability...','rte');
 32:
 33: $this->errorLog = array();
 34: if (!$this->debugMode) { // If debug-mode, let any browser through
 35: if ($CLIENT['BROWSER']!='msie') $this->errorLog[] = '"rte": Browser is not MSIE';
 36: if ($CLIENT['SYSTEM']!='win') $this->errorLog[] = '"rte": Client system is not
Windows';
 37: if ($CLIENT['VERSION']<5) $this->errorLog[] = '"rte": Browser version
below 5';
 38: }
 39: if (!count($this->errorLog)) return TRUE;
 40: }
 41:
 42: /**
 43: * Draws the RTE as an iframe for MSIE 5+
 44: *
...
 55: * @return string HTML code for RTE!
 56: */
 57: function drawRTE(&$pObj,$table,$field,$row,$PA,$specConf,$thisConfig,$RTEtypeVal,$RTErelPath,
$thePidValue) {
 58:
 59: // Draw form element:
 60: if ($this->debugMode) { // Draws regular text area (debug mode)
 61: $item = parent::drawRTE($pObj,$table,$field,$row,$PA,$specConf,$thisConfig,
$RTEtypeVal,$RTErelPath,$thePidValue);
 62: } else { // Draw real RTE (MSIE 5+ only)
 63:
 64: // Adding needed code in top:
 65: $pObj->additionalJS_pre['rte_loader_function'] = $this->loaderFunc($pObj->formName);
 66: $pObj->additionalJS_submit[] = "
 67: if(TBE_RTE_WINDOWS['".$PA['itemFormElName']."']) { document.".
$pObj->formName."['".$PA['itemFormElName']."'].value = TBE_RTE_WINDOWS['".
$PA['itemFormElName']."'].getHTML(); } else { OK=0; }";
 68:
...
 82:
 83: // Transform value:
 84: $value = $this->transformContent('rte',$PA['itemFormElValue'],$table,$field,$row,
$specConf,$thisConfig,$RTErelPath,$thePidValue);
 85:
 86: // Register RTE windows:
 87: $pObj->RTEwindows[] = $PA['itemFormElName'];
 88: $item = '
 89: '.$this->triggerField($PA['itemFormElName']).'
 90: <input type="hidden" name="'.htmlspecialchars($PA['itemFormElName']).'"
value="'.htmlspecialchars($value).'" />
 91: <div id="cdiv'.count($pObj->RTEwindows).'"
style="'.htmlspecialchars($RTEdivStyle).'">
 92: <iframe
 93: src="'.htmlspecialchars($rteURL).'"
 94: id="'.$PA['itemFormElName'].'_RTE"
 95: style="visibility:visible; position:absolute; left:0px; top:0px; height:100%;
width:100%;"></iframe>
 96: </div>';
 97: }
 98:
 99: // Return form item:

89

 TYPO3 Core APIs - doc_core_api Rich Text Editors in the TYPO3 backend

 100: return $item;
 101: }

Here follows some comments:

• Line 28-40 detects the browser. Only if the browser is MSIE on Windows and a version higher than or equal to 5,
then will the RTE be available for the user. Notice how error messages are set in ->errorLog so the system can give
the user a hint as to why the RTE didn't show up.

• Line 57 starts the method “drawRTE” which creates the RTE as HTML. This RTE is in fact created by another script
inside an <iframe>. The content of the field is stored in a hidden field and the script in the IFRAME loads the
content by JavaScript from this field.
Basically, the content submitted from the RTE is in this hidden field! In other words, the RTE has to load and save
back content to this field. Other RTEs might integrate this differently. For instance a Java RTE would also
communicate the content to and from a hidden field while the “rtehtmlarea” extension uses a normal <textarea>
field but somehow overlays it with visual formatting.
In all cases, the call to triggerField() is important (line 89); This returns a hidden field with the same field name as
the main field but prefixed “_TRANSFORM_” and having the value “RTE”. This hidden field triggers the
transformation process from RTE content to database (DB) in TCEmain and therefore you have to add it!

• Notice how line 84 calls the “transformContent” method in the class to create the $value to put into the RTE. In the
case of the “rte” extension the “transformContent” method is used from the parent class, but if you need special
transformations you can easily do so by overriding the function in you child class.

Transformations

Introduction
Transformation of content between the database and an RTE is needed if the format of the content in the database is
different than the format understood by an RTE. A simple example could be that bold-tags in the database should be
converted to tags in the RTE or that references to images in tags in the database should be relative while
absolute in the RTE. In such cases a transformation is needed to do the conversion both ways; From database (DB) to RTE
and from RTE to DB.

Generally transformations are needed for two reasons:

● Data Formats; If the agreed format of the stored content in TYPO3 is different from the HTML format the RTE produces.
This could be issues like XHTML, banning of certain tags or maybe a hybrid format in the database. (See section 3 in the
illustration some pages ahead)

● RTE specifics; If the RTE has special requirements to the content before it can be edited and if that format is different
from what we want to store in the database. For instance an RTE could require a full HTML document with <html>,
<head> and <body> - obviously we don't want that in the database and likewise we will have to wrap content in such a
dummy-body before it can be edited. (This is the case with “rteekit”, see section 4 in the illustration some pages ahead).

Hybrid modes
The traditional challenge of incorporating an RTE in TYPO3 has been that the RTE was available only to a limited set of
browsers, typically MSIE on Windows. Therefore if an RTE was supported it had to be backwards compatible with situations
where content was to be edited from regular <textarea>'s with no visual formatting.

Among the transformations in TYPO3 there are two modes, “ts_transform” and “css_transform”, which are trying to maintain
a data format that is as human readable as possible while still offering an RTE for editing if applicable.

To know the details of those transformations, please refer to the tables in the next section. More historical background can
also be obtained later in this document. But here is a short example of a hybrid mode:

In Database:

This is how the content in the database could look for a hybrid mode (such as “css_transform”). As you can see the TYPO3-
specific tag, “<link>” is used for the link to page 123. This tag is designed to be easy for editors to insert. It is of course
converted to a real <a> tag when the page is rendered in the frontend. Further line 2 shows bold text. In line 3 the situation
is that the paragraph should be centered - and there seems to be no other way than wrapping the line in a <p> tag with the
“align” attribute. Not so human readable but we can do no better without an RTE. Line 4 is just plain.

Generally this content will be processed before output on a page of course. Typically the rule will be this: “Wrap each line in a
<p> tag which is not already wrapped in a <p> tag and convert all TYPO3-specific <link>-tags to real <a> tags.” and thus
the final result will be valid HTML.

This is line number 1 with a <link 123>link</link> inside

90

 TYPO3 Core APIs - doc_core_api Transformations

This is line number 2 with a bold part in the text
<p align=”center”>This line is centered.</p>
This line is just plain

In RTE:

The content in the database can easily be edited as plain text thanks to the “hybrid-mode” used to store the content. But
when the content above from the database has to go into the RTE it will not work if every line is not wrapped in a <p> tag!
The same is true for the <link> tag; it has to be converted so the RTE understands it:

<p>This is line number 1 with a link inside</p>
<p>This is line number 2 with a bold part in the text</p>
<p align=”center”>This line is centered.</p>
<p>This line is just plain</p>

This process of conversion from the one format to the other is what transformations do!

Configuration
Transformations are mainly defined in the “Special Configuration” of the $TCA "types"-configuration. There is detailed
description of this in the $TCA section of this document.

In addition transformations can be fine-tuned by Page TSconfig which means that RTE behaviour can be determined even on
page branch level! Details about this are found later in this chapter about the RTE API.

Where transformations are performed
The transformations you can do with TYPO3 is done in the class “t3lib_parsehtml_proc”. There are typically a function for
each direction; From DB to RTE (suffixed “_rte”) and from RTE to DB (suffixed “_db”).

The transformations are invoked in two cases:

● Before content enters the editing form
This is done by the RTE API itself, calling the method t3lib_rteapi::transformContent(). See examples of this in the
extensions “rte”, “rtehtmlarea” and “rteekit”. In particular “rteekit” is interesting because it not only calls the system
transformations but also does some Ekit-specific processing since a whole HTML document has to be used in “Ekit” Java
RTE which means that the HTML document body must be wrapped/stripped off as a part of the transformation process.

● Before content is saved in the database
This is done in t3lib_tcemain class and the transformation is triggered by a pseudo-field from the submitted form! This
field is added by the RTE API (calling t3lib_rteapi::triggerField()). Lets say the fieldname is “data[tt_content][456]
[bodytext]” then the trigger field is named “data[tt_content][456][_TRANSFORM_bodytext]” and in t3lib_tcemain this
pseudo-field will be detected and used to trigger the transformation process from RTE to DB. Of course the pseudo field
will never go into the database (since it is not found in $TCA).

The concept of transformations is discussed in more detail a few pages ahead ("Historical perspective on RTE
transformations").

Process illustration
The following illustration shows the process of transformations graphically.

Part 1: The RTE Applications
This is the various possible RTE applications. They can be based on DHTML, Active-X, Java, Flash or whatever.

Part 2: The RTE Specific Transformation
Some RTEs might need to apply additional transformation of the content in addition to the general transformation. An
example is "rteekit" which requires a full HTML document for editing (and which will return a full document). In that case the
RTE specific transformation must add/remove this html-document wrapper.

RTE specific transformations is normally programmed directly into the rte-api extension class. In the case of "rteekit" that is
"tx_rteekit_base" which extends "t3lib_rteapi"

Part 3: The Main Transformation
The main transformation of content between browser format for RTEs and the database storage format. This is general for all
RTEs. Normally consists of converting links and image references from absolute to relative and further HTML processing as

91

 TYPO3 Core APIs - doc_core_api Transformations

needed. This is the kind of transformation specifically described on the coming pages!

The main transformations is done with "t3lib_parsehtml_proc".

Part 4: The Database
The database where the content is stored for use in both backend and frontend.

Part 5: Rendering the website
Content from the database is processed for display on the website. Depending on the storage format this might also involve
"transformation" of content. For instance the internal "<link>" tag has to be converted into an HTML <a> tag.

The processing normally takes place with TypoScript Templates, the "CSS Styled Content" extension (TS object path
"lib.parseFunc_RTE")

Part 6: The Website
The website made with TYPO3.

Content Examples
This table gives some examples of how content will look in the RTE, in the database and on the final website.

Notice: This is only examples! It might not happen exactly like that in real life since it depends on which exact
transformations you apply. But it illustrates the point that the content needs to be in different states whether in the RTE,
Database or Website frontend.

RTE (#1) Database (#4) Website (#6) Comment

<p>Hello World</p> Hello World <p>Hello World</p> <p> omitted in
DB to make it
plain-text
editable.

<p align="right">Right aligned text</p> <p align="right">Right aligned
text</p>

<p align="right">Right aligned
text</p>

Had to keep <p>
tag in DB
because align
attribute was
found.

<table ...>....</table> [stripped out] - Tables were not
allowed, so
stripped.

92

 TYPO3 Core APIs - doc_core_api Transformations

RTE (#1) Database (#4) Website (#6) Comment

<a href="http://localhost/.../index.php?
id=123">

<link 123>

Links are stored
with the <link>-
tag and needs
processing for
both frontend
and backend.

<img
src="http://localhost/fileadmin/image.jpg">

 <img
src="fileadmin/image.jpg">

References to
images must
usually be
absolute paths in
RTEs while
relative in
database.

Transformation overview
The transformation of the content can be configured by listing which transformation filters to pass it through. The order of
the list is the order in which the transformations are performed when saved to the database. The order is reversed when the
content is loaded into the RTE again.

Transformation filter: Description:

ts_transform Transforms the content with regard to most of the issues related to content elements types 'Text' and
'Text w/Image'. The mode is optimized for the content rendering of the static template “content
(default)” which uses old tag style rendering.
The mode is a “hybrid” mode which tries to save only the necessary HTML in the database so that
content might still be easily edited without the RTE. For instance a text paragraph will be encapsulated
in <p> tags while in the database it will just be a single line ended by a line break character.
(Supports the “cms” extension)

css_transform Like “ts_transform”, but headers and bulletlists are preserved as <Hx> tags and /
(TYPOLIST and TYPOHEAD are still converted to Hx and OL/UL, but not reversely...) and tables are
preserved (PROC.preserveTables is disabled).
The mode is optimized for the content rendering done by “css_styled_content” or similar.

ts_preserve Converts the list of preserved tags - if any - to -tags with a custom parameter 'specialtag'
which holds the value of the original tag.
Deprecated.

ts_images Checks if any images on the page is from external URLs and if so they are fetched and stored in the
uploads/ folder. In addition 'magic' images are evaluated to see if their size has changed and if so the
image is recalculated on the server. Finally absolute URLs are converted to relative URLs for all local
images.

ts_links Converts the absolute URLs of links to the TypoScript specific <LINK>-tag. This process is designed to
make links in concordance with the typolink function in the TypoScript frontend.

ts_reglinks Converts the absolute URLs of links to relative. Keeping the <A>-tag.

Meta transformation: Description:

ts Meta-mode which is basically a substitute for this list: ts_transform,ts_preserve,ts_images,ts_links.
This is the one used specifically for the two 'Text'-types of the content elements (“cms” extension).

ts_css Like “ts”, a meta-mode which is a substitute for the list: css_transform,ts_images,ts_links. It is
designed to be the new, modern transformation used by most RTE cases, because it converts links
between <A> and <LINK> but preserves all other content while still making it as human readable as
possible (that means simple <P>-tags are resolved into simple lines.)

In addition, custom transformations can be created. This allows you to create your own tailor made transformations with a
PHP class where you can program how content is processed to and from the database. See section later.

Transformation details
The transformations offered by the TYPO3 core are performed by the class “t3lib_parsehtml_proc”. Here follows a technical
and detailed description of the transformation filters available:

DB -> RTE RTE -> DB

ts_transform, css_transform

function t3lib_parseHTML::TS_transform_rte() function t3lib_parseHTML::TS_transform_db()

93

 TYPO3 Core APIs - doc_core_api Transformations

DB -> RTE RTE -> DB

● Sections by the tags TABLE,PRE,UL,OL,H1,H2,H3,H4,H5,H6 are
not processed and thus just passed on to the RTE.

● The content of <BLOCKQUOTE> sections are sent recursively
through the ts_transform filter. The tag remains.

● <TYPOLIST> sections are converted to or sections,
the latter is the case if the type parameter is set to 1.
The conversion of TYPOLIST-tags can be disabled by setting the
'proc.typolist' option. See later.

● <TYPOHEAD> sections are converted to <Hx>-tags. The type
parameter ranging from 1-5 determines which H-tag will be
used. If no type parameter is set, H6 is used.
The conversion of TYPOHEAD-tags can be disabled by setting the
'proc.typohead' option. See later.

● All content outside the tags already mentioned are now
processed as follows:
● Every line is wrapped in <P>-tags (configurable to DIV), if a

line is empty a is set and if the line happens to be
wrapped in DIV/P-tags already, it's not wrapped again (this
might be the case if align or class parameters has been set).

● Then tags are mapped to tags and <I>
tags are mapped to tags (This is how the RTE prefers
it).

● All content between the P/DIV tags outside of other allowed
HTML-tags are htmlspecialchar()'ed. Thus only allowed HTML
code is preserved and other “pseudo tags” are mapped to
real text.

● Sections by the tag PRE are not processed and thus just passed
on to the DB.

● <TABLE>-sections are dissolved so only the text of the table
cells remains. Every cell represents a new line. The reason for
this action basically is that tables are not wanted in the 'Text'-
types and they may also be nice to get rid of in case you have
transferred content from other websites. (This can be disabled.)
(Does NOT apply to “css_transform”)

● The content of <BLOCKQUOTE> sections are sent recursively
through the ts_transform filter. The tag remains.

● and sections are converted to <TYPOLIST>
sections. If the bulletlist is (ordered list with numbers) the
type parameter of the typolist is set to 1. Bulletlists in multiple
levels are not supported.
The conversion of TYPOLIST-tags can be disabled by setting the
'proc.typolist' option. See later.
(Does NOT apply to “css_transform”)

● <Hx> sections are converted to <TYPOHEAD>-tags. The
number of the Hx-tag ranging from 1-5 is set as the type-
number of the TYPOHEAD tag. <H6> is equal to type=0
(default). Also the align parameter is preserved as well as the
class parameter if set.
The conversion of TYPOHEAD-tags can be disabled by setting the
'proc.typohead' option. In that case the tag is preserved with the
parameters align and class. See later.
(Does NOT apply to “css_transform”)

● All content outside these block are now processed as follows:
● All <DIV> and <P> sections are dissolved into lines (unless

align and/or class parameters are set).
●
 tags are as well converted into newlines (configurable

since this will resolve “soft linebreaks” into paragraphs!).
● Then and tags are remapped to and

<I> tags. (This is more human readable. Configurable).
● The list of allowed tags (configurable) is preserved - all other

tags discarded (thus junk-tags from pasted content will not
survive into the database!).

● The content outside the allowed tags is de-
htmlspecialchar()'ed - thus converted back to human-
readable text. Furthermore the nesting of tags inside of
P/DIV sections is preserved. For instance this: <P>One
<U>two three</P></U> will be converted to
<P>One two three</P>. That is the U-tags being
removed, because they were falsely nested with the <P>
tags.

ts_preserve (deprecated)

function t3lib_parseHTML::TS_preserve_rte() function t3lib_parseHTML::TS_preserve_db()

● If 'proc.preserveTags' are configured those tags are converted to
-
sections. Those are supposed to be let alone by the RTE.

● If 'proc.preserveTags' are configured -tags with the
custom 'specialtag' parameter set are converted back to the tag
value contained in the specialtag-parameter.

ts_images

function t3lib_parseHTML::TS_images_rte() function t3lib_parseHTML::TS_images_db()

● All -tags are processed and if the value of the src-
parameter happens not to start with 'http' it's expected to be a
relative URL and the current site URL is prefixed so the reference
is absolute in the RTE as the RTE requires.

● All -tags are processed and if the first part of the src-
parameter is not the same as the current site URL, the image
must be a reference to an external image. In that case the
image is read from that URL and stored as a 'magic' image in the
upload/ folder (can be disabled).

● All magic images (that is images stored in the uploads/ folder
(configured by TYPO3_CONF_VARS["BE"]
["RTE_imageStorageDir"], filenames prefixed with 'RTEmagicC_'
(child=actual image) and 'RTEmagicP_' (parent=original
image))) are processed to see if the physical dimensions of the
image on the server matches the dimensions set in the img-tag.
If this is not the case, the user must have changed the
dimensions and the image must be re-scaled accordingly.

● Finally the absolute reference to the image is converted to a
proper relative reference if the image URL is local.

94

 TYPO3 Core APIs - doc_core_api Transformations

DB -> RTE RTE -> DB

ts_links

function t3lib_parseHTML::TS_links_rte() function t3lib_parseHTML::TS_links_db()

● All <LINK>-tags (TypoScript specific) are converted to proper
<A>-tags. The parameters of the <LINK>-tags are separated by
space. The first parameter is the link reference (see typolink
function in TSref for details on the syntax), second is the target
if given (if '-' the target is not set), the third parameter is the
class (if '-' the class is not set) and the fourth parameter is the
title.

● All <A>-tags are converted to <LINK> tags, however only if they
do not contain any parameters other than href, target and class.
These are the only three parameters which can be represented
by the TypoScript specific <LINK>-tag.

ts_reglinks

function t3lib_parseHTML::TS_reglinks() function t3lib_parseHTML::TS_reglinks()

● All A-tags have URLs converted to absolute URLs if they are
relative

● All A-tags have their absolute URLs converted to relative if
possible (that is the URL is within the current domain).

Page TSconfig
The RTEs can be configured by Page TSconfig. There is a top level object name, "RTE", that is used for this. The main object
paths looks like this:

Property: Data type: Description:

default.[...]
config.[tablename].[field].[...]
config.[tablename].[field].types.[type].
[...]

->RTEconf These objects contain the actual configuration of the RTE interface. For the
properties available, refer to the table below. This is a description of how you
can customize in general and override for specific fields/types.

'RTE.default' configures the RTE for all tables/fields/types

'RTE.config.[tablename].[field]' configures a specific field. The values inherit
the values from 'RTE.default' in fact this is overriding values.

'RTE.config.[tablename].[field].types.[type]' configures a specific field in case
the 'type'-value of the field matches type. Again this overrides the former
settings.

[individual RTE options] - There are other options to set for the RTE toplevel object. These depends on
the individual RTEs though! So there can be no further reference in this table
to these properties.
Generally the "rte" (classic MSIE RTE) will set the standard for configuration
options, so you can refer to the documentation for that RTE for more details.
On the top level of the RTE object you will normally find that general
collections of classes, styles etc. are configured.

[page:RTE]

Configuration examples

This configuration in "Page TSconfig" will disable the RTE altogether:

RTE.default.disabled = 1

In the case below the RTE is still disabled generally, but this is overridden specifically for the table "tt_content" where the RTE
is used in the field "bodytext"; The "disabled" flag is set to false again which means that for Content Elements the RTE will be
available.

RTE.default.disabled = 1
RTE.config.tt_content.bodytext.disabled = 0

In this example the RTE is still enabled for content elements in generally but if the Content Element type is set to "Text" (text)
then the RTE will be disabled again!

RTE.default.disabled = 1
RTE.config.tt_content.bodytext.disabled = 0
RTE.config.tt_content.bodytext.types.text.disabled = 1

The RTE object in Page TSconfig
The RTE object contains configuration of the RTE application. There are a few properties which are used externally from the
RTE. The property "disabled" will simply disable the rendering of the RTE and "proc" is reserved to contain additional

95

 TYPO3 Core APIs - doc_core_api Transformations

configuration of transformations.

Property: Data type: Description:

disabled boolean If set, the editor is disabled.
This option is evaluated in t3lib_TCEforms where it determines if the RTE is rendered
or not.

proc ->PROC Customization of the server processing of the content - also called 'transformations'.
See table below.
The transformations are only initialized, if they are configured (“rte_transform” must be
set for the field in the types-definition in TCA.)
The "->PROC" object is processed in "t3lib_parsehtml_proc" and is independant of the
particular RTE used (like transformations generally is!)

[individual RTE options] - Each RTE may use additional properties for the RTE. Typically such properties relates to
the features of the RTE application. For instance you could configure which tool bar
buttons are available etc.

[page:->RTEconf]

Configuration examples
 0: RTE.default >
 1: RTE.default {
 2: mainStyle_font = Arial, sans-serif
 3: mainStyle_size = 12
 4: mainStyle_color = black
 5: classesParagraph = redText
 6: classesCharacter = redText
 7: showButtons = cut,copy,fontstyle,fontsize, textcolor,table,bgcolor
 8: proc.preserveTables = 1
 9:
 10: proc.entryHTMLparser_db = 1
 11: proc.entryHTMLparser_db {
 12: keepNonMatchedTags = 1
 13: xhtml_cleaning = 1
 14: }
 15:
 16: mainStyleOverride_add {
 17: P = font-family:Arial, sans-serif; font-size:12;
 18: H1 = font-family:Arial, sans-serif; font-size:16; font-weight:bold; margin-top:0;margin-
bottom:10;
 19: H2 = font-family:Arial, sans-serif; font-size:12; font-weight:bold; color:navy; margin-
top:0;margin-bottom:10;
 20: H3 = font-family:Arial, sans-serif; font-size:18; font-weight:bold;
 21: H4 = font-family:Arial, sans-serif; font-size:24;
 22: H5 = font-family:Arial, sans-serif; font-size:20; color:navy; font-weight:normal; margin-
top:0;margin-bottom:10;
 23: H6 = font-family:Arial, sans-serif; font-size:16; font-weight:bold;
 24: }
 25: disablePCexamples = 0
 26: }

In this example all the configuration except line 8-14 ("proc." configuration) is defining the RTE applications internal features.
These options will vary depending on the RTE used. In this case the configuration is for the classic MSIE Active-X RTE in the
extension "rte".

The ->PROC object
This object contains configuration of the transformations used. These options are universal for all RTEs and used inside the
class "t3lib_parsehtml_proc".

The main objective of these options is to allow for minor configuration of the transformations. For instance you may disable
the mapping between - and <I>- tags which is done by the 'ts_transform' transformation. Or you
could disable the default transfer of images from external URL to the local server. This is all possible through the options.

Notice how many properties relates to specific transformations only! Also notice that the meta-transformations "ts" and
"ts_css" implies other transformations like "ts_transform" and "css_transform" which means that options limited to
"ts_transform" will also work for "ts" of course.

Property: Data type: Description:

overruleMode List of RTE
transformations

This can overrule the RTE transformation set from TCA.

Notice, this is a comma list of transformation keys. (Not a "dash-list" like in $TCA).

96

 TYPO3 Core APIs - doc_core_api Transformations

Property: Data type: Description:

typolist boolean (Applies for “ts_transform” only)

This enables/disables the conversion between <TYPOLIST> and sections.
Default (if unset) is that "typolist" is enabled.

Example that disables "typolist":
typolist = 0

typohead boolean (Applies for “ts_transform” only)

This enables/disables the conversion between <TYPOHEAD> and <Hx> sections.

Example that disables "typohead":
typohead = 0

preserveTags list of tags (DEPRECATED)

Here you may specify a list of tags - possibly user-defined pseudo tags - which you
wish to preserve from being removed by the RTE. See the information about
preservation in the description of transformations.

Example:
In the default TypoScript configuration of content rendering the tags typotags <LINK>,
<TYPOLIST> and <TYPOHEAD> are the most widely used. However the
<TYPOCODE>-tag is also configured to let you define a section being formatted in
monospace. Lets also imaging, you have defined a custom tag, <MYTAG>. In order to
preserve these tag from removal by the RTE, you should configure like this.

RTE.default.proc {
 preserveTags = TYPOCODE, MYTAG
}

Relates to the transformation 'ts_preserve'

dontConvBRtoParagraph boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

By default
 tags in the content are converted to paragraphs. Setting this value
will prevent the convertion of
-tags to new-lines (chr(10))

internalizeFontTags boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

This splits the content into font-tag chunks.
If there are any <P>/<DIV> sections inside of them, the font-tag is wrapped AROUND
the content INSIDE of the P/DIV sections and the outer font-tag is removed.
This functions seems to be a good choice for pre-processing content if it has been
pasted into the RTE from e.g. star-office.
In that case the font-tags is normally on the OUTSIDE of the sections.

allowTagsOutside commalist of strings (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

Enter tags which are allowed outside of <P> and <DIV> sections when converted back
to database.
Default is “img”
Example:
IMG,HR

allowTagsInTypolists commalist of strings (Applies for “ts_transform” only)

Enter tags which are allowed inside of <typolist> tags when content is sent to the
database.
Default is “br,font,b,i,u,a,img,span”

allowTags commalist of strings (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Tags to allow. Notice, this list is added to the default list, which you see here:
b,i,u,a,img,br,div,center,pre,font,hr,sub,sup,p,strong,em,li,ul,ol,blockquote,strike,span
If you wish to deny some tags, see below.

denyTags commalist of strings (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Tags from above list to disallow.

97

 TYPO3 Core APIs - doc_core_api Transformations

Property: Data type: Description:

transformBoldAndItalicTags boolean (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Default is to convert b and i tags to strong and em tags respectively in the direction of
the database, and to convert back strong and em tags to b and i tags in the direction
of the RTE.

This transformation may be disabled by setting this property to 0.

HTMLparser_rte
HTMLparser_db

->HTMLparser (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

This is additional options to the HTML-parser calls which strips of tags when the
content is prepared for the RTE and DB respectively. You can configure additional rules,
like which other tags to preserve, which attributes to preserve, which values are
allowed as attributes of a certain tag etc.
.nestingGlobal for HTMLparser_db is set by default to
“b,i,u,a,center,font,sub,sup,strong,em,strike,span” unless another value is set.
Also B/I tags are mapped to STRONG/EM tags in the RTE direction and vise versa.
This parsing is done on a per-line basis, so you cannot expect the paragraph tags (P or
DIV) to be included.

Notice the ->HTMLparser options, “keepNonMatchedTags” and “htmlSpecialChars” is
NOT observed. They are preset internally

dontRemoveUnknownTags_d
b

boolean (Applies for “ts_transform” and "css_transform" only (function HTMLcleaner_db))

Direction: To database
Default is to remove all unknown tags in the content going to the database. (See
HTMLparser_db above for default tags). Generally this is a very usefull thing, because
all kinds of bogus tags from pasted content like that from Word etc. will be removed to
have clean content in the database.
However this disables that and allows all tags, that are not in the HTMLparser_db-list.

dontUndoHSC_db boolean (Applies for “ts_transform” and "css_transform" only (function HTMLcleaner_db))

Direction: To database
Default is to re-convert literals to characters (that is < to <) outside of HTML-tags.
This is disabled by this boolean. (HSC means HtmlSpecialChars - which is a PHP
function)

dontProtectUnknownTags_rt
e

boolean (Applies for “ts_transform” and "css_transform" only (function setDivTags))

Direction: To RTE
Default is that tags unknown to HTMLparser_rte is “protected” when sent to the RTE.
This means they are converted from eg <MYTAG> to <MYTAG>. This is normally
very fine, because it can be edited plainly by the editor and when returned to the
database the tag is (by default, disabled by .dontUndoHSC_db) converted back.
Setting this option will prevent unknown tags from becoming protected.

dontHSC_rte boolean (Applies for “ts_transform” and "css_transform" only (function setDivTags))

Direction: To RTE
Default is that all content outside of HTML-tags is passed through htmlspecialchars().
This will disable that. (opposite to .dontUndoHSC_db)
This option disables the default htmlspecialchars() conversion.

dontConvAmpInNBSP_rte boolean (Applies for “ts_transform” and "css_transform" only (function setDivTags))

Direction: To RTE
By default all codes are NOT converted to &nbsp; which they naturally
word (unless .dontHSC_rte is set). You can disable that by this flag.

allowedFontColors list of HTMLcolors (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Direction: To DB
If set, this is the only colors which will be allowed in font-tags! Case insensitive.

allowedClasses list of strings (Applies for “ts_transform” and "css_transform" only (function getKeepTags))

Direction: To DB
Allowed general classnames when content is stored in database. Could be a list
matching the number of defined classes you have. Case-insensitive.
This might be a really good idea to do, because when pasting in content from MS word
for instance there are a lot of and <P> tags which may have class-names in.
So by setting a list of allowed classes, such foreign classnames are removed.
If a classname is not found in this list, the default is to remove the class-attribute.

98

 TYPO3 Core APIs - doc_core_api Transformations

Property: Data type: Description:

skipAlign
skipClass

boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

If set, then the align and class attributes of <P>/<DIV> sections (respectively) will be
ignored. Normally <P>/<DIV> tags are preserved if one or both of these attributes are
present in the tag. Otherwise it's removed.

keepPDIVattribs list of tag attributes
(strings)

(Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

“align” and “class” are the only attributes preserved for <P>/<DIV> tags. Here you
can specify a list of other attributes to preserve.

remapParagraphTag string / boolean (Applies for “ts_transform” and "css_transform" only (function divideIntoLines))

When <P>/<DIV> sections are converted to be put into the database, the tag - P or
DIV - is preserved. However setting this options to either P or DIV will force the section
to be converted to the one or the other.
If the value is set true (1), then it works as a general disable-flag for the whole
section-convertion stuff here and the result will be no tags preserved what so ever. Just
removed.

useDIVasParagraphTagForRT
E

string (Applies for “ts_transform” only and "css_transform" (function TS_transform_rte))

Use <DIV>-tags for sections when converting lines from database to RTE. Default is
<P>. Applies only to lines which has NO tag wrapped around already.

preserveDIVSections boolean (Applies for “ts_transform” and "css_transform" only)

If set, div sections will be treated just like blockquotes. They will be treated recursively
as external blocks.

preserveTables boolean (Applies for “ts_transform”)

If set, tables are preserved

dontFetchExtPictures boolean (Applies for “ts_images”)

If set, images from external urls are not fetched for the page if content is pasted from
external sources. Normally this process of copying is done.

plainImageMode boolean/string (Applies for “ts_images”)

If set, all “plain” local images (those that are not magic images) will be cleaned up in
some way.
If the value is just set, then the style attribute will be removed after detecting any
special width/height CSS attributes (which is what the RTE will set if you scale the
image manually) and the border attribute is set to zero.
You can also configure with special keywords. So setting “plainImageMode” to any of
the value below will perform special processing:

“lockDimensions” : This will read the real dimensions of the image file and force these
values into the tag. Thus this option will prevent any user applied scaling in the
image!
“lockRatio” : This will allow users to scale the image but will automatically correct the
height dimension so the aspect ratio from the original image file is preserved.
“lockRatioWhenSmaller” : Like “lockRatio”, but will not allow any scaling larger than the
original size of the image.

exitHTMLparser_rte
exitHTMLparser_db
entryHTMLparser_rte
entryHTMLparser_db

boolean/-
>HTMLparser

(Applies for all kinds of processing)

Allows you to enable/disable the HTMLparser for the content before (entry) and after
(exit) the content is processed with the predefined processors (e.g. ts_images or
ts_transform).
There is no default values set.

disableUnifyLineBreaks boolean (Applies for all kinds of processing)

When entering the processor all \r\n linebreaks are converted to \n (13-10 to 10).
When leaving the processor all \n is reconverted to \r\n (10 to 13-10).
This options disables that processing...

usertrans.[user-defined
transformation key]

- Custom option-space for userdefined transformations.
See example from section about custom transformations.

[page:->PROC]

99

 TYPO3 Core APIs - doc_core_api Transformations

Custom transformations API
Instead of using the built-in transformations of TYPO3 you can program your own. This is done by creating a PHP class with
two methods for transformation. Additionally you have to define a key (like "css_transform") for your transformation so you
can refer to it in the configuration of Rich Text Editors.

Custom transformation key
You should pick a custom transformation key which is prefixed with either "tx_" or "user_". Use "tx_[extension key]_[suffix]"
if you deliver your transformation inside an extension.

Notice: If you pick one of the default transformation keys (except the meta-transformations) you will simply override it and
your transformation will be called instead!

Registering the transformation key in the system
In "ext_localconf.php" you simply set a $TYPO3_CONF_VARS variable to point to the class which contains the transformation
methods:

$TYPO3_CONF_VARS['SC_OPTIONS']['t3lib/class.t3lib_parsehtml_proc.php']['transformation']['tx_myext']
 = 'EXT:myext/custom_transformation.php:user_transformation';

Here the transformation key is defined to be "tx_myext" (assuming the extension has the extension key "myext") and the
value points to a file inside the transformation which will contain the class "user_transformation" (instantiated by
t3lib_div::getUserObj())

This class must contain two methods, "transform_db" and "transform_rte" for each transformation direction.

Code listing of "user_transformation"
This code listing shows a simple transformation. When content is delivered to the RTE it will add a <hr/> tag to the end of
the content. When the content is stored in the database any <hr/> tag in the end of the content will be removed and
substituted with whitespace. This is of totally useless but nevertheless shows the concept of transformations between RTE
and DB.

 0: /**
 1: * Custom RTE transformation
 2: */
 3: class user_transformation {
 4:
 5: // object; Reference to the parent object, t3lib_parsehtml_proc
 6: var $pObj;
 7:
 8: // Transformation key of self.
 9: var $transformationKey = 'tx_myext';
 10:
 11: // Will contain transformation configuration if found:
 12: var $conf;
 13:
 14:
 15: /**
 16: * Setting specific configuration for this transformation
 17: *
 18: * @return void
 19: */
 20: function initConfig() {
 21: $this->conf = $this->pObj->procOptions['usertrans.'][$this->transformationKey.'.'];
 22: }
 23:
 24: /**
 25: * Reserved method name, called when content is transformed for DB storage
 26: * If "proc.usertrans.tx_myext.addHrulerInRTE = 1" then a horizontal ruler in the
 27: * end of the content will be removed (if found)
 28: *
 29: * @param string RTE HTML to clean for database storage
 30: * @return string Processed input string.
 31: */
 32: function transform_db($value) {
 33: $this->initConfig();
 34:
 35: if ($this->conf['addHrulerInRTE']) {

100

 TYPO3 Core APIs - doc_core_api Transformations

 36: $value = eregi_replace('<hr[[:space:]]*[\/]>[[:space:]]*$','',$value);
 37: }
 38:
 39: return $value;
 40: }
 41:
 42: /**
 43: * Reserved method name, called when content is transformed for RTE display
 44: * If "proc.usertrans.tx_myext.addHrulerInRTE = 1" then a horizontal ruler
 45: * will be added in the end of the content.
 46: *
 47: * @param string Database content to transform to RTE ready HTML
 48: * @return string Processed input string.
 49: */
 50: function transform_rte($value) {
 51: $this->initConfig();
 52:
 53: if ($this->conf['addHrulerInRTE']) {
 54: $value.='<hr/>';
 55: }
 56:
 57: return $value;
 58: }
 59: }

Comments to code listing
● The transformation methods "transform_rte" and "transform_db" takes a single argument which is the value to transform.

They have to return that value again.

● The internal variable $pObj is set to be a reference to the parent object which is an instance of "t3lib_parsehtml_proc".
Inside of this object you can access the default transformation functions if you need to and in particular you can read out
configuration settings.

● The internal variable $transformationKey is automatically set to the transformation key that is active.

● Notice that both transformation functions call initConfig() (line 33 and 51) which reads custom configuration.

Using the transformation
In order to use the transformation you simply use it in the list of transformations in Special Configuration. Here is an example
that works:

 1: 'TEST01' => Array (
 2: 'label' => 'TEST01: Text field',
 3: 'config' => Array (
 4: 'type' => 'text',
 5:),
 6: 'defaultExtras' => 'richtext[*]:rte_transform[mode=tx_myext-css_transform]'
 7:),

The order is important. The order in this list is the order of calling when the direction is "db". If the order is reversed the
<hr/> tag will come out as regular text in the RTE because "css_transform" protects all non-allowed tags with
htmlspecialchars().

Now the transformations should be called correctly. Before the <hr/> will be added/removed we also have to configure
through Page TSconfig (because we programmed our transformation to look for this configuration option):

RTE.default.proc.usertrans.tx_myext.addHrulerInRTE = 1

That's all!

Historical perspective on RTE transformations

Introduction
The next sections describe in more details the necessity of RTE transformations. The text is written at the birth of
transformations and might therefore be slightly oldfashioned. However it checked out generally OK and may help you to
further understand why these issues exist. The argumentation is still valid.

101

 TYPO3 Core APIs - doc_core_api Historical perspective on RTE transformations

Properties and 'transformations'
The RTE applications typically expect to be fed with content formatted as HTML. In effect an RTE will discard content it
doesn't like, for instance fictitious HTML tags and line breaks. Also the HTML content created by the RTE editor is not
necessarily as 'clean' as you might like.

The editor has the ability to paste in formatted content copied/cut from other websites (in which case images are included!)
or from text processing applications like MS Word or Star Office. This is a great feature and may solve the issue of
transferring formatted content from e.g. Word into TYPO3.

However these inherent features - good or bad - raises the issue how to handle content in a field which we do not wish to
'pollute' with unnecessary HTML-junk. One perspective is the fact that we might like to edit the content with Netscape later
(for which the RTE cannot be used, see above) and therefore would like it to be 'human readable'. Another perspective is if
we might like to use only Bold and Italics but not the alignment options. Although you can configure the editor to display only
the bold and italics buttons, this does not prevent users from pasting in HTML-content copied from other websites or from
Microsoft Word which does contain tables, images, headlines etc.

The answer to this problem is a so called 'transformation' which you can configure in the $TCA (global, authoritative
configuration) and which you may further customize through Page TSconfig (local configuration for specific branches of the
website). The issue of transformations is best explained by the following example from the table, tt_content (the content
elements).

RTE transformations in Content Elements
The RTE is used in the bodytext field of the content elements, configured for the types 'Text' and 'Text w/Image'.

The configuration of the two 'Text'-types are the same: The toolbar includes only a subset of the total available buttons. The
reason is that the text content of these types, 'Text' and 'Text w/Image' is traditionally not meant to be filled up with HTML-
codes. But more important is the fact that the content is usually (by the standard TypoScript content rendering used on the
vast majority of TYPO3 websites!) parsed through a number of routines.

In order to understand this, here is an outline of what typically happens with the content of the two Text-types when
rendered by TypoScript for frontend display:

1. All line breaks are converted to
 codes.

(Doing this enables us to edit the text in the field rather naturally in the backend because line breaks in the edit field
comes out as line breaks on the page!)

2. All instances of 'http://...' and 'mailto:....' are converted to links.

(This is a quick way to insert links to URLs and email address)

3. The text is parsed for special tags, so called 'typotags', configured in TypoScript. The default typotags tags are <LINK>
(making links), <TYPOLIST> (making bulletlists), <TYPOHEAD> (making headlines) and <TYPOCODE> (making
monospaced formatting).

(The <LINK> tag is used to create links between pages inside TYPO3. Target and additional parameters are automatically
added which makes it a very easy way to make sure, links are correct. <TYPOLIST> renders each line between the start
and end tag as a line in a bulletlist, formatted like the content element type 'Bulletlist' would be. This would typically result
in a bulletlist placed in a table and not using the bullet-list tags from HTML. <TYPOHEAD> would display the tag content
as a headline. The type-parameter allows to select between the five default layout types of content element headlines.
This might include graphical headers. <TYPOCODE> is not converted).

4. All other 'tags' found in the content are converted to regular text (with htmlspecialchars) unless the tag is found in the
'allowTags' list.

(This list includes tags like 'b' (bold) and 'i' (italics) and so these tags may be used and will be outputted. However tags
like 'table', 'tr' and 'td' is not in this list by default, so table-html code inserted will be outputted as text and not as a
table!)

102

This is how the toolbar looks if the type of the content element is not 'Rich Text' but 'Text'.

 TYPO3 Core APIs - doc_core_api Historical perspective on RTE transformations

5. Constants and search-words - if set - will be highlighted or inserted.

(This feature will mark up any found search words on the pages if the page is linked to from a search result page.)

6. And finally the result of this processing may be wrapped in -tags, <p>-tags or whatever is configured. This
depends on whether a stylesheet is used or not. If a stylesheet is used the individual sections between the typotags are
usually wrapped separately.

Now lets see how this behaviour challenges the use of the RTE. This describes how the situation is handled regarding the two
Text-types as mentioned above. (Numbers refer to the previous bulletlist):

1. Line breaks: The RTE removes all line breaks and makes line breaks itself by either inserting a <P>...</P> section or
<DIV>...</DIV>. This means we'll have to convert existing lines to <P>...</P> before passing the content to the RTE
and further we need to revert the <DIV> and <P> sections in addition to the
-tags to line breaks when the content
is returned to the database from the RTE.

The greatest challenge here is however what to do if a <DIV> or <P> tag has parameters like 'class' or 'align'. In that
case we can't just discard the tag. So the tag is preserved.

2. The substitution of http:// and mailto: does not represent any problems here.

3. "Typotags": The typotags are not real HTML tags so they would be removed by the RTE. Therefore those tags must be
converted into something else. This is actually an opportunity and the solution to the problem is that all <LINK>-tags are
converted into regular <A>-tags, all <TYPOLIST> tags are converted into or sections (ordered/unordered
lists, type depends on the type set for the <TYPOLIST> tag!), <TYPOHEAD>-tags are converted to <Hx> tags where the
number is determined by the type-parameter set for the <TYPOHEAD>-tag. The align/class-parameter - if set - is also
preserved. When the HTML-tags are returned to the database they need to be reverted to the specific typotags.

Other typotags (non-standard) can be preserved by being converted to a -section and back. This must be
configured through Page TSconfig.

(Update: With "css_styled_content" and the transformation "ts_css" only the <link> typotag is left. The <typolist> and
<typohead> tags are obsolete and regular HTML is used instead)

4. Allowed tags: As not all tags are allowed in the display on the webpage, the RTE should also reflect this situation. The
greatest problem is tables which are (currently) not allowed with the Text-types. The reason for this goes back to the
philosophy that the field content should be human readable and tables are not very 'readable'.

(Update: With "css_styled_content" and the transformation "ts_css" tables are allowed)

5. Constants and search words are no problem.

6. Global wrapping does not represent a problem either. But this issue is related more closely to the line break-issue in bullet
1.

Finally images inserted are processed very intelligently because the 'magic' type images are automatically post-processed to
the correct size and proportions after being changed by the RTE in size.

Also if images are inserted by a copy/paste operation from another website, the image inserted will be automatically
transferred to the server when saved.

In addition all URLs for images and links are inserted as absolute URLs and must be converted to relative URLs if they are
within the current domain.

Conclusion:
These actions are done by so called transformations which are configured in the $TCA. Basically these transformations are
admittedly very customized to the default behavior of the TYPO3 frontend. And they are by nature “fragile” constructions
because the content is transformed back and forth for each interaction between the RTE and the database and may so be
erroneously processed. However they serve to keep the content stored in the database 'clean' and human readable so it may
continuously be edited by non-RTE browsers and users. And furthermore it allows us to insert TYPO3-bulletlists and headers
(especially graphical headers) visually by the editor while still having TYPO3 controlling the output.

103

 TYPO3 Core APIs - doc_core_api Skinning API

Skinning API

$TBE_STYLES
When you make skins for TYPO3 you basically set up values in the global array $TBE_STYLES which will make the system use
alternative icons, stylesheets, frame widths etc.

You change values in $TBE_STYLES through an extension, setting the alternative values in the “ext_tables.php” file of the
extension. For an example, see the extension “skin360”.

$TBE_STYLES API
The $TBE_STYLES array contains these keys

When the values are references to files (icons, logos etc) the path must be relative to the TYPO3 backend dir.

Key Subkeys Description

colorschemes [0-x] Related to TCEforms. See other section about visual style of TCEforms.

styleschemes [0-x] Related to TCEforms. See other section about visual style of TCEforms.

borderschemes [0-x] Related to TCEforms. See other section about visual style of TCEforms.

104

 TYPO3 Core APIs - doc_core_api Skinning API

Key Subkeys Description

mainColors bgColor
bgColor2
bgColor3
bgColor4
bgColor5
bgColor6
hoverColor

Main colorscheme in interface. Notice that these colors are redundantly set in the
stylesheet and you have to keep them in sync. Setting the colors here is still necessary
but secondary in priority to the stylesheet settings.
Always use #xxxxxx color definitions!

Here is a description of the colors.
• bgColor

Light page background color
• bgColor2

Alternative header background (steel blue)
• bgColor3

Color for “documents” - concept which is now removed. Anyways, light color)
• bgColor4

For table content cells (light tablerow background, brownish)
• bgColor5

For table header cells in sections (light tablerow background, greenish)
• bgColor6

For backend module section headers (light H2 background, yellowish. Light)
• hoverColor

Link hover color

Example:

$TBE_STYLES['mainColors'] = array(
 'bgColor' => '#EDF4EB',
 'bgColor2' => '#7C8591',
 'bgColor3' => '#E4E8F2',
 'bgColor4' => '#92AA8B',
 'bgColor5' => '#A5B7C1',
 'bgColor6' => '#C7BF81',
 'hoverColor' => '#800000'
);

Corresponding stylesheet values:
Here is an example of the stylesheet values corresponding to the “mainColors” values
shown above. Notice how they share the same name - but with some variations. For
instance “bgColor-10” and “bgColor-20” is based on “bgColor” but darkend approx.
10% and 20%. Such variations are available for usage when you want alternating
values in a listing.

.bgColor {background-color: #F7F3EF;}

.bgColor-10 {background-color: #ede9e5;}

.bgColor-20 {background-color: #e3dfdb;}

.bgColor2 {background-color: #9BA1A8;}

.bgColor3 {background-color: #F6F2E6;}

.bgColor3-20 {background-color: #e2ded2;}

.bgColor4 {background-color: #D9D5C9;}

.bgColor4-20 {background-color: #c5c1b5;}

.bgColor5 {background-color: #ABBBB4;}

.bgColor6 {background-color: #E7DBA8;}

(From file typo3/stylesheet.css)

background - Background image generally in the backend
Deprecated - use the $TBE_STYLES['skinImg'] feature instead!

logo - Logo in alternative backend, top left: 129x32 pixels
Deprecated - use the $TBE_STYLES['skinImg'] feature instead!

logo_login - Login-logo: 333x63 pixels
Deprecated - use the $TBE_STYLES['skinImg'] feature instead!

loginBoxImage_rotationFolder - Setting login box image rotation folder. From this folder images are selected randomly
for display in the login box.

stylesheet - Alternative stylesheet to the default "typo3/stylesheet.css" stylesheet.

stylesheet2 - Additional stylesheet (not used by default). Set BEFORE any in-document styles

styleSheetFile_post - Additional stylesheet. Set AFTER any in-document styles

inDocStyles_TBEstyle - Additional default in-document styles.

105

 TYPO3 Core APIs - doc_core_api Skinning API

Key Subkeys Description

dims leftMenuFrameW
topFrameH
shortcutFrameH
selMenuFrame
navFrameWidth

Setting of alternative dimensions of framesets in TYPO3:

Description of subkeys:
• FrameW

Left menu frame width
• topFrameH

Top frame heigth
• shortcutFrameH

Shortcut frame height
• selMenuFrame

Width of the selector box menu frame
• navFrameWidth

Default navigation frame width

Example:

 // Alternative dimensions for frameset sizes:
$TBE_STYLES['dims']['leftMenuFrameW']=165;
$TBE_STYLES['dims']['topFrameH']=35;
$TBE_STYLES['dims']['shortcutFrameH']=35;
$TBE_STYLES['dims']['selMenuFrame']=180;
$TBE_STYLES['dims']['navFrameWidth']=350;

scriptIDindex [script-id] All scripts in TYPO3s backend calculates an automatic “script-id”. This id can be found
in the HTML source:

<html>
<head>

<!-- TYPO3 Script ID: typo3/mod/web/perm/index.php -->
...

With the “scriptIDindex” feature you can override any $TBE_STYLES setting on a per-
script basis as long as you know the script ID.

An example is in the “skin360” extension where the rollover color of the Context
Sensitive Menus is defined by $TBE_STYLES['mainColors']['bgColor5']. However the
color should be different from the general “bgColor5”. This can be done by the PHP
line below - because the script ID 'typo3/alt_clickmenu.php' simply configures the
bgColor5 value differently when the alt_clickmenu.php script requests it!

$TBE_STYLES['scriptIDindex']['typo3/alt_clickmenu.php']
['mainColors']['bgColor5']='#E0E7C7';

106

 TYPO3 Core APIs - doc_core_api Skinning API

Key Subkeys Description

skinImgAutoCfg absDir
relDir
forceFileExtension
scaleFactor

Configures automatic detection of alternative icons. This works by setting up a
directory inside of which TYPO3 looks to find a file with the same filename as the one
requested - and if found, the icon is used instead.

• absDir
Absolute path to the directory with the icons (needed so icons can be read by
getimagesize)

• relDir
Relative path to the directory with the icons (needed for making the tag.)

• forceFileExtension
This can allow you to specify an alternative file extension to look for. For instance
most icons in TYPO3 are gif-files. By setting this value to “png” all filenames
looked for will be the gif-filename body but with a “.png” extension.

• scaleFactor
Allows you to enter a value between 0-1 by which to scale the icons. Thus you
can size-down all icons from the skin.
Notice: Backend Module icons are not affected by this scaling factor

Example code listing:

 // Setting up auto detection of alternative icons:
$TBE_STYLES['skinImgAutoCfg']=array(
 'absDir' => t3lib_extMgm::extPath($_EXTKEY).'icons/',
 'relDir' => t3lib_extMgm::extRelPath($_EXTKEY).'icons/',
 'forceFileExtension' => 'png',
 'scaleFactor' => 2/3,
);

skinImg [icon reference] Manual configuration of icon alternatives.
This is needed especially for backend module icons since they are not possible to skin
with the feature “skinImgAutoCfg” which is otherwise recommended instead of
manual configuration.

Generally each subkey is a reference to the icon, relative to TYPO3 main dir (e.g.
“gfx/ol/blank.gif”) or if from an extension, relative to “ext/[extension key]/” folder.
For modules the key is special. It is prefixed “MOD:” and then the module key. For
example “MOD:web/website.gif” or “MOD:web_uphotomarathon/tab_icon.gif”

For examples, see code listing below.

border Path to an alternative HTML file instead of the default "typo3/border.html" which is
displayed between the page tree and the right frame.

Here is an example code listing for how most of these values can be set up in a “ext_tables.php” file for an extension:

 0:
 1:
 2: if (TYPO3_MODE=='BE') {
 3:
 4: $presetSkinImgs = is_array($TBE_STYLES['skinImg']) ? $TBE_STYLES['skinImg'] : array(); //
Means, support for other extensions to add own icons...
 5:
 6: $TBE_STYLES['mainColors'] = array(
 7: 'bgColor' => '#EDF4EB',
 8: 'bgColor2' => '#7C8591',
 9: 'bgColor3' => '#E4E8F2',
 10: 'bgColor4' => '#92AA8B',
 11: 'bgColor5' => '#A5B7C1',
 12: 'bgColor6' => '#C7BF81',
 13: 'hoverColor' => '#800000'
 14:);
 15:
 16: // Setting the relative path to the extension in temp. variable:
 17: $temp_eP = t3lib_extMgm::extRelPath($_EXTKEY);
 18:
 19: // Setting login box image rotation folder:
 20: $TBE_STYLES['loginBoxImage_rotationFolder'] = $temp_eP.'loginimages/';
 21:
 22: // Setting up stylesheets (See template() constructor!)
 23: $TBE_STYLES['styleSheetFile_post'] = $temp_eP.'stylesheet_post.css'; // Additional
stylesheet. Set AFTER any in-document styles

107

 TYPO3 Core APIs - doc_core_api Skinning API

 24:
 25: // Alternative dimensions for frameset sizes:
 26: $TBE_STYLES['dims']['leftMenuFrameW']=165; // Left menu frame width
 27: $TBE_STYLES['dims']['topFrameH']=35; // Top frame heigth
 28: $TBE_STYLES['dims']['shortcutFrameH']=35; // Shortcut frame height
 29: $TBE_STYLES['dims']['selMenuFrame']=180; // Width of the selector box menu frame
 30: $TBE_STYLES['dims']['navFrameWidth']=350; // Default navigation frame width
 31:
 32: // Setting roll-over background color for click menus:
 33: // Notice, this line uses the the 'scriptIDindex' feature to override another value in
this array (namely $TBE_STYLES['mainColors']['bgColor5']), for a specific script
"typo3/alt_clickmenu.php"
 34: $TBE_STYLES['scriptIDindex']['typo3/alt_clickmenu.php']['mainColors']['bgColor5']='#E0E7C7';
 35:
 36: // Setting up auto detection of alternative icons:
 37: $TBE_STYLES['skinImgAutoCfg']=array(
 38: 'absDir' => t3lib_extMgm::extPath($_EXTKEY).'icons/',
 39: 'relDir' => t3lib_extMgm::extRelPath($_EXTKEY).'icons/',
 40: 'forceFileExtension' => 'png', // Force to look for PNG alternatives...
 41:);
 42:
 43: // Manual setting up of alternative icons. This is mainly for module icons which has a
special prefix:
 44: $TBE_STYLES['skinImg'] = array_merge($presetSkinImgs, array(
 45: 'gfx/ol/blank.gif' => array('clear.gif','width="27" height="24"'),
 46:
 47: 'MOD:web/website.gif' => array($temp_eP.'icons/module_web.png','width="24" height="24"'),
 48: 'MOD:web_layout/layout.gif' => array($temp_eP.'icons/module_web_layout.png','width="24"
height="24"'),
 49: 'MOD:web_view/view.gif' => array($temp_eP.'icons/module_web_view.png','width="23"
height="24"'),
 50: 'MOD:web_list/list.gif' => array($temp_eP.'icons/module_web_list.png','width="24"
height="24"'),
 51: 'MOD:web_info/info.gif' => array($temp_eP.'icons/module_web_info.png','width="24"
height="24"'),
 52: 'MOD:web_perm/perm.gif' => array($temp_eP.'icons/module_web_perms.png','width="24"
height="24"'),
 53: 'MOD:web_func/func.gif' => array($temp_eP.'icons/module_web_func.png','width="24"
height="24"'),
 54: 'MOD:web_ts/ts1.gif' => array($temp_eP.'icons/module_web_ts.png','width="24"
height="24"'),
 55: 'MOD:web_modules/modules.gif' => array($temp_eP.'icons/module_web_modules.png','width="24"
height="24"'),
 56: 'MOD:file/file.gif' => array($temp_eP.'icons/module_file.png','width="24" height="24"'),
 57: 'MOD:file_list/list.gif' => array($temp_eP.'icons/module_file_list.png','width="24"
height="24"'),
 58: 'MOD:file_images/images.gif' => array($temp_eP.'icons/module_file_images.png','width="24"
height="24"'),
 59: 'MOD:doc/document.gif' => array($temp_eP.'icons/module_doc.png','width="24"
height="24"'),
 60: 'MOD:user/user.gif' => array($temp_eP.'icons/module_user.png','width="24" height="24"'),
 61: 'MOD:user_task/task.gif' => array($temp_eP.'icons/module_user_taskcenter.png','width="24"
height="24"'),
 62: 'MOD:user_setup/setup.gif' => array($temp_eP.'icons/module_user_setup.png','width="24"
height="24"'),
 63: 'MOD:tools/tool.gif' => array($temp_eP.'icons/module_tools.png','width="25"
height="24"'),
 64: 'MOD:tools_beuser/beuser.gif' => array($temp_eP.'icons/module_tools_user.png','width="24"
height="24"'),
 65: 'MOD:tools_em/em.gif' => array($temp_eP.'icons/module_tools_em.png','width="24"
height="24"'),
 66: 'MOD:tools_dbint/db.gif' => array($temp_eP.'icons/module_tools_dbint.png','width="25"
height="24"'),
 67:
 'MOD:tools_config/config.gif' => array($temp_eP.'icons/module_tools_config.png','width="24"
height="24"'),
 68:
 'MOD:tools_install/install.gif' => array($temp_eP.'icons/module_tools_install.png','width="24"
height="24"'),
 69: 'MOD:tools_log/log.gif' => array($temp_eP.'icons/module_tools_log.png','width="24"
height="24"'),
 70:
 'MOD:tools_txphpmyadmin/thirdparty_db.gif' => array($temp_eP.'icons/module_tools_phpmyadmin.png
','width="24" height="24"'),
 71:
 'MOD:tools_isearch/isearch.gif' => array($temp_eP.'icons/module_tools_isearch.png','width="24"
height="24"'),
 72: 'MOD:help/help.gif' => array($temp_eP.'icons/module_help.png','width="23" height="24"'),
 73: 'MOD:help_about/info.gif' => array($temp_eP.'icons/module_help_about.png','width="25"

108

 TYPO3 Core APIs - doc_core_api Skinning API

height="24"'),
 74:
 'MOD:help_aboutmodules/aboutmodules.gif' => array($temp_eP.'icons/module_help_aboutmodules.png'
,'width="24" height="24"'),
 75:));
 76:
 77: // Adding icon for photomarathon extensions' backend module, if enabled:
 78: if (t3lib_extMgm::isloaded('user_photomarathon')) {
 79: $TBE_STYLES['skinImg']
['MOD:web_uphotomarathon/tab_icon.gif'] = array($temp_eP.'icons/ext/user_photomarathon/tab_icon.png','wi
dth="24" height="24"');
 80: }
 81: // Adding icon for templavoila extensions' backend module, if enabled:
 82: if (t3lib_extMgm::isloaded('templavoila')) {
 83: $TBE_STYLES['skinImg']
['MOD:web_txtemplavoilaM1/moduleicon.gif'] = array($temp_eP.'icons/ext/templavoila/mod1/moduleicon.png',
'width="24" height="24"');
 84: }
 85: }

Notice the last lines from 77-84; they configures alternative icons two extensions, “user_photomarathon” (see testsite
package) and “templavoila”. Thus the skin can include skinning information for other extensions.

When talking about skinning across extensions another way of making sure that a skin also includes other extensions is
shown in line 4 where any values set in $TBE_STYLES['skinImg'] prior to this extension is preserved. Thus other extensions
can also autonomously provide support for popular skins by themselves!

Directory structure for “skinImgAutoCfg” feature
In the example above the directory “icons/” inside the extension is configured to contain the alternative icons which are
automatically detected.

Inside of this directory the structure must reflect the icon reference of the “skinImg” feature which would have otherwise
addressed the icon.

Looking at this screenshot makes it easy to understand. If you want to skin the icon “gfx/closedok.gif” then just put a file
with the same name (possible as “png” if “forceFileExtension” was set to “png”) in the folder “icons/gfx/”.

If you have an extension, say, “sys_action” and wants to skin the Action database record icon (sys_action.gif) simply put an
alternative file for “sys_action.gif” into the folder “ext/sys_action/”

If you look in the “icons” folder of the “skin360” extension you can also see that all the module icons are located there - but
notice that they are manually referenced in the “skinImg” key!

How to make your extensions compatible with skinning
Basically, your extensions backend modules will be skinnable by TYPO3 as long as you use the template class to create

109

 TYPO3 Core APIs - doc_core_api Skinning API

output. This is the case in well-made extensions so by default you should expect no problems.

However your usage of icons is another story. Here you have to pass all icon filenames and sizes to a function,
t3lib_iconWorks::skinImg(), which will either return the input value or any alternative values should an alternative icon have
been configured by a skin extension.

There are two types of icons you can encounter:

• Database record icons

• Any other icon for your interfaces.

Database record icons are not a problem. For a long time the consensus has been that if you want to create an icon for a
database record you do like this:

$iconImg = t3lib_iconWorks::getIconImage('sys_note',$row,$GLOBALS['BACK_PATH'],' title="This is my
icon"');

As long as you keep using the t3lib_iconWorks::getIconImage() function the icons will be skinned.

Any other icon you might use - either from inside the extension or e.g. typo3/gfx/ - should now be created like this:

$iconImg = '<img'.t3lib_iconWorks::skinImg($GLOBALS['BACK_PATH'],'gfx/edit2.gif','width="11"
height="12"').' title="My Icon" alt="" />';

This is contrary to the non-skinned state which would look like this:

$iconImg = '';

So as you can see it is the src, width and height attributes which are affected!

Skinning support for local extension icons
If you want to add skinning support for icons found inside the extension itself, then use this method:

$iconImg = '<img'.t3lib_iconWorks::skinImg($GLOBALS['BACK_PATH'],t3lib_extMgm::extRelPath('templavoila')
.'mod1/greenled.gif','').' title="Rule applies" border="0" alt="" align="absmiddle" />';

The main thing to notice is that the relative path to the extension is prefixed the icon name:

t3lib_extMgm::extRelPath('templavoila').'mod1/greenled.gif'

Finding CSS selectors for the backend documents
In the process of skinning TYPO3 with CSS styles you should proceed from general to specific. This means

• First, create styles for main elements like BODY, H2, H3, P, PRE, INPUT etc. making the interface look as you want in
general.

• Secondly, create specific style rules for specific scripts as needed.

If you look inside “typo3/stylesheet.css” you will see that this is the way that stylesheet proceeds. In fact it might not be so
bad an idea to take this stylesheet as an example for your own! In that case you can either choose to totally substitute the
default stylesheet, “typo3/stylesheet.css”, with a new one (by $TBE_STYLES['stylesheet']) or simply create an additional
stylesheet (set up by $TBE_STYLES['styleSheetFile_post']) which will be included as the last one - and in this stylesheet you
override any of the previous rules you want to change (recommended method).

Addressing specific elements in the backend
Lets say you want to specifically style the two elements shown in this image:

110

 TYPO3 Core APIs - doc_core_api Skinning API

• #1 should be blueish in the background

• #2 should have a dotted border around

What you do is this:

• Right-click the frame, select “Show HTML source” or whatever your browser allows you.

• Paste the HTML source of the script into the tool “CSS analyzer” found in the extension “extdeveval” - this will analyse the
hierarchy of CSS selectors.

• Find your selector, write CSS rules!

In this screenshot you can see how I have pasted the HTML source of the script into the tool mentioned and in return I get a
nice overview of the CSS selectors inside:

111

 TYPO3 Core APIs - doc_core_api Skinning API

In less than 10 seconds this has allowed me to spot that the exact address of the header cell is “BODY#typo3-db-list-php
TABLE.typo3-dblist TR TD.c-headLineTable” and I can now add to my stylesheet:

BODY#typo3-db-list-php TABLE.typo3-dblist TR TD.c-headLineTable {
background-color: #ccccff;

}

Likewise I could easily find that the two selector boxes were encapsulated in a DIV section which I could address like this:

BODY#typo3-db-list-php DIV#typo3-listOptions {
border: dotted 1px #999999;

}

The result was:

112

 TYPO3 Core APIs - doc_core_api Skinning API

Now, as you can see the selector contained “BODY#typo3-db-list-php” which is a specific address to the Web > List module
(using its script ID!). If I wanted my styles to be more general so also the File > Filelist module would affected, then I could
(in this case) remove the BODY#... part:

DIV#typo3-listOptions {
border: dotted 1px #999999;

}

Skinning database record icons with variations

Introduction
Database records in TYPO3 has and icon associated which can be shown in the interface. But the icon might change
according to internal settings in the record; other icons might be used as alternatives to the default and for each possible icon
certain “states” might reflect on how the icon look. For instance, if a record has the “hidden” flag set, the icon should be gray
with a red cross over in order to reflect this state visually.

Until version 3.6.0 TYPO3 has automatically calculated new versions of database icons when needed by the system. Thus you
needed to supply only one icon - all variations would be automatically generated and stored in typo3temp/. However this auto
generation depended on GDlib with gif-support and that has been a well known problem for many years since not everyone
has access to these features.

In TYPO3 3.6.0 the automatic generation is disabled (can be enabled by setting $TYPO3_CONF_VARS['GFX']['noIconProc']=0)
and instead most icons have their most used states shipped along pre-rendered instead.

This solution not only solves the last mandatory dependency on GDlib for TYPO3 but also provides a way for skinning of
various icon states - since skinned icons would be too hard to do processing for!

113

 TYPO3 Core APIs - doc_core_api Skinning API

Pre-rendered icon states
The number of variations for an icon of a database record depends on configuration in $TCA. The most easy way to get an
overview of the icons you would need to produce as variations is to use the tool “Table Icon Listing” in the “extdeveval”
extension.

This is an example of how that tool shows the icons for “Backend Users” and their variations:

Notice, the default icon is “gfx/i/be_users.gif”

• If the hidden flag is set, the icon name is “be_users__h.gif”

• If the starttime is set, the icon name is “be_users__t.gif”

• If both starttime and hidden flag is set, the icon name is “be_users__ht.gif”

• If an icon carries a state that is not found, then show “be_users__x.gif” (default icon for a state that does not have an
icon. If this icon is not set a generalized default icon is shown; thus a record with a special state will never be shown just
plain!)

For an extension like “mininews” we can perform the same analysis:

114

 TYPO3 Core APIs - doc_core_api Skinning API

Again, notice how the variations over “icon_tx_mininews_news.gif” is prefixed with “flags” like “__h” and “__x”

If we enable more of the render options we might eventually hit a combination of options which is not found pre-rendered
though:

As you can see the “endtime” flag has no icon associated with it.

Automatic creation of pre-made variations
In order to create variations for inclusion in your extensions (for the default icon) you can enable the rendering of icons if you
like (in localconf.php):

$TYPO3_CONF_VARS['GFX']['noIconProc']=0;

Then you reload the “Table Icon Listing” and the icons are generated in typo3temp/:

If you want the new icons to be included in the extension you simply

115

 TYPO3 Core APIs - doc_core_api Skinning API

• Move them from typo3temp/ into the extension folder (here “typo3conf/ext/mininews/”)

• Rename them to the expected names, e.g. “icon_fb7ee72ecd_icon_tx_mininews_news__f.gif.gif” to
“icon_tx_mininews_news__f.gif” (remember to also remove the “double-gif” in the extension!)

And after another reload you will be assured that the icon is found correctly:

(Tip for code hackers: Inside “ext/extdeveval/mod1/class.tx_extdeveval_iconlister.php there is a line with a function call,
“$this->renameIconsInTypo3Temp();” which is commented out - if you uncomment this function call it will rename icons
made in typo3temp/ to filenames that can be copied directly into the extension you are making. Basically this removes
“icon_fb7ee....” from the temporary file!)

Limits to number of pre-made icons
Since the number of combinations can be staggering you might often have to settle for a compromise where you define which
states are the most likely to occur and then give those priority when you create variations - otherwise you might have to
make hundreds of icons!

Thus you can find that the pages table does not have pre-made icons for all “Module” icons. Only the “hidden” state has been
considered general enough to allow for a pre-made icon - enabling starttime results in a “no_icon_found.gif” version as you
can see below:

116

 TYPO3 Core APIs - doc_core_api Skinning API

117

 TYPO3 Core APIs - doc_core_api Error and Exception Handling

Error and Exception Handling

Introduction
Since version 4.3.0 TYPO3 comes with an build-in error and exception handling system. Admins can configure how errors and
exceptions should be displayed in Backend and Frontend. Errors and exception can be logged to all available logging systems
in TYPO3 including t3lib_div::syslog() which is – among other features - able to send error messages by mail (see example
setups below).

Screenshots
A PHP warning in the Backend:

Some PHP errors in the adminpanel:

118

 TYPO3 Core APIs - doc_core_api Introduction

An exception shown by the debug exception handler:

Same exception shown by the production exception handler:

Errors and exceptions shown in belog (Tools->Log):

119

 TYPO3 Core APIs - doc_core_api Introduction

Errors and exceptions shown in the devLog (using extension “devlog”):

120

 TYPO3 Core APIs - doc_core_api Configuration

Configuration
All configuration options related to error and exception handling are found in $TYPO3_CONF_VARS[SYS]:

Key Datatype Description

displayErrors integer Configures whether PHP errors should be displayed.
• 0 = Do not display any PHP error messages. Overrides the value of

“exceptionalErrors” and sets it to 0 (= no errors are turned into exceptions),
the configured “productionExceptionHandler” is used as exception handler

• 1 = Display error messages with the registered error handler,
the configured “debugExceptionHandler” is used as exception handler

• 2 = Display errors only if client matches TYPO3_CONF_VARS[SYS][devIPmask]. If
devIPmask matches the users IP address the configured “debugExceptionHandler”
is used for exceptions, if not “productionExceptionHandler” will be used.

• -1 = Default setting. With this option, you can override the PHP setting
"display_errors". If devIPmask matches the users IP address the configured
“debugExceptionHandler” is used for exceptions, if not
“productionExceptionHandler” will be used.

errorHandler string Classname to handle PHP errors. Leave empty to disable error handling.
Default: “t3lib_error_ErrorHandler”. This class will register itself as error handler. It is able to
write error messages to all available logging systems in TYPO3 (t3lib_div::syslog,
t3lib_div::devlog() and to the sys_log table).

Additionally the errors can be displayed as flash messages in the Backend or in the
adminpanel in Frontend. The flash messages in Backend are only displayed if the error and
exception handling is in “debug-mode”, which is the case when the configured
“debugExceptionHandler” is registered as exception handler (see: TYPO3_CONF_VARS[SYS]
[displayErrors]).

Errors which are registered as “exceptionalErrors” will be turned into exceptions (to be
handled by the configured exceptionHandler).

errorHandlerErrors integer The E_* constant that will be handled by the error handler
Default: E_ALL ^ E_NOTICE

exceptionalErrors integer The E_* constant that will be handled as an exception by the error handler.
Default: "E_ALL ^ E_NOTICE ^ E_WARNING ^ E_USER_ERROR ^ E_USER_NOTICE ^
E_USER_WARNING" (4341) and "0" if displayError=0.

Refer to the PHP documentation for more details on this value.

productionExceptionHan
dler

string Classname to handle exceptions that might happen in the TYPO3-code.
Leave empty to disable exception handling.

Default: “t3lib_error_ProductionExceptionHandler”. This exception handler displays a nice
error message when something went wrong. The error message is logged to the configured
logs.

Note: The configured productionExceptionHandler is used if displayErrors is set to “0” or to “-
1” and devIPmask doesn't match.

121

 TYPO3 Core APIs - doc_core_api Configuration

Key Datatype Description

debugExceptionHandler string Classname to handle exceptions that might happen in the TYPO3-code.
Leave empty to disable exception handling.

Default: “t3lib_error_DebugExceptionHandler”. This exception handler displays the complete
stack trace of any encountered exception. The error message and the stack trace is logged
to the configured logs.

Note: The configured debugExceptionHandler is used if displayErrors is set to “1” and if
displayErrors is “-1” or “2” and the devIPmask matches.

enable_errorDLOG boolean Whether errors should be written to the developer log (requires an installed *devlog
extension).

enable_exceptionDLOG boolean Whether exceptions should be written to the developer log (requires an installed *devlog
extension).

syslogErrorReporting integer Configures which PHP errors should be logged to the configured syslogs (see: [SYS]
[systemLog]). If set to "0" no PHP errors are logged to the syslog. Default is "E_ALL ^
E_NOTICE" (6135).

belogErrorReporting integer Configures which PHP errors should be logged to the "syslog" table (extension: belog). If set
to "0" no PHP errors are logged to the sys_log table. Default is "E_ALL ^ E_NOTICE" (6135).

The table below shows which values can be set by the user and which are set by TYPO3.

Values in black can be changed in localconf.php.

Values in red are set by TYPO3.

display
Errors

errorHandler
Errors

exceptionalErrors errorHandler devIP
mask

exception
Handler

display_
errors

(php_ini)

-1 E_ALL
^ E_NOTICE

E_ALL
^ E_NOTICE
^ E_WARNING
^ E_USER_ERROR
^ E_USER_NOTICE
^ E_USER_WARNING

t3lib_error_Error
Handler

match $TYPO3_CONF_VARS['SYS']
['debugExceptionHandler']

Not changed

no match $TYPO3_CONF_VARS['SYS']
['productionExceptionHandler']

0 E_ALL
^ E_NOTICE

0 (no errors are turned
into exceptions)

t3lib_error_Error
Handler

Doesn't
matter

$TYPO3_CONF_VARS['SYS']
['productionExceptionHandler']

0 (Off)

1 E_ALL
^ E_NOTICE

E_ALL
^ E_NOTICE
^ E_WARNING
^ E_USER_ERROR
^ E_USER_NOTICE
^ E_USER_WARNING

t3lib_error_Error
Handler

Doesn't
matter

$TYPO3_CONF_VARS['SYS']
['debugExceptionHandler']

1 (On)

2 E_ALL
^ E_NOTICE

E_ALL
^ E_NOTICE
^ E_WARNING
^ E_USER_ERROR
^ E_USER_NOTICE
^ E_USER_WARNING

t3lib_error_Error
Handler

match $TYPO3_CONF_VARS['SYS']
['debugExceptionHandler']

1 (On)

no match $TYPO3_CONF_VARS['SYS']
['productionExceptionHandler']

0 (Off)

122

 TYPO3 Core APIs - doc_core_api Configuration

t3lib_error_ErrorHandler
The class t3lib_error_ErrorHandler is the default error handler in TYPO3.

Functions:

• Can be registered for all, or for only a subset of the PHP errors which can be handled by an error handler

• Displays error messages as flash messages in the Backend (if exceptionHandler is set to
“t3lib_error_DebugExceptionHandler”). Since flash messages are integrated in the Backend template, PHP messages
will not destroy the Backend layout.

• Displays errors as TsLog messages in the adminpanel.

• Logs error messages to t3lib_div::syslog() which is able to write error messages to a file, to the web server's
error_log, the system's log and it can send you errors and exceptions in an email. t3lib_div::syslog() offers a hook
and can be extended by user-defined logging methods.

• Logs error messages to t3lib_div::devLog() if “enable_errorDLOG” is enabled (depending on the devlog extension
used, this might require an existing DB connection).

• Logs error messages to the sys_log table. Logged errors are displayed in the belog extension (Tools->Log) (works
only if there is an existing DB connection).

t3lib_error_ProductionExceptionHandler
Functions of t3lib_error_ProductionExceptionHandler

• Shows brief exception message using t3lib_timeTrack::debug_typo3PrintError() which can be manipulated by a hook

• Logs exception messages to t3lib_div::syslog() which is able to write exception messages to a file, to the web
server's error_log, the system's log and it can send you errors and exceptions in an email. t3lib_div::syslog() offers
a hook an can be extended by user-defined logging methods.

• Logs exception messages to t3lib_div::devlog() if “enable_exceptionDLOG” is enabled (depending on the devlog
extension used, this might require an existing DB connection).

• Logs exception messages to the sys_log table. Logged errors are displayed in the belog extension (Tools->Log)
(works only if there is an existing DB connection).

t3lib_error_DebugExceptionHandler
Functions of t3lib_error_DebugExceptionHandler

• Shows detailed exception messages and full trace of an exception

• Logs exception messages to t3lib_div::syslog() which is able to write exception messages to a file, to the web
server's error_log, the system's log and it can send you errors and exceptions in an email. t3lib_div::syslog() offers
a hook an can be extended by user-defined logging methods.

• Logs exception messages to t3lib_div::devlog() if “enable_exceptionDLOG” is enabled (depending on the devlog
extension used, this might require an existing DB connection).

• Logs exception messages to the sys_log table. Logged errors are displayed in the belog extension (Tools->Log)
(works only if there is an existing DB connection).

Examples

Debugging and development setup
Very verbose configuration which logs and displays all errors and exceptions.

[File: localconf.php]

$TYPO3_CONF_VARS['SYS']['displayErrors'] = '1';
$TYPO3_CONF_VARS['SYS']['devIPmask'] = '*';
$TYPO3_CONF_VARS['SYS']['errorHandler'] = 't3lib_error_ErrorHandler';
$TYPO3_CONF_VARS['SYS']['errorHandlerErrors'] = E_ALL ^ E_NOTICE;
$TYPO3_CONF_VARS['SYS']['exceptionalErrors'] = E_ALL ^ E_NOTICE ^ E_WARNING ^ E_USER_ERROR ^
E_USER_NOTICE ^ E_USER_WARNING;
$TYPO3_CONF_VARS['SYS']['debugExceptionHandler'] = 't3lib_error_DebugExceptionHandler';
$TYPO3_CONF_VARS['SYS']['productionExceptionHandler'] = 't3lib_error_DebugExceptionHandler';
$TYPO3_CONF_VARS['SYS']['systemLogLevel'] = '0';
$TYPO3_CONF_VARS['SYS']['systemLog'] =

123

 TYPO3 Core APIs - doc_core_api Configuration

'mail,test@localhost.local,4;error_log,,2;syslog,LOCAL0,,3;file,/abs/path/to/logfile.log';
$TYPO3_CONF_VARS['SYS']['enable_errorDLOG'] = '1';
$TYPO3_CONF_VARS['SYS']['enable_exceptionDLOG'] = '1';

[File: .htaccess]

php_flag display_errors on
php_flag log_errors on
php_value error_log /path/to/php_error.log

Production setup
Example for a production configuration which displays only errors and exceptions if the devIPmask matches. Errors and
exceptions are only logged if their level is at least 2 (=Warning).

[File: localconf.php]

$TYPO3_CONF_VARS['SYS']['displayErrors'] = '2';
$TYPO3_CONF_VARS['SYS']['devIPmask'] = '[your.IP.address]';
$TYPO3_CONF_VARS['SYS']['errorHandler'] = 't3lib_error_ErrorHandler';
$TYPO3_CONF_VARS['SYS']['systemLogLevel'] = '2';
$TYPO3_CONF_VARS['SYS']['systemLog'] = 'mail,test@localhost.local,4;error_log,,2;syslog,LOCAL0,,3';
$TYPO3_CONF_VARS['SYS']['enable_errorDLOG'] = '0';
$TYPO3_CONF_VARS['SYS']['enable_exceptionDLOG'] = '0';
$TYPO3_CONF_VARS['SYS']['syslogErrorReporting'] = E_ALL ^ E_NOTICE ^ E_WARNING;
$TYPO3_CONF_VARS['SYS']['belogErrorReporting'] = '0';

[File: .htaccess]

php_flag display_errors off
php_flag log_errors on
php_value error_log /path/to/php_error.log

Performance setup
Since the error and exception handling and also the logging need some performance, here's an example how to disable error
and exception handling completely.

[File: localconf.php]

$TYPO3_CONF_VARS['SYS']['displayErrors'] = '0';
$TYPO3_CONF_VARS['SYS']['devIPmask'] = '';
$TYPO3_CONF_VARS['SYS']['errorHandler'] = '';
$TYPO3_CONF_VARS['SYS']['debugExceptionHandler'] = '';
$TYPO3_CONF_VARS['SYS']['productionExceptionHandler'] = '';
$TYPO3_CONF_VARS['SYS']['systemLog'] = '';
$TYPO3_CONF_VARS['SYS']['enable_errorDLOG'] = '0';
$TYPO3_CONF_VARS['SYS']['enable_exceptionDLOG'] = '0';
$TYPO3_CONF_VARS['SYS']['syslogErrorReporting'] = '0';
$TYPO3_CONF_VARS['SYS']['belogErrorReporting'] = '0';

[File: .htaccess]

php_flag display_errors off
php_flag log_errors off

Extending the error and exception handling
If you want to register your own error or exception handler, simply include the class and insert its name to
“productionExceptionHandler”, “debugExceptionHandler” or “errorHandler”.

Example:

$TYPO3_CONF_VARS['SYS']['errorHandler'] = 'myOwnErrorHandler';
$TYPO3_CONF_VARS['SYS']['debugExceptionHandler'] = 'myOwnDebugExceptionHandler';
$TYPO3_CONF_VARS['SYS']['productionExceptionHandler'] = 'myOwnProductionExceptionHandler';

An error or exception handler class must register an error (exception) handler in its constructor. Have a look at the files in
t3lib/error/ to see how this should be done.

If you want to use the built-in error and exception handling but extend it by your own functionality, simply derive your class
from the error and exception handling classes shipped with TYPO3 and register this class as error (exception) handler.

Example:

class tx_postExceptionsOnTwitter extends t3lib_error_DebugExceptionHandler {
 function echoExceptionWeb(Exception $exception) {

124

 TYPO3 Core APIs - doc_core_api Configuration

 $this->postExceptionsOnTwitter($exception);
 }
 function postExceptionsOnTwitter($exception) {
 // do it ;-)
 }
}

$TYPO3_CONF_VARS['SYS']['debugExceptionHandler'] = 'tx_postExceptionsOnTwitter';
$TYPO3_CONF_VARS['SYS']['productionExceptionHandler'] = 'tx_postExceptionsOnTwitter';

125

 TYPO3 Core APIs - doc_core_api Data Formats

Data Formats

<T3DataStructure>

Introduction
TYPO3 offers an XML format, T3DataStructure, which defines a hierarchical data structure. In itself the data structure
definition doesn't do much - it is only a back bone for higher level applications which can add their own configuration inside.

Such applications can be:

• “FlexForms” - a TCEform type which will allow users to build information hierarchies (in XML) according to the Data
Structure. In this sense the Data Structure is like a DTD for the backend which can render a dynamic form based on the
Data Structure

• “TemplaVoila” - an extension which uses the Data Structure as backbone for mapping template HTML to data.

This documentation of a data structure will document the general aspects of the XML format and leave the details about
FlexForms and TemplaVoila to be documented elsewhere.

Some other facts about Data Structures (DS):

• A Data Structure is defined in XML with the document tag named “<T3DataStructure>”

• The XML format generally complies with what can be converted into a PHP array by t3lib_div::xml2array() - thus it directly
reflects how a multidimensional PHP array is constructed.

• A Data Structure can be arranged in a set of “sheets”. The purpose of sheets will depend on the application. Basically
sheets are like a one-dimensional internal categorization of Data Structures.

• Parsing a Data Structure into a PHP array is incredibly easy - just pass it to t3lib_div::xml2array() (see example below)

• “DS” is sometimes used as short for Data Structure

Elements
This is the list of elements and their nesting in the Data Structure. This could probably be expressed by a DTD or XML schema
(anyone?). Words will have to do for now.

Elements nesting other elements (“Array” elements):
All elements defined here cannot contain any string value but must contain another set of elements.

(In a PHP array this corresponds to saying that all these elements must be arrays.)

Element Description Child elements

<T3DataStructure> Document tag <meta>
<ROOT> or <sheets>

<meta> Can contain application specific meta settings

<ROOT>
<[field name]>

Defines an “object” in the Data Structure

• <ROOT> is reserved as tag for the first element in the Data Structure.
The <ROOT> element must have a <type> tag with the value “array” and then
define other objects nested in <el> tags.

• [field name] defines the objects name

<type>
<section>
<el>
<[application tag]>

<sheets> Defines a collection of “sheets” which is like a one-dimensional list of independent Data
Structures

<[sheet name]>

<TCEforms> Contains details about visual representation of sheets. If there is only a single sheet,
applies to implicit single sheet.

<sheetTitle>
<cshFile>

<sheetTitle> Title of the sheet. Mandatory for any sheet except the first (which gets "General" in this
case). Can be a plain string or a reference to language file using standard LLL syntax.
Ignored if sheets are not defined for the flexform.

<cshFile> CSH language file for fields inside the flexform. Refer to section on T3locallang of this
document on the format of language files and to section Content Sensitive Help of
"Inside TYPO3" document for information about CSH.

126

 TYPO3 Core APIs - doc_core_api <T3DataStructure>

Element Description Child elements

<[sheet ident]> Defines an independent data structure starting with a <ROOT> tag.
Notice: Alternatively it can be a plain value referring to another XML file which
contains the <ROOT> structure. See example below.

<ROOT>

<el> Contains a collection of Data Structure “objects” <[field name]>

Elements containing values (“Value” elements):
All elements defined here must contain a string value and no other XML tags whatsoever!

(In a PHP array this corresponds to saying that all these elements must be strings or integers.)

Element Format Description

<type> Keyword string:
“array”, [blank]
(=default)

Defines the type of object.
• “array” means that the object simply contains a collection of other objects defined

inside the <el> tag on the same level
If the value is “array” you can use the boolean “<section>”. See below.

• Default value means that the object does not contain sub objects. The meaning of
such an object is determined by the application using the data structure. For
FlexForms this object would draw a form element.

Notice: If the object was <ROOT> this tag must have the value “array”

<section> Boolean, 0/1 Defines for an object of the type <array> that it must contain other “array” type
objects. The meaning of this is application specific. For FlexForms it will allow the user
to select between possible arrays of objects to create in the form. For TemplaVoila it
will select a “container” element for another set of elements inside. This is quite fuzzy
unless you understand the contexts.

Example: FlexForm configuration in “mininews” extension

Simple example of a data structure used to define a FlexForm element in TCEforms. Notice the application specific section
<TCEforms> (see documentation for FlexForms).

<T3DataStructure>
 <meta>
 <langDisable>1</langDisable>
 </meta>
 <ROOT>
 <type>array</type>
 <el>
 <field_templateObject>
 <TCEforms>
 <label>LLL:EXT:mininews/locallang_db.php:tt_content.pi_flexform.select_template<
/label>

 <config>
 <type>select</type>
 <items>
 <numIndex index=”0”>
 <numIndex index=”0”></numIndex>
 <numIndex index=”1”>0</numIndex>
 </numIndex>
 </items>
 <foreign_table>tx_templavoila_tmplobj</foreign_table>
 <foreign_table_where>
 AND tx_templavoila_tmplobj.pid=###STORAGE_PID###
 AND
tx_templavoila_tmplobj.datastructure="EXT:mininews/template_datastructure.xml"
 AND tx_templavoila_tmplobj.parent=0
 ORDER BY tx_templavoila_tmplobj.title
 </foreign_table_where>
 <size>1</size>
 <minitems>0</minitems>
 <maxitems>1</maxitems>
 </config>
 </TCEforms>
 </field_templateObject>
 </el>
 </ROOT>
</T3DataStructure>

127

 TYPO3 Core APIs - doc_core_api <T3DataStructure>

Example #2

More complex example of a FlexForms structure, using two sheets, “sDEF” and “s_welcome” (snippet from “newloginbox”
extension).

<T3DataStructure>
 <sheets>
 <sDEF>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_ge
neral</sheetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <show_forgot_password>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.show_
forgot_password</label>
 <config>
 <type>check</type>
 </config>
 </TCEforms>
 </show_forgot_password>
 </el>
 </ROOT>
 </sDEF>
 <s_welcome>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_we
lcome</sheetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <header>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.heade
r</label>
 <config>
 <type>input</type>
 <size>30</size>
 </config>
 </TCEforms>
 </header>
 <message>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.messa
ge</label>
 <config>
 <type>text</type>
 <cols>30</cols>
 <rows>5</rows>
 </config>
 </TCEforms>
 </message>
 </el>
 </ROOT>
 </s_welcome>
 </sheets>
</T3DataStructure>

Sheet references
If Data Structures are arranged in a collection of sheets you can choose to store one or more sheets externally in separate
files. This is done by setting the value of the <[sheet ident]> tag to a relative file reference instead of being a definition of
the <ROOT> element.

Example

Taking the Data Structure from Example #2 above we can now rearrange it in three files:

Main Data Structure:

<T3DataStructure>
 <sheets>
 <sDEF>fileadmin/sheets/default_sheet.xml</sDEF>
 <s_welcome>fileadmin/sheets/welcome_sheet.xml</s_welcome>

128

 TYPO3 Core APIs - doc_core_api <T3DataStructure>

 </sheets>
</T3DataStructure>

fileadmin/sheets/default_sheet.xml

<T3DataStructure>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_general</s
heetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <show_forgot_password>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.show_forgot_p
assword</label>
 <config>
 <type>check</type>
 </config>
 </TCEforms>
 </show_forgot_password>
 </el>
 </ROOT>
</T3DataStructure>

fileadmin/sheets/welcome_sheet.xml

<T3DataStructure>
 <ROOT>
 <TCEforms>
 <sheetTitle>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.sheet_welcome</s
heetTitle>
 </TCEforms>
 <type>array</type>
 <el>
 <header>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.header</label
>
 <config>
 <type>input</type>
 <size>30</size>
 </config>
 </TCEforms>
 </header>
 <message>
 <TCEforms>
 <label>LLL:EXT:newloginbox/locallang_db.php:tt_content.pi_flexform.message</labe
l>
 <config>
 <type>text</type>
 <cols>30</cols>
 <rows>5</rows>
 </config>
 </TCEforms>
 </message>
 </el>
 </ROOT>
</T3DataStructure>

Syntax highlighting of a Data Structure
You can syntax highlight a data structure using the extension “extdeveval” and the code highlighter. Just copy the DS XML
content into the form:

129

 TYPO3 Core APIs - doc_core_api <T3DataStructure>

Parsing a Data Structure
You can convert a Data Structure XML document into a PHP array by the function t3lib_div::xml2array(). Taking the simple DS
above:

<T3DataStructure>
 <meta>
 <langDisable>1</langDisable>
 </meta>
 <ROOT>
 <type>array</type>
 <el>
 <field_templateObject>
 <TCEforms>
 <label>LLL:EXT:mininews/locallang_db.php:tt_content.pi_flexform.select_template<
/label>

 <config>
 <type>select</type>
 <items>
 <numIndex index=”0”>
 <numIndex index=”0”></numIndex>
 <numIndex index=”1”>0</numIndex>
 </numIndex>
 </items>
 <foreign_table>tx_templavoila_tmplobj</foreign_table>
 <foreign_table_where>
 AND tx_templavoila_tmplobj.pid=###STORAGE_PID###
 AND
tx_templavoila_tmplobj.datastructure="EXT:mininews/template_datastructure.xml"
 AND tx_templavoila_tmplobj.parent=0
 ORDER BY tx_templavoila_tmplobj.title
 </foreign_table_where>
 <size>1</size>
 <minitems>0</minitems>
 <maxitems>1</maxitems>
 </config>
 </TCEforms>
 </field_templateObject>

130

 TYPO3 Core APIs - doc_core_api <T3DataStructure>

 </el>
 </ROOT>
</T3DataStructure>

Passing this to the xml2array function and you will get an array like this (screen shot from “extdeveval”):

As you can see the format of the XML generated by t3lib_div::array2xml() is designed to reflect the array structures PHP can
contain and thus the transformation to and from XML with the functions t3lib_div::array2xml() and t3lib_div::xml2array() is
very easy and quick.

API functions for sheets
If you have a DS with sheets inside you might need to resolve the references:

<T3DataStructure>
 <sheets>
 <sDEF>fileadmin/sheets/default_sheet.xml</sDEF>
 <s_welcome>fileadmin/sheets/welcome_sheet.xml</s_welcome>
 </sheets>
</T3DataStructure>

This is done by t3lib_div::resolveSheetDefInDS() or t3lib_div::resolveAllSheetsInDS(). In fact, even if you don't have sheets in
your file but just want to stay compatible with DS XML with sheets you should use this function. For instance these function
calls will parse the DS into an array (screen shot above) and resolve the sheet definition, in this case creating a default sheet
“sDEF” (screen shot below):

$treeDat = t3lib_div::xml2array($inputCode);
$treeDat = t3lib_div::resolveAllSheetsInDS($treeDat);

Applications
For a more practical understanding of Data Structures you should study some of the applications of Data Structures:

131

 TYPO3 Core APIs - doc_core_api <T3DataStructure>

• FlexForms - using Data Structures as a “DTD” for rendering a hierarchical editing form which saves the content back into
XML

• TemplaVoila - using Data Structures for mapping content to HTML template files.

<T3locallang>

Introduction
This XML format is used for "locallang-XML" (llXML) files, a format TYPO3 uses for storage of interface labels and translations
of them. The format is parsed by t3lib_div::xml2array() which means that tag-names and "index" attribute values are inter-
related in significance. The content is always in utf-8.

llXML files must be used from inside extension directories (system/global/local).

See "Inside TYPO3" for more details about locallang-files and the application of this format.

llXML files from installed extensions are translated by a backend tool (extension "llxmltranslate").

A "locallang-XML" file contains a set of labels in the default language (must always English!). The translated labels are located
in systematically named external files in typo3conf/l10n/[language key]/. Optionally the main files can contain the translations
directly but that should only be used in special cases since it constrains the translation process too much. It is also possible
with a specific file reference to use other external files than the automated ones.

Elements
This is the elements and their nesting in the locallang-XML format.

Elements nesting other elements (“Array” elements):
All elements defined here cannot contain any string value but must contain another set of elements.

(In a PHP array this corresponds to saying that all these elements must be arrays.)

Element Description Child elements

<T3locallang> Document tag <meta>
<data>
<orig_hash>
<orig_text>

<meta> Contains meta data about the locallang-XML file. Used in translation, but not inside
TYPO3 directly.

<labelContext>
<description>
<type>
<csh_table>

<data> Contains the data for translations

Notice: The contents in the <data> tag is all that is needed for labels inside TYPO3.
Everything else is meta information for the translation tool!

<languageKey>

<orig_hash> Contains hash-integers for each translated label of the default label at the point of
translation. This is used to determine if the default label has changed since the
translation was made.

<languageKey>

<orig_text> Contains the text of the default label that was the basis of the translated version!
The original text is used to show a diff between the original base of the translation
and the new default text so a translator can quickly see what has changed.

<languageKey>

<languageKey> Array of labels for a language. The "index" attribute contains language key.

There are two cases in the context “<data>” to note:
• index = “default”: Array of default labels.
• index = [language key] :

• If string: Pointer to external file containing translation, e.g.
“EXT:csh_dk/lang/dk.locallang_csh_web_info.xml”

• If array: Translations inline in main file (deprecated)
• [If not existing, recommended]: Translations in external default file

typo3conf/l10n/

<label>

Alternatively, when used
under <data> it can be
a string pointing to an
external "include file"!

<labelContext> Array of context descriptions of the default labels.
The "index" attribute contains label key

<label>

132

 TYPO3 Core APIs - doc_core_api <T3locallang>

Elements containing values (“Value” elements):
All elements defined here must contain a string value and no other XML tags whatsoever!

All values are in utf-8.

(In a PHP array this corresponds to saying that all these elements must be strings or integers.)

Element Format Description

<label> (under <data>) string Value of a original/translated label.
The "index" attribute contains label key.

<label> (under
<orig_hash>)

integer Hash of a translated label.
The "index" attribute contains label key.

<label> (under
<orig_text>)

string Original default value of a translated label used for making a diff if the original has
changed.
The "index" attribute contains label key.

<label>
(child of <labelContext>)

string Description of a default labels context. This should be used where it cannot be clear for
the translation where the default labels occur. Sometimes the context is important for
the translator in order to translate correctly.
The "index" attribute contains label key.

<description> string Description of the file contents.

<type> string Type of content. Possible values are:

● "module" : Used for labels in the backend modules.
● "database" : Used for labels of database tables and fields.
● "CSH" : Used for Context Sensitive Help (both database tables, fields, backend

modules etc.)

<csh_table> string (Only when the type is "CSH"!)

For CSH it is important to know what "table" the labels belong to. A "table" in the
context of CSH is an identification of a group of labels. This can be an actual table
name (containing all CSH for a single table) or it can be module names etc. with a
prefix to determine type. See CSH section in "Inside TYPO3" for more details.

Examples:
<csh_table>xMOD_csh_corebe</csh_table> (General Core CSH)
<csh_table>_MOD_tools_em</csh_table> (For Extension Mgm. module)
<csh_table>pages</csh_table> (For "pages" table)

<T3locallangExt>
External include files contains a sub-set of the tags of the <T3locallang> format. Basically they contain the <data>,
<orig_hash> and <orig_text> tags but with "<languageKey>" tags inside only for the specific language they used.

When the include file is read the information for the selected language key is read from each of the three tags and merged
into the internal array.

Element Description Child elements

<T3locallangExt> Document tag for the external include files of "<T3locallang>" <data>
<orig_hash>
<orig_text>

<data> See <data> element of <T3locallang> above.

<orig_hash> See <data> element of <T3locallang> above.

<orig_text> See <data> element of <T3locallang> above.

Example: locallang-XML file for a backend module

This example shows a standard locallang-XML file for a backend module. Notice how the <orig_hash> section is included
which means that translators can spot if an original label changes. However the "<orig_text>" section would have been
needed if translators were supposed to also see the difference. But typically that is not enabled since it takes a lot of space
up.

<T3locallang>
 <meta type="array">
 <description>Standard Module labels for Extension Development Evaluator</description>
 <type>module</type>
 <csh_table/>
 <labelContext type="array"/>

133

 TYPO3 Core APIs - doc_core_api <T3locallang>

 </meta>
 <data type="array">
 <languageKey index="default" type="array">
 <label index="mlang_tabs_tab">ExtDevEval</label>
 <label index="mlang_labels_tabdescr">The Extension Development Evaluator tool.</label>
 </languageKey>
 <languageKey index="dk" type="array">
 <label index="mlang_tabs_tab">ExtDevEval</label>
 <label index="mlang_labels_tabdescr">Evalueringsværktøj til udvikling af extensions.</label>
 </languageKey>
....
 </data>
 <orig_hash type="array">
 <languageKey index="dk" type="array">
 <label index="mlang_tabs_tab" type="integer">114927868</label>
 <label index="mlang_labels_tabdescr" type="integer">187879914</label>
 </languageKey>
 </orig_hash>
</T3locallang>

Example: locallang-XML file (CSH) with reference to external include file

The main XML file looks like this. Notice the tag "csh_table" has a value which is important for CSH content so it can be
positioned in the right category.

In the <data> section you can see all default labels. But notice how the value for the "dk" translation is a reference to an
external file! The contents of that file is shown below this listing.

<T3locallang>
 <meta type="array">
 <description>CSH for Web>Info module(s) (General Framework)</description>
 <type>CSH</type>
 <csh_table>_MOD_web_info</csh_table>
 <labelContext type="array"/>
 </meta>
 <data type="array">
 <languageKey index="default" type="array">
 <label index=".alttitle">Web > Info module</label>
 <label index=".description">The idea of the Web>Info ...</label>
 <label index=".details">Conceptually the Web>Info mod...functionality.</label>
 <label index="_.seeAlso">_MOD_web_func,</label>
 <label index="_.image">EXT:lang/cshimages/pagetree_overview_10.png</label>
 <label index=".image_descr">The Web>Info module a....
"info_pagetsconfig".</label>
 </languageKey>
 <languageKey index="dk">EXT:csh_dk/lang/dk.locallang_csh_web_info.xml</languageKey>
 </data>
</T3locallang>

The include file (for "dk") looks like below.

<T3locallangExt>
 <data type="array">
 <languageKey index="dk" type="array">
 <label index="pagetree_overview.alttitle">Sidetræ overblik</label>
 </languageKey>
 </data>
 <orig_hash type="array">
 <languageKey index="dk" type="array">
 <label index="pagetree_overview.alttitle" type="integer">92312309</label>
 </languageKey>
 </orig_hash>
 <orig_text type="array">
 <languageKey index="dk" type="array">
 <label index="pagetree_overview.alttitle">Pagetree Overview</label>
 </languageKey>
 </orig_text>
</T3locallangExt>

134

	TYPO3 Core APIs
	Introduction
	Overview
	Code examples
	Dedication

	TYPO3 Extension API
	Extension Architecture
	Introduction
	Extensions and the Core

	Files and locations
	Files
	Reserved filenames

	System, Global and Local extensions
	Loading precedence

	Extension key
	Naming conventions
	Best practice on using underscores
	Note on “old” and default extensions:

	Import and install of extensions
	ext_tables.php and ext_localconf.php
	ext_emconf.php
	Extension configuration options (ext_conf_template.txt)
	Extending “extensions-classes”
	The Extension Manager (EM)
	Basic framework for a new extension
	Registering an extension key
	Enabling the Extension Kickstarter
	Using the Extension Kickstarter
	Enabling your newly created extension
	Re-edit the extension
	Warning about re-editing

	TYPO3 API overview
	Introduction
	Inline documentation
	Pointers in the right direction

	General functions
	High priority functions (CGL requirements)
	TYPO3 Coding Guidelines

	Functions typically used and nice to know
	Programming with workspaces in mind
	Frontend challenges in general
	Frontend implementation guidelines
	Frontend scenarios impossible to preview
	Backend challenges
	Backend module access
	Detecting current workspace
	Using TCEmain with workspaces
	Moving in workspaces

	TYPO3 Core Engine (TCE)
	Introduction
	Database
	Files

	Database: t3lib_TCEmain basics
	Commands Array ($cmd):
	Examples of commands:

	Data Array ($data):
	Examples of Data submission:

	Clear cache
	Hook for cache post-processing

	Flags in TCEmain

	Using t3lib_TCEmain in scripts
	Example: Submitting data
	Example: Executing commands
	Example: Clearing cache
	Example: Complex data submission
	Example: Both data and commands executed with alternative user object

	The "tce_db.php" API
	Files: t3lib_extFileFunctions basics
	Files Array ($file):
	Web-space, FTP-space and $TYPO3_CONF_VARS['BE']['fileExtensions']

	The "tce_file.php" API

	Hooks
	The concept of "hooks"
	Hooks vs. XCLASS extensions
	Proposing hooks
	How a hook looks

	Hook configuration
	$TYPO3_CONF_VARS['EXTCONF']
	$TYPO3_CONF_VARS['SC_OPTIONS']
	$TYPO3_CONF_VARS['TBE_MODULES_EXT']

	Creating hooks
	Hook made with t3lib_div::getUserObj()
	Hook made with t3lib_div::callUserFunction()

	Variables and Constants
	Constants
	Global variables

	Backend User Object
	Checking user access for $BE_USER from PHP
	Checking access to current backend module
	Checking access to any backend module
	Access to tables and fields?
	Is "admin"?
	Read access to a page?
	Is a page inside a DB mount?
	Selecting readable pages from database?
	Saving module data
	Getting module data
	Returning object script from TSconfig
	Getting the username
	Get User Configuration value

	Using the system log
	The log table (sys_log)
	Making logging simple

	Using the system registry
	The registry table (sys_registry)
	The registry API
	Examples

	PHP Class Extension
	Introduction
	Example
	IMPORTANT

	Which classes?
	Example - Adding a small feature in the interface
	Notes on SC_* classes (script classes)

	Extending methods
	User defined methods in classes
	A few examples of extending the backend classes
	Warnings

	AJAX in the TYPO3 Backend
	In-depth presentation
	Client-Side programming
	Server-side programming
	Different Content Formats
	Plain Text
	XML
	JSON

	Developing with AJAX in the TYPO3 Backend
	How to choose the right ajaxID
	Server-Side
	Client-part

	Using third-party JavaScript libraries in the TYPO3 Backend
	Using Prototype
	Using Scriptaculous
	Example:

	Using ExtJS

	Flash messages
	Flash messages API

	Various examples
	Introduction
	Debugging with debug()

	Rendering page trees
	Local extensions of the page tree classes

	Accessing the clipboard
	Setting elements on the clipboard

	Adding Context Sensitive Menu items
	Implementing Context Sensitive Menus
	CSM for database elements
	CSM for files

	Parsing HTML: t3lib_parsehtml
	Extracting blocks from an HTML document
	Extracting single tags
	Cleaning HTML content
	Advanced call back processing

	Links to edit records
	Editing a record
	Editing only a few fields from a record
	Creating a form for new elements

	Support for custom tables in the Page module
	Adding elements to the Content Element Wizard
	Adding elements under the “Plugins” header
	Example

	Using custom permission options
	Registering a header and options
	Evaluating the options
	Keys in the array

	Table Control Array, $TCA
	Page types
	$PAGES_TYPES

	User Settings Configuration
	Introduction
	Reference
	$TYPO3_USER_SETTINGS['ctrl']
	$TYPO3_USER_SETTINGS['columns'][fieldname]
	$TYPO3_USER_SETTINGS['showitem']
	Checking the User Settings Configuration

	RTE API
	Rich Text Editors in the TYPO3 backend
	Introduction
	RTEs in Extensions
	API for Rich Text Editors
	class.t3lib_rteapi.php
	Example: The “rte” extension

	Transformations
	Introduction
	Hybrid modes
	Configuration
	Where transformations are performed

	Process illustration
	Part 1: The RTE Applications
	Part 2: The RTE Specific Transformation
	Part 3: The Main Transformation
	Part 4: The Database
	Part 5: Rendering the website
	Part 6: The Website
	Content Examples

	Transformation overview
	Transformation details
	Page TSconfig
	Configuration examples
	The RTE object in Page TSconfig
	Configuration examples

	The ->PROC object

	Custom transformations API
	Custom transformation key
	Registering the transformation key in the system
	Code listing of "user_transformation"
	Comments to code listing
	Using the transformation

	Historical perspective on RTE transformations
	Introduction
	Properties and 'transformations'
	RTE transformations in Content Elements
	Conclusion:

	Skinning API
	$TBE_STYLES
	$TBE_STYLES API

	Directory structure for “skinImgAutoCfg” feature
	How to make your extensions compatible with skinning
	Skinning support for local extension icons

	Finding CSS selectors for the backend documents
	Addressing specific elements in the backend

	Skinning database record icons with variations
	Introduction
	Pre-rendered icon states
	Automatic creation of pre-made variations
	Limits to number of pre-made icons

	Error and Exception Handling
	Introduction
	Screenshots

	Configuration
	t3lib_error_ErrorHandler
	t3lib_error_ProductionExceptionHandler
	t3lib_error_DebugExceptionHandler
	Examples
	Debugging and development setup
	Production setup
	Performance setup

	Extending the error and exception handling

	Data Formats
	<T3DataStructure>
	Introduction
	Elements
	Elements nesting other elements (“Array” elements):
	Elements containing values (“Value” elements):
	Example: FlexForm configuration in “mininews” extension
	Example #2

	Sheet references
	Example

	Syntax highlighting of a Data Structure
	Parsing a Data Structure
	API functions for sheets

	Applications

	<T3locallang>
	Introduction
	Elements
	Elements nesting other elements (“Array” elements):
	Elements containing values (“Value” elements):
	<T3locallangExt>
	Example: locallang-XML file for a backend module
	Example: locallang-XML file (CSH) with reference to external include file

