
TCA Reference

Extension Key: doc_core_tca
Language: en
Version: 4.7.0
Keywords: forAdmins, forDevelopers, forIntermediates
Copyright 2000-2012, Documentation Team, <documentation@typo3.org>

This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3
- a GNU/GPL CMS/Framework available from www.typo3.org

Official documentation
This document is included as part of the official TYPO3 documentation. It has been approved by the
TYPO3 Documentation Team following a peer-review process. The reader should expect the information in
this document to be accurate - please report discrepancies to the Documentation Team
(documentation@typo3.org). Official documents are kept up-to-date to the best of the Documentation
Team's abilities.

Core Manual
This document is a Core Manual. Core Manuals address the built in functionality of TYPO3 and are
designed to provide the reader with in-depth information. Each Core Manual addresses a particular process
or function and how it is implemented within the TYPO3 source code. These may include information on
available APIs, specific configuration options, etc.
Core Manuals are written as reference manuals. The reader should rely on the Table of Contents to identify
what particular section will best address the task at hand.

TCA Reference - doc_core_tca TCA Reference

Table of Contents
TCA Reference... 1

Introduction... 3
About this document... 3
What's new.. 3
Credits.. 3
Feedback.. 3

What is $TCA?.. 4
Structure of the $TCA array...4
Glossary..6
The [ctrl] section vs. the other sections....................6

$TCA array reference...7
['ctrl'] section... 7
['interface'] section... 23
['feInterface'] section.. 23
['columns'][field name] section................................... 23
['columns'][field name]['config'] / Common
properties...27
['columns'][field name]['config'] / TYPE: "input"......28
['columns'][field name]['config'] / TYPE: "text"........33
['columns'][field name]['config'] / TYPE: "check".....34
['columns'][field name]['config'] / TYPE: "radio"......36
['columns'][field name]['config'] / TYPE: "select".....36
['columns'][field name]['config'] / TYPE: "group".....53

['columns'][field name]['config'] / TYPE: "none"......62
['columns'][field name]['config'] / TYPE:
"passthrough".. 62
['columns'][field name]['config'] / TYPE: "user"........63
['columns'][field name]['config'] / TYPE: "flex".........64
['columns'][field name]['config'] / TYPE: "inline"......77
['types'][key] section...84
['palettes'][key] section.. 88

Additional $TCA features...90
Special Configuration introduction............................90
Special Configuration options......................................91
Soft References... 94
Wizards Configuration...95
Wizard scripts in the core... 103

Extending the $TCA array.. 112
Storing the changes..112
Customization examples...112
Verifying the $TCA...114

Appendix A – Skinning considerations...................116
Visual style of TCEforms...116

Appendix B - Performance considerations...........123
Loading the full $TCA dynamically...........................123
Benchmarks on dynamic tables:..............................123

2

TCA Reference - doc_core_tca Introduction

Introduction
About this document

This document aims to describe the global array called $TCA. This array describes the database tables
that TYPO3 can operate on. It is a very central element of the TYPO3 architecture.

All code examples used in this manual come either from the TYPO3 source code itself or from the
extension "examples", which can be downloaded from the TER.

This document used to be a chapter inside "TYPO3 Core APIs".

What's new
This document has been updated with changes and features introduced in TYPO3 4.7. Most of the new
features revolve around IRRE and foreign relations.

The list of new features for TYPO3 4.6 can be found at
http://wiki.typo3.org/Documentation_changes_in_4.6#TCA_reference_.28doc_core_tca.29

The list of new features for TYPO3 4.7 can be found at http://forge.typo3.org/projects/typo3v4-
doc_core_tca/versions/1457

Credits
The original reference to the TCA was written by Kasper Skårhøj. This version has been updated by
François Suter.

Feedback
For general questions about the documentation get in touch by writing to documentation@typo3.org.

If you find a bug in this manual, please file an issue in this manual's bug tracker:
http://forge.typo3.org/projects/typo3v4-doc_core_tca/issues

Maintaining quality documentation is hard work and the Documentation Team is always looking for
volunteers. If you feel like helping please join the documentation mailing list
(typo3.projects.documentation on lists.typo3.org).

3

mailto:documentation@typo3.org
http://wiki.typo3.org/Documentation_changes_in_4.6#TCA_reference_.28doc_core_tca.29

TCA Reference - doc_core_tca What is $TCA?

What is $TCA?
The Table Configuration Array (or $TCA) is a global array in TYPO3 which extends the definition of
tables beyond what can be done strictly with SQL. First and foremost $TCA defines which tables are
editable in the TYPO3 backend. Database tables with no corresponding entry in $TCA are "invisible" to
the TYPO3 backend. The $TCA definition of a table also covers the following:

‒ the relations between that table and other tables

‒ what fields should be displayed in the backend and with which layout

‒ how should a field be validated (e.g. required, integer, etc.)

This array is highly extendable using extensions. As a matter of fact – if you consider an absolutely
bare bones installation of TYPO3 (that would without even the required extensions) – only a few tables
are configured by default in TYPO3. They are to be found in the file t3lib/stddb/tables.php and are:

‒ the "pages" table containing the page tree of TYPO3

‒ the "be_users" table containing backend users

‒ the "be_groups" table containing backend user groups

‒ the "sys_filemounts" table containing file mounts for backend users

‒ the "sys_language" table containing the languages in which various elements can be translated

‒ the "sys_news" table (since version 4.5) which is used to display information in the backend
login screen.

All other tables are configured in extensions.

The file "t3lib/stddb/tables.php" contains not only the $TCA definition. You can also find other global
core variables defined there, but they are not discussed in this document. Some of them are explained
in the "Core APIs" manual, those related to skinning in the "Core Skinning Guidelines" manual.

Structure of the $TCA array
The table entries (first level)
The "first level" of the $TCA array is made of the table names (as they appear in the database):

$TCA['pages'] = array(
 ...
);
$TCA['tt_content'] = array(
 ...
);
$TCA['tx_examples_haiku'] = array(
 ...
);

Here three tables, "pages", "tt_content" and "tt_myext" is shown as examples.

Inside the table entries (second level)
Each table is further defined by an array which configures how the system handles the table, both for
display and processing in the backend. The various parts on this second level are called "sections".

The general structure (looking at a single table) is as follows:

$TCA['tx_examples_haiku'] = array(
 'ctrl' => array(

),
 'interface' => array(

),
 'feInterface' => array(

4

TCA Reference - doc_core_tca What is $TCA?

),
 'columns' => array(

),
 'types' => array(

),
 'palettes' => array(

),
);

The following table provides a brief description of each the various sections of $TCA. Each table is
covered in more details in its own chapter.

Section Description

ctrl The table
The "ctrl" section contains properties for the table in general.
These are basically divided in two main categories:
• properties which affect how the table is displayed and handled in the backend interface .

This includes which icon, what name, which columns contains the title value, which column defines
the type value etc.

• properties which determines how it is processed by the system (TCE).
This includes publishing control, "deleted" flag, if the table can only be edited by admin-users, may
only exist in the tree root etc.

interface The backend interface handling
The "interface" section contains properties related to the tables display in the backend, mostly the Web
> List module.

feInterface Frontend Editing
The "feInterface" section contains properties related to Front End editing of the table, mostly related to
the feAdmin_lib.
Is deprecated in the sense that it will still exist, but will not be (and should not be) extended further.

columns The individual fields
The "columns" section contains configuration for each table field (also called "column") which can be
edited by the backend.
The configuration includes both properties for the display in the backend as well as the processing of
the submitted data.
Each field can be configured as a certain "type" (e.g. checkbox, selector, input field, text area, file or db-
relation field, user defined etc.) and for each type a separate set of additional properties applies. These
properties are clearly explained for each type.

types The form layout for editing
The "types" section defines how the fields in the table (configured in the "columns" section) should be
arranged inside the editing form; in which order, with which "palettes" (see below) and with which
possible additional features applied.

palettes The palette fields order
A palette is just a list of fields which will be arranged horizontally side-by-side. But the main idea is
that these fields can be displayed in the top-frame of the backend interface on request so they don't
display inside the main form. In this way they are kind of hidden fields which are brought forth either
by clicking an icon in the main form or (more usually) when you place the cursor in a form field of the
main form).

Deeper levels
All properties on the second level either have their own properties or contain a further hierarchy.

In the case of the [columns] section, this will be the fields themselves. For the [types] and [palettes]
section this will be the list of all possible types and palettes.

5

TCA Reference - doc_core_tca What is $TCA?

Glossary
Before you read on, let's just refresh the meaning of a few concepts mentioned on the next pages:

‒ TCE: Short for "TYPO3 Core Engine". Also referred to as "TCEmain". This class
(class.t3lib_tcemain) should ideally handle all updates to records made in the backend of
TYPO3. The class will handle all the rules which may be applied to each table correctly. It will
also handle logging, versioning, history/undo features, copying/moving/deleting etc.

‒ "list of": Typically used like "list of field names". Whenever "list of" is used it means a list of
strings separated by comma and with NO space between the values .

‒ field name: The name of a field from a database table. Another word for the same is "column"
but it is used more rarely, however the meaning is exactly the same.

‒ record type: A record can have different types, expressed by the value of a certain field in the
record. This field is defined by the [ctrl][type] value and it affects also which fields ("types"-
configuration) is used to display possible form fields.

‒ LLL reference: is a localized string fetched from a locallang file by prefixing the string with
"LLL:".

The [ctrl] section vs. the other sections
In almost the whole system the [ctrl] section of the $TCA entry for a table plays a crucial role. For all
tables configured in $TCA this section must exist in $TCA. The other sections (except [feInterface])
can optionally be stored in another file.

This feature allows scalability since hundreds of tables can be configured with their complete [ctrl]
sections while leaving a relatively small memory footprint since they don't define all the other sections
by default. Please see the [ctrl]-property dynamicConfigFile and the section "Loading the full $TCA
dynamically" (in Appendix B) for more details.

This has the following implications:

‒ You can always depend on accessing information in the [ctrl] section, e.g.
$TCA['your_table_name']['ctrl']

‒ But before you can depend on information in any other section (except [feInterface]) you
should:

1. Call t3lib_div::loadTCA('your_table_name'); (This will dynamically load the full content of
the $TCA array for the table)

2. Then access the information, e.g. $TCA['your_table_name']['columns']['your_field_name']

6

TCA Reference - doc_core_tca $TCA array reference

$TCA array reference
['ctrl'] section

The [ctrl] section contains properties for the table in general.

These properties are basically divided into two main categories:

‒ properties which affect how the table is displayed and handled in the backend interface .
This includes which icon, what name, which columns contains the title value, which column
defines the type value etc.

‒ properties which determines how it is processed by the system (TCE).
This includes publishing control, "deleted" flag, if the table can only be edited by admin-users,
may only exist in the tree root etc.

Reference for the ['ctrl'] section:
Key Datatype Description Scope

title string or
LLL
reference

Contains the system name of the table. Is used for display in the backend.

For instance the "tt_content" table is of course named "tt_content"
technically. However in the backend display it will be shown as
"Pagecontent" when the backend language is English. When another
language is chosen, like Danish, then the label "Sideindhold" is shown
instead. This value is managed by the "title" value.

You can insert plain text values, but the preferred way is to enter a
reference to a localized string. See the example below. Refer to the
localization section in "Inside TYPO3" for more details.

Example:
$TCA['sys_template'] = array(

'ctrl' => array(
'title' =>

'LLL:EXT:cms/locallang_tca.xml:sys_template',

In the above example the "LLL:" prefix tells the system to look up a label
from a localized file. The next prefix "EXT:cms" will look for the data in
the extension with the key "cms". In that extension the file
"locallang_tca.xml" contains a XML structure inside of which one label tag
has an index attribute named "sys_template". This tag contains the value
to display in the default language. Other languages are provided by the
language packs.

Display

label string (field
name)

Required!
Points to the field name of the table which should be used as the "title"
when the record is displayed in the system.

Note: label_userFunc overrides this property (but it is still required).

Display

label_alt String
(comma-
separated list
of field
names)

Comma-separated list of field names, which are holding alternative values
to the value from the field pointed to by "label" (see above) if that value is
empty. May not be used consistently in the system, but should apply in
most cases.

Example:
$TCA['tt_content'] = array(

'ctrl' => array(
'label' => 'header',
'label_alt' => 'subheader,bodytext',

See t3lib_BEfunc::getRecordTitle()
Also see "label_alt_force"

Note: label_userFunc overrides this property.

Display

7

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

label_alt_force boolean If set, then the "label_alt" fields are always shown in the title separated by
comma.
See t3lib_BEfunc::getRecordTitle()

Note: label_userFunc overrides this property.

Display

label_userFunc string Function or method reference. This can be used whenever the label or
label_alt options don't offer enough flexibility, e.g. when you want to look
up another table to create your label. The result of this function overrules
the “label”, “label_alt” or “label_alt_force” settings.

When calling a method from a class, enter
"[classname]->[methodname]". The class name must be prefixed "user_" or
"tx_". When using a function, just enter the function name. The function
name must be prefixed "user_" or "tx_". The preferred way is to use a class
and a method.

Two arguments will be passed to the function/method: The first argument
is an array which contains the following information about the record for
which to get the title:

$params['table'] = $table;
$params['row'] = $row;

The resulting title must be written to $params['title'] which is passed
by reference.

The second argument is a reference to the parent object.

Note: The function file must be included manually (e.g. include it in your
ext_tables.php file). When using a class, the preferred way is to declare it
with the autoloader.

Example:

Let's look at what is done for the "haiku" table of the "examples"
extension. First, in the ext_autoload.php file:

$extensionPath = t3lib_extMgm::extPath('examples');
return array(

'tx_examples_tca' => $extensionPath .
'class.tx_examples_tca.php',
);

the necessary class is declared. The call to the user function appears in
the ext_tables.php file:

$TCA['tx_examples_haiku'] = array(
'ctrl' => array(

...
'label' => 'title',
'label_userFunc' => 'tx_examples_tca

->haikuTitle',
...

)
);

Finally in class.tx_examples_tca.php is the code itself:

public function haikuTitle(&$parameters,
$parentObject) {

$record =
t3lib_BEfunc::getRecord($parameters['table'],
$parameters['row']['uid']);

$newTitle = $record['title'];
$newTitle .= ' (' .

substr(strip_tags($record['poem']), 0, 10) . '...)';
$parameters['title'] = $newTitle;

}

Display

8

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

type string
(field name)

Field name, which defines the "record type".
The value of this field determines which one of the 'types' configurations
are used for displaying the fields in the TCEforms. It will probably also
affect how the record is used in the context where it belongs.

The most widely known usage of this feature is the Content Elements
where the "Type:" selector is defined as the "type" field and when you
change that selector you will also get another rendering of the form:

It is also used by the "doktype" field in the "pages" table.

Example:
The "dummy" table from the "examples" extension defines different types.
The field used for differentiating the types is the "record_type" field.
Hence we have the following in the [ctrl] section of the
tx_examples_dummy table:

'type' => 'record_type'

The "record_type" field can takes values ranging from 0 to 2. Accordingly
we define types for the same values. Each type defines which fields will be
displayed in the BE form. Types are discussed in more details later on.

'types' => array(
'0' => array('showitem' => 'hidden, record_type,

title, some_date '),
'1' => array('showitem' => 'record_type, title '),
'2' => array('showitem' => 'title, some_date,

hidden, record_type '),
),

Since TYPO3 4.7, it is also possible to make the type depend on the value
of a related record, i.e. switch using the type field of a foreign table. The
syntax is "relation_field:foreign_type_field".

Example
Imagine two tables, related as parent and child. The child table has a
relation to the parent table using a "select" field called "myparent" with
"foreign_table" set to the parent table. Now, if you want the fields
displayed in the child table to depend on a field called "parenttype" of the
parent table, you can define the [ctrl][type] of the child table like
"myparent:parenttype".

Display
/ Proc.

hideTable boolean Hide this table in record listings.

9

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

requestUpdate string
(list of field
names)

This is a list of fields that will trigger an update of the form, on top of the
"type" field. This is generally done to hide or show yet more fields
depending on the value of the field that triggered the update.

Proc.

iconfile string Pointing to the icon file to use for the table.
Icons should be dimensioned 16x16 pixels and of the GIF or PNG file type.

The value of the option can be any of these:
• If there is a slash (/) in the value: It must be a relative file

path pointing to the icon file relative to the typo3/ (admin)
folder. You may start that path with '../' if you like to get your
icon from a folder in the PATH_site path.

• For extensions, see example below.
• If there is just a filename: It must exist in the "typo3/gfx/i/"

folder.
• If empty/not given: The default icon for a table is defined as

"gfx/i/[table_name].gif". (This is an obsolete approach to use
since the content of the "gfx/i/" folder should not be changed.)

Example: How to assign an icon from an extension
For haikus from the "examples" extension, the icon is defined this way:

'iconfile' => t3lib_extMgm::extRelPath($_EXTKEY) .
'icon_tx_examples_haiku.gif',

Display

typeicon_colum
n

string
(field name)

Field name, whose value decides alternative icons for the table (The default
icon is the one defined with the 'iconfile' value.)
An icon in the 'typeicons' array may override the default icon if an entry
is found for the key having the value of the field pointed to by
"typeicon_column" (this feature).
Notice: These options ("typeicon_column" and "typeicons") do not work
for the pages-table, which is configured by the $PAGES_TYPES array.
Related "typeicons"

This feature is used by for instance the "tt_content" table (Content
Elements) where each type of content element has its own icon.

Example:
See "typeicons"

Display

typeicons array (See "typeicon_column")

Example of configuration (from the "tt_content" table):

 'typeicon_column' => 'CType',
 'typeicons' => array(
 'header' => 'tt_content_header.gi
f',
 'textpic' => 'tt_content_textpic.
gif',
 'image' => 'tt_content_image.gif'
,
 'bullets' => 'tt_content_bullets.
gif',
 'table' => 'tt_content_table.gif'
,
 'splash' => 'tt_content_news.gif'
,
 'uploads' => 'tt_content_uploads.
gif',
 'multimedia' => 'tt_content_mm.gi
f',
 'menu' => 'tt_content_menu.gif',
 'list' => 'tt_content_list.gif',
 'mailform' => 'tt_content_form.gi
f',
 'search' => 'tt_content_search.gi
f',
 'login' => 'tt_content_login.gif'
,
 'shortcut' => 'tt_content_shortcu

Display

10

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

t.gif',
 'script' => 'tt_content_script.gi
f',
 'div' => 'tt_content_div.gif',
 'html' => 'tt_content_html.gif'
),

thumbnail string
(field name)

Field name, which contains the value for any thumbnails of the records.
This could be a field of the "group" type containing a list of file names.

Example:
For the "tt_content" table this option points to the field "image" which
contains the list of images that can be attached to the content element:

'thumbnail' => 'image',

The effect of the field can be see in listings in e.g. the "List" module:

(You might have to enable "Show Thumbnails by default" in the "Startup"
tab of the User Settings module first in order to see this display).

Display

selicon_field string
(field name)

Field name, which contains the thumbnail image used to represent the
record visually whenever it is shown in TCEforms as a foreign reference
selectable from a selector box.
Only images in a usual format for the web (i.e. gif, png, jpeg, jpg) are
allowed. No scaling is done.

You should consider this a feature where you can attach an "icon" to a
record which is typically selected as a reference in other records. For
example a "category". In such a case this field points out the icon image
which will then be shown. This feature can thus enrich the visual
experience of selecting the relation in other forms.

Example:
The "backend_layout" table defines the "icon" field as being the one
containing reference icons:

$TCA['backend_layout'] = array (
'ctrl' => array (

...
'selicon_field' => 'icon',
'selicon_field_path' => 'uploads/media',
...

)
);

Also see "selicon_field_path" below.

Display

selicon_field_pa
th

string The path prefix of the value from 'selicon_field'. This must the same as the
"upload_path" of that field.

See example above.

Display

sortby string
(field name)

Field name, which is used to manage the order of the records.
The field will contain an integer value which positions it at the correct
position between other records from the same table on the current page.

Display
/Proc.

11

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

NOTICE: The field should not be editable by the user since the TCE will
manage the content automatically in order to manage the order of records.

This feature is used by e.g. the "pages" table and "tt_content" table
(Content Elements) in order to output the pages or the content elements in
the order expected by the editors. Extensions are expected to respect this
field.

Typically the field name "sorting" is dedicated to this feature.

Also see "default_sortby" below.

default_sortby string If a field name for "sortby" is defined, then this is ignored.
Otherwise this is used as the 'ORDER BY' statement to sort the records in
the table when listed in the TYPO3 backend.

Example:
For the "haikus" table of the "examples" extension, records are listed
alphabetically, based on their title:

$TCA['tx_examples_haiku'] = array(
'ctrl' => array(

...
'default_sortby' => 'ORDER BY title',
...

)
);

Display

mainpalette comma-
separated list
of integers
(pointing to
multiple
palette keys)

Points to the palette-number(s) that should always be shown in the bottom
of the TCEform.

Example:
The [ctrl] section looks like this:

'mainpalette' => '1',

The number "1" references a palette. This palette could be something like:

'palettes' => array(
 '1' => array('showitem' =>
'hidden,starttime,endtime,fe_group'),

Note that "mainpalette" is not much used anymore. It has the drawback of
positioning the related fields weirdly when tabs are added to existing
tables via extensions (the fields come at the end of the new tabs, which
may be disturbing for editors).

Display

canNotCollapse boolean By default, fields placed in palettes (see later for more about palettes) are
not shown by TCEforms. They appear only once the "Show secondary
options" checkbox at the bottom of the screen is checked.

By setting "canNotCollapse" to true, the palettes of this table will always
be displayed, as if the above-mentioned option was always checked. This
setting can also be defined per palette (see later).

Display

tstamp string (field
name)

Field name, which is automatically updated to the current timestamp
(UNIX-time in seconds) each time the record is updated/saved in the
system.
Typically the name "tstamp" is used for that field.

Example:
from the [ctrl] section of the "haikus" table:

$TCA['tx_examples_haiku'] = array(
...
'tstamp' => 'tstamp',
'crdate' => 'crdate',
'cruser_id' => 'cruser_id',

Proc.

12

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

...
)

);

The above example shows the same definition for the "crdate" and
"cruser_id" fields described below.

crdate string (field
name)

Field name, which is automatically set to the current timestamp when the
record is created. Is never modified again.
Typically the name "crdate" is used for that field.
See example above.

Proc.

cruser_id string (field
name)

Field name, which is automatically set to the uid of the backend user
(be_users) who originally created the record. Is never modified again.
Typically the name "cruser_id" is used for that field.
See example above.

Proc.

rootLevel [0, 1, -1] Determines where a record may exist in the page tree. There are three
options depending on the value:

• 0 (false): Can only exist in the page tree.
Records from this table must belong to a page (i.e. have a
positive "pid" field value). Thus records cannot be created in the
root of the page tree (where "admin" users are the only ones
allowed to create records anyways). This is the default behavior.

• 1 (true): Can only exist in the root.
Records must have a "pid"-field value equal to zero. The
consequence is that only admin can edit this record.

• -1: Can exist in both page tree and root.
Records can belong either to a page (positive "pid" field value)
or exist in the root of the page tree (where the "pid" field value
will be 0 (zero))
Notice: the -1 value will still select foreign_table records for
selector boxes only from root (pid=0)

Notice: The setting for "rootLevel" is ignored for records in the "pages"
table (they are hardcoded to be allowed anywhere, equal to a "-1" setting
of rootLevel).

Warning: this property does not tell the whole story. If set to "0" or "-1", it
allows records from the table in the page tree, but not on any kind of
page. By default records can be created only in "Folder"-type pages. To
enable the creation of records on any kind of page, an additional call must
be made:

t3lib_extMgm::allowTableOnStandardPages('tx_examples_h
aiku');

Proc. /
Display

readOnly boolean Records from this table may not be edited in the TYPO3 backend. Such
tables are usually called "static".

Proc. /
Display

adminOnly boolean Records may be changed only by "admin"-users (having the "admin" flag
set).

Example:
The "cms" system extension defines the table "sys_template" as being
editable only by admin users:

$TCA['sys_template'] = array (
'ctrl' => array (

...
'adminOnly' => 1,
...

)
);

Proc. /
Display

editlock string (field
name)

Field name, which – if set – will prevent all editing of the record for non-
admin users.

The field should be configured as a checkbox type. Non-admins could be
allowed to edit the checkbox but if they set it, they will effectively lock the

Proc /
Display

13

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

record so they cannot edit it again – and they need an Admin-user to
remove the lock.

Note that this flag is cleared when a new copy or version of the record is
created.

This feature is used on the pages table, where it also prevents editing of
records on that page (except other pages)! Also, no new records (including
pages) can be created on the page.

origUid string
(field name)

Field name, which will contain the UID of the original record in case a
record is created as a copy or new version of another record.
Is used when new versions are created from elements and enables the
backend to display a visual comparison between a new version and its
original.

Proc

delete string
(field name)

Field name, which indicates if a record is considered deleted or not.
If this feature is used, then records are not really deleted, but just marked
'deleted' by setting the value of the field name to "1". And in turn the
whole system must strictly respect the record as deleted. This means that
any SQL query must exclude records where this field is true.

This is a very common feature. Most tables use it throughout the TYPO3
Core.

Proc. /
Display

enablecolumns array Specifies which publishing control features are automatically implemented
for the table.
This includes that records can be "disabled" or "hidden", have a starting
and/or ending time and be access controlled so only a certain front end
user group can access them

In the frontend libraries the enableFields() function automatically detects
which of these fields are configured for a table and returns the proper
WHERE clause SQL code for creating select queries.

There are the keys in the array you can use. Each of the values must be a
field name in the table which should be used for the feature:

"disabled": defining hidden-field of record
"starttime": defining start time-field of record
"endtime": defining end time-field of record
"fe_group": defining fe_group-field of record

Notice: In general these fields do not affect the access or display in the
backend! They are primarily related to the frontend. However the icon of
records having these features enabled will normally change as these
examples show:

See also the "delete" feature which is related, but is active for both
frontend and backend.

Example:
Typically the "enablecolumns" could be configured like this (here for the
"tt_content" table):

Proc. /
Display

14

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

'enablecolumns' => array(
'disabled' => 'hidden',
'starttime' => 'starttime',
'endtime' => 'endtime',
'fe_group' => 'fe_group',

),

searchFields string Comma-separated list of fields from the table that will be included when
searching for records in the TYPO3 backend. Starting with TYPO3 4.6, no
record from a table will ever be found if that table does not have
"searchFields" defined.

There are finer controls per column, see the "search" property in the list of
"Common properties" further in this manual.

Example:
The "tt_content" table has the following definition:

$TCA['pages'] = array(
'ctrl' => array(

...
'searchFields' =>

'title,alias,nav_title,subtitle,url,keywords,descripti
on,abstract,author,author_email',

...
),

);

Search

groupName string This option can be used to group records in the new record wizard. If you
define a new table and set its "groupName" to the key of another
extension, your table will appear in the list of records from that other
extension in the new record wizard.

Special

hideAtCopy boolean If set, and the "disabled" field from "enablecolumns" (see above) is
specified, then records will be disabled/hidden when they are copied.

Proc.

prependAtCopy string or
LLL
reference

This string will be prepended the records title field when the record is
inserted on the same PID as the original record (thus you can distinguish
them).
Usually the value is something like " (copy %s)" which tells that it was a
copy that was just inserted (The token "%s" will take the copy number).

Proc.

copyAfterDuplF
ields

string
(list of field
names)

The fields in this list will automatically have the value of the same field
from the 'previous' record transferred when they are copied or moved to the
position after another record from same table.

Example:
'copyAfterDuplFields' => 'colPos, sys_language_uid',

Proc.

setToDefaultOn
Copy

string
(list of field
names)

These fields are restored to the default value of the record when they are
copied.

Example:
$TCA['sys_action'] = array(

'ctrl' => array(
'setToDefaultOnCopy' => 'assign_to_groups',

Proc.

useColumnsFor
DefaultValues

string
(list of field
names)

When a new record is created, this defines the fields from the 'previous'
record that should be used as default values.

Example:
$TCA['sys_filemounts'] = array(

'ctrl' => array(
'useColumnsForDefaultValues' => 'path,base',

Proc.

shadowColumn
sForNewPlaceh
olders

string
(list of field
names)

When a new element is created in a draft workspace a placeholder
element is created in the Live workspace. Some values must be stored in
this placeholder and not just in the overlay record. A typical example

Proc.

15

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

would be "sys_language_uid". This property defines the list of fields whose
values are "shadowed" to the Live record.

All fields listed for this option must be defined in $TCA[<table>]
['columns'] as well.
Furthermore fields which are listed in "transOrigPointerField",
"languageField", "label" and "type" are automatically added to this list of
fields and do not have to mentioned again here.

Example:
$TCA['tt_content'] = array(

'ctrl' => array(
'shadowColumnsForNewPlaceholders' =>

'sys_language_uid,l18n_parent,colPos',

is_static boolean This marks a table to be "static".
A "static table" means that it should not be updated for individual
databases because it is meant to be centrally updated and distributed. For
instance static tables could contain country-codes used in many systems.

The foremost property of a static table is that the uid's used are the SAME
across systems. Import/Export of records expect static records to be
common for two systems.

Example (also including the features "rootLevel", "readOnly" and
"adminOnly" above):

$TCA['static_template'] = array(
'ctrl' => array(

'label' => 'title',
'tstamp' => 'tstamp',
'title' =>

'LLL:EXT:statictemplates/locallang_tca.xml:static_temp
late',

'readOnly' => 1,// Prevents the table from
being altered

'adminOnly' => 1, // Only admin, if any
'rootLevel' => 1,
'is_static' => 1,

Used
by
import/
export

fe_cruser_id string
(field name)

Field name which is used to store the uid of a frontend user if the record
is created through fe_adminLib

FE

fe_crgroup_id string
(field name)

Field name which is used for storing the uid of a frontend group whose
members are allowed to edit through fe_adminLib .

FE

fe_admin_lock string
(field name)

Field name which points to the field name which - as a boolean - will
prevent any editing by the fe_adminLib if set. Say if the "fe_cruser_id" field
matches the current fe_user normally the field is editable. But with this
option, you could make a check-box in the backend that would lock this
option.

FE

languageField string (field
name)

Localization access control.
Field name which contains the pointer to the language of the record's
content. Language for a record is defined by an integer pointing to a
“sys_language” record (found in the page tree root).
Backend users can be limited to have edit access for only certain of these
languages and if this option is set, edit access for languages will be
enforced for this table.

The values in this field may be the following:
-1 : (ALL) The record does not represent any specific language.
Localization access control is never carried out for such a record.
Typically this is used if the record has content which itself handles
localization (such as plugins or flexforms).
0 : The default language of the system. Localization access control
applies.
Values > 0 : Points to a uid of a sys_language record representing a
possible language for translation. Localization access control applies.

The field name pointed to should be a single value selector box (maxitems

Proc /
Display

16

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

<=1) saving its value into an integer field in the database.

transOrigPointe
rField

string (field
name)

Name of the field used by translations to point back to the original record
(i.e. the record in the default language of which they are a translation).
If this value is found being set together with “languageField” then
TCEforms will show the default translation value under the fields in the
main form. This is very neat if translators are to see what they are
translating of course...
Must be configured in $TCA[<table>]['columns'], at least as a
passthrough type.

Proc /
Display

transForeignTab
le

string (table
name)

Translations may be stored in a separate table, instead of the same one. In
such a case, the name of the translation table is stored in this property.
The translation table in turn will use the "transOrigPointerTable" property
to point back to this table.
This is used in the TYPO3 Core for the "pages" table, which uses the
"pages_language_overlay" table to hold the translations.

Example:
$TCA['pages'] = array(

'ctrl' => array(
...
'transForeignTable' =>

'pages_language_overlay',

$TCA['pages_language_overlay'] = array (
'ctrl' => array (

...
'transOrigPointerField' => 'pid',
'transOrigPointerTable' => 'pages',

Note that the "transOrigPointerField" is still used, but within the table
holding the translations.

WARNING: This is still not fully for all other tables than the “pages” table.
You should expect some issues and inconsistencies when using this translation
method.

transOrigPointe
rTable

string (table
name)

Symmetrical property to "transForeignTable". See above for explanations. Proc /
Display

transOrigDiffSo
urceField

string (field
name)

Field name which will be updated with the value of the original language
record whenever the translation record is updated. This information is
later used to compare the current values of the default record with those
stored in this field and if they differ there will be a display in the form of
the difference visually. This is a big help for translators so they can
quickly grasp the changes that happened to the default language text.

The field type in the database should be a large text field (clob/blob).
You don't have to configure this field in $TCA[<table>]['columns'],
but if you do, select the “passthrough” type. That will enable that the
undo function to also work on this field.

Proc /
Display

versioningWS boolean /
version
number

If set, versioning is enabled for this table. If integer it indicates a version
number of versioning features.

• Version 2: Support for moving elements was added. (“V2” is
used to mark features)

Versioning in TYPO3 is based on this scheme:

[Online version, pid>=0] 1- * [Offline
versions, pid=-1]

Offline versions are identified by having a pid value = -1 and they refer to
their online version by the field “t3ver_oid”. Offline versions of the “Page”
and “Branch” types (contrary to “Element” type) can have child records
which points to the uid of their offline “root” version with their pid fields
(as usual). These children records are typically copies of child elements of
the online version of the offline root version, but are not considered
“versions” of them in a technical sense, hence they don't point to them

Proc.

17

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

with their t3ver_oid field (and shouldn't).
In the backend “Offline” is labeled “Draft” while “Online” is labeled
“Live”.

In order for versioning to work on a table there are certain requirements;
Tables supporting versioning must have these fields:
• “t3ver_oid” - For offline versions; pointing back to online version uid.

For online: 0 (zero)
• “t3ver_id” - Incremental integer (version number)
• “t3ver_label” - Version label, e.g. "1.1.1" or "Christmas edition"
• “t3ver_wsid” - For offline versions: Workspace ID of version. For all

workspace Ids apart from 0 (zero) there can be only one version of an
element per ID. For online: 0 (zero) unless t3ver_state is set in which
case it plays a role for previews in the backend (to no de-select
placeholders for workspaces, see
t3lib_BEfunc::versioningPlaceholderClause()) and for publishing of
move-to-actions (see t3lib_BEfunc::getMovePlaceholder())

• “t3ver_state” - Contains special states of a version used when new,
deleted, moved content requires versioning.
• For an online version:

• “1” or “2” means that it is a temporary placeholder for a new
element (which is the offline version of this record)

• “3” means it is a “move-to-location” placeholder and
t3ver_move_id holds uid of online record (with an offline
version) to move . Unlike for “1” and “2” there is no offline
version of this record type! (V2 feature)

• If “t3ver_state” has a value >0 it should never be shown in Live
workspace.

• For an offline version:
• “1” or “2” means that when published, the element must be

deleted (placeholder for delete-action).
• "-1" means it is just an indication that the online version has

the flag set to "1" (is a placeholder for new records.). This only
affects display, not processing anywhere.

• “4” means this version is a “move-pointer” for the online
record and an online “move-to-location” (t3ver_state=3) record
exists. (V2 feature)

• “t3ver_stage” - Contains the ID of the stage at which the record is.
Special values are "0" which still refers to "edit", "-10" refers to "ready
to publish".

• “t3ver_count” - 0/offline=draft/never published, 0/online=current,
1/offline=archive, 1+=multiple online/offline occurrences
(incrementation happens when versions are swapped offline.)

• “t3ver_tstamp” - Timestamp of last swap/publish action.
• “t3ver_move_id” - For online records with t3ver_state=3 this

indicates the online record to move to this location upon publishing of
the offline version of the online record “t3ver_move_id” points to.

• The fields pid and uid should have "signed" attributes in MySQL (so
their content can be negative!)

Corresponding SQL definitions:

 t3ver_oid int(11) DEFAULT '0' NOT NULL,
 t3ver_id int(11) DEFAULT '0' NOT NULL,
 t3ver_wsid int(11) DEFAULT '0' NOT NULL,
 t3ver_label varchar(30) DEFAULT '' NOT NULL,
 t3ver_state tinyint(4) DEFAULT '0' NOT NULL,
 t3ver_stage int(11) DEFAULT '0' NOT NULL,
 t3ver_count int(11) DEFAULT '0' NOT NULL,
 t3ver_tstamp int(11) DEFAULT '0' NOT NULL,
 t3ver_move_id int(11) DEFAULT '0' NOT NULL,

Special “t3ver_swapmode” field for pages
When pages are versioned it is an option whether content and even the
branch of the page is versioned. This is determined by the parameter
“treeLevels” set when the page is versioned. “-1” means swap only record,

18

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

0 means record and content and >0 means full branch. When the version
is later published the swapping will happen accordingly.

versioningWS_a
lwaysAllowLive
Edit

boolean If set, this table can always be edited live even in a workspace and even if
“live editing” is not enabled in a custom workspace. For instance this is set
by default for Backend user and group records since it is assumed that
administrators like the flexibility of editing backend users without having
to go to the Live workspace.

versioning_follo
wPages

boolean (Only for other tables than “pages”)

If set, content from this table will get copied along when a new version of
a page is created.

Tracking Originals
It is highly recommended to use the “origUid” feature for tables whose
records are copied with pages that are versioned with content or subtree
since this will enable the possibility of content comparison between
current and future versions.

Proc.

dividers2tabs integer This key defines the activation of tabs, according to the following values:

0: disabled (default)
1: activated, empty tabs are removed
2: activated, empty tabs are disabled

When tabs are activated, the special field name "--div--" used in the types
configuration will be interpreted as starting a new tab in a tab-menu for
the record. The second part after "--div--" is the title of the tab.

If you place a "--div--" field as the very first element in the types
configuration it will just be used to set the title of the first tab (which is by
default "General").

Example:
The [ctrl] section of table "tt_content" contains the following:

$TCA['tt_content'] = array (
'ctrl' => array (

'dividers2tabs' => 1

Then the types make use of "--div--" fields. Example for the "text"-type
(usage of "--div--" highlighted in bold):

'types' => array(
'1' => array(

'showitem' => 'CType',
),
...
'text' => array(

'showitem' =>
'--palette--;LLL:EXT:cms/

locallang_ttc.xml:palette.general;general,
--palette--;LLL:EXT:cms/

locallang_ttc.xml:palette.header;header,
bodytext;LLL:EXT:cms/

locallang_ttc.xml:bodytext_formlabel;;richtext:rte_tra
nsform[flag=rte_enabled|mode=ts_css],

rte_enabled;LLL:EXT:cms/
locallang_ttc.xml:rte_enabled_formlabel,

--div--;LLL:EXT:cms/
locallang_ttc.xml:tabs.access,

--palette--;LLL:EXT:cms/
locallang_ttc.xml:palette.visibility;visibility,

--palette--;LLL:EXT:cms/
locallang_ttc.xml:palette.access;access,

--div--;LLL:EXT:cms/
locallang_ttc.xml:tabs.appearance,

--palette--;LLL:EXT:cms/
locallang_ttc.xml:palette.frames;frames,

--palette--;LLL:EXT:cms/

19

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

locallang_ttc.xml:palette.textlayout;textlayout,
--div--;LLL:EXT:cms/

locallang_ttc.xml:tabs.extended',
),

This will render a tab menu for the record where the fields are distributed
on the various tabs:

Here another tab is activated and another part of the form is shown:

Since TYPO3 4.3, it is customary for most tables to make use of tabs for
improved usability.

dynamicConfig
File

string Reference to the complete $TCA entry content.

Filename of the PHP file which contains the full configuration of the table
in $TCA. The [ctrl] part (and [feInterface] if used) are always
mandatory, but the rest may be placed in such a file in order to limit the
amount of memory consumed by the $TCA array (when e.g. the columns
definitions are not needed).

The format of the value may be:
• an absolute path (this is used for extensions, see example below).
• prefixed with "T3LIB:" This indicates that it's located in

t3lib/install/
• any other path is considered to be relative to "typo3conf/"

Example:
Looking at the definition of the "haikus" table, we find the following in the
"ext_tables.php" file:

$TCA['tx_examples_haiku'] = array(
'ctrl' => array(

...
'dynamicConfigFile' =>

t3lib_extMgm::extPath($_EXTKEY) . 'tca.php',
...

)
);

Then in the file "tca.php" is PHP code which completes the $TCA entry
for the table:

<?php
$TCA['tx_examples_haiku'] = array(

'ctrl' => $TCA['tx_examples_haiku']['ctrl'],
'columns' => array(

'hidden' => array(
'exclude' => 1,
'label' =>

'LLL:EXT:lang/locallang_general.xml:LGL.hidden',
'config' => array(

'type' => 'check',
'default' => '0'

API

20

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

)
),
…

Note how the [ctrl] section is referenced so as not to be lost.

See Appendix B for a detailed discussion of dynamically loading $TCA.

EXT[extension_
key]

array User-defined content for extensions. You can use this as you like.
Let's say that you have an extension with the key "myext", then you have
the right to define properties for:

...['ctrl']['EXT']['myext'] = ... (whatever you
define)

Note that this is just a convention. You can use some other syntax but with
the risk that it conflicts with some other extension or future changes in the
TYPO3 Core.

Ext.

Examples
Here are a couple examples of complete configurations of [ctrl] sections.

$TCA['pages'] = array(
'ctrl' => array(

'label' => 'title',
'tstamp' => 'tstamp',
'sortby' => 'sorting',
'title' => 'LLL:EXT:lang/locallang_tca.xml:pages',
'type' => 'doktype',
'versioningWS' => 2,
'origUid' => 't3_origuid',
'delete' => 'deleted',
'crdate' => 'crdate',
'hideAtCopy' => 1,
'prependAtCopy' => 'LLL:EXT:lang/locallang_general.xml:LGL.prependAtCopy',
'cruser_id' => 'cruser_id',
'editlock' => 'editlock',
'useColumnsForDefaultValues' => 'doktype,fe_group,hidden',
'dividers2tabs' => 1,
'enablecolumns' => array(

'disabled' => 'hidden',
'starttime' => 'starttime',
'endtime' => 'endtime',
'fe_group' => 'fe_group',

),
'transForeignTable' => 'pages_language_overlay',
'typeicon_column' => 'doktype',
'typeicon_classes' => array(

'1' => 'apps-pagetree-page-default',
'1-hideinmenu' => 'apps-pagetree-page-not-in-menu',
...
'contains-news' => 'apps-pagetree-folder-contains-news',
'default' => 'apps-pagetree-page-default',

),
'typeicons' => array(

'1' => 'pages.gif',
'254' => 'sysf.gif',
'255' => 'recycler.gif',

),
'dynamicConfigFile' => 'T3LIB:tbl_pages.php',

)
);

This is found in file "t3lib/stddb/tables.php". Here are a few notes:

‒ When pages are displayed in the backend, the "label" property indicates that you will see the
content from the field named "title" shown as the title of the page record.

‒ The field called "sorting" will be used to determine the order in which pages are displayed
within each branch of the page tree.

21

TCA Reference - doc_core_tca $TCA array reference

‒ The title for the pages table as shown in the backend (e.g. "Pages" in english, "Sider" in danish
etc...) is defined as coming from a "locallang" file.

‒ The "type" field will be the one named "doktype". This determines the set of fields shown in the
edit forms in the backend.

‒ Note on the last line how the dynamic configuration file is referenced.

Configuration for the tt_content table (Content Elements) is no less complete. It can be found in file
"typo3/sysext/cms/ext_tables.php":

// **
// This is the standard TypoScript content table, tt_content
// **
$TCA['tt_content'] = array (

'ctrl' => array (
'label' => 'header',
'label_alt' => 'subheader,bodytext',
'sortby' => 'sorting',
'tstamp' => 'tstamp',
'crdate' => 'crdate',
'cruser_id' => 'cruser_id',
'title' => 'LLL:EXT:cms/locallang_tca.xml:tt_content',
'delete' => 'deleted',
'versioningWS' => 2,
'versioning_followPages' => true,
'origUid' => 't3_origuid',
'type' => 'CType',
'hideAtCopy' => true,
'prependAtCopy' => 'LLL:EXT:lang/locallang_general.xml:LGL.prependAtCopy',
'copyAfterDuplFields' => 'colPos,sys_language_uid',
'useColumnsForDefaultValues' => 'colPos,sys_language_uid',
'shadowColumnsForNewPlaceholders' => 'colPos',
'transOrigPointerField' => 'l18n_parent',
'transOrigDiffSourceField' => 'l18n_diffsource',
'languageField' => 'sys_language_uid',
'enablecolumns' => array (

'disabled' => 'hidden',
'starttime' => 'starttime',
'endtime' => 'endtime',
'fe_group' => 'fe_group',

),
'typeicon_column' => 'CType',
'typeicon_classes' => array(

'header' => 'mimetypes-x-content-header',
...
'default' => 'mimetypes-x-content-text',

),
'typeicons' => array (

'header' => 'tt_content_header.gif',
...
'html' => 'tt_content_html.gif'

),
'thumbnail' => 'image',
'requestUpdate' => 'list_type,rte_enabled',
'dynamicConfigFile' => t3lib_extMgm::extPath($_EXTKEY).'tbl_tt_content.php',
'dividers2tabs' => 1

)
);

‒ of particular note is the "enablecolumns" property. It is quite extensive for this table since it is a
frontend-related table. Thus proper access rights, publications dates, etc. must be enforced.

‒ every type of content element has its own icon and its own class, used in conjunction with the
skinning API to visually represent that type in the TYPO3 backend.

‒ the column "image" is defined as the one to use to fetch any thumbnails related to the record.

22

TCA Reference - doc_core_tca $TCA array reference

['interface'] section
Contains configuration for display and listing in various parts of the core backend:

Key Datatype Description

showRecordFieldList string
(list of field
names)

Defines which fields are shown in the show-item dialog. E.g.
'doktype,title,alias,hidden,....'

always_description boolean If set, the description/helpicons are always shown regardless of the
configuration of the user. Works only in TCEforms and for tables loaded via
t3lib_BEfunc::loadSingleTableDescription()

maxDBListItems integer Max number of items shown in the List module

maxSingleDBListItems integer Max number of items shown in the List module, if this table is listed in
Extended mode (listing only a single table)

Example

This is how the "pages" table is configured for these settings (in t3lib/stddb/tables.php):

 'interface' => array(
 'showRecordFieldList' => 'doktype,title',
 'maxDBListItems' => 30,
 'maxSingleDBListItems' => 50
),

['feInterface'] section
The "feInterface" section contains properties related to Front End Editing of the table, mostly related to
the feAdmin_lib.

Is deprecated in the sense that it will still exist, but will not be (and should not be) extended further.

Key Datatype Description

editableRecordFields string
(list of field
names)

List of fields, example: '*name, *type, biography, filmography'. Used for front-
end edit module created by Rene Fritz <r.fritz@colorcube.de>

fe_admin_fieldList string
(list of field
names)

List of fields allowed for editing/creation with the fe_adminLib module, see
media/scripts/fe_adminLib, example: 'pid,name,title,address'

['columns'][field name] section
The "columns" section contains configuration for each table field (also called "column") which can be
edited by the backend.

The configuration includes both properties for the display in the backend as well as the processing of
the submitted data.

Each field can be configured as a certain "type" (e.g. checkbox, selector, input field, text area, file or db-
relation field, user defined etc.) and for each type a separate set of additional properties applies. These
properties are clearly explained below for each type.

23

TCA Reference - doc_core_tca $TCA array reference

This table shows the keys of the ['columns'][field name] array:

Key Datatype Description Scope

label string or LLL
reference

Required!
The name of the field as it is shown in the interface:

Display

exclude boolean If set, all backend users are prevented from editing the field unless they
are members of a backend user group with this field added as an
"Allowed Excludefield" (or "admin" user).
See "Inside TYPO3" document about permissions.

Proc.

l10n_mode string
(keyword)

Localization mode.
Only active if the ctrl-directive “languageField” is set.

The main relevance is when a record is localized by an API call in
TCEmain that makes a copy of the default language record. You can think
of this process as copying all fields from the source record, except if a
special mode applies as defined below:

Keywords are:
• exclude – Field will not be shown in TCEforms if this record is

a localization of the default language. (Works basically like a
display condition.)
Excluded fields will not be copied when a language-copy is
made.
May have frontend implications similar to “mergeIfNotBlank”.

• mergeIfNotBlank – Field will be editable but if the field value
is blank the value from the default translation is used (this can
be very useful for images shared from the default record).
Requires frontend support.
In the backend the effect is that the field content is not copied
when a new “localization copy” is made.

• noCopy – Like mergeIfNotBlank but without the implications
for the frontend; The field is just not copied.

• prefixLangTitle – The field will get copied, but the content is
prefixed with the title of the language. Works only for field types
like “text” and “input”

As mentioned above if “l10n_mode” is not set for a given field, that field
is just copied as is to the translated record.

(Doesn't apply to flexform fields.)

Display
/ Proc.

l10n_display list of
keywords

Localization display.
see: l10n_mode

This option can be used to define the language related field rendering.
This has nothing to do with the processing of language overlays and data
storage but the display of form fields.

Keywords are:
• hideDiff – The differences to the default language field will not

be displayed.

Display

24

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

• defaultAsReadonly – This renders the field as read only field
with the content of the default language record. The field will
be rendered even if 'l10n_mode' is set to 'exclude'. While
'exclude' define the field not to be translated this option
activate display of the default data.

l10n_cat string
(keyword)

Localization category.

Keywords: text,media

When localization mode is set for a TCEforms, it must be either of these
values. Only the fields that have l10n_cat set to the localization mode is
shown. Used to limit display so only most relevant fields are shown to
translators. It doesn't prevent editing of other fields if records are edited
outside localization mode, it merely works as a display condition.

It is also used in localization export (pending at this moment).

Display

config array Contains the actual configuration properties of the fields display and
processing behavior.
The possibilities for this array depend on the value of the array key "type"
within the array. Each valid value for "type" is shown below in a separate
table.
Furthermore there are some properties common to all field types,
described in the next chapter "['columns'][field name]['config'] / Common
properties".

-

displayCond string Contains a condition rule for whether to display the field or not.

A rule is a string divided into several parts by ":" (colons).
The first part is the rule-type and the subsequent parts will depend on
the rule type.
Currently these rule values can be used:
• FIELD : This evaluates based on another fields value in the record.

• Part 1 is the field name
• Part 2 is the evaluation type. These are the possible options:

• REQ : Requires the field to have a "true" value. False values
are "" (blank string) and 0 (zero) or if the field does not exist at
all. All else is true.
For the REQ evaluation type Part3 of the rules string must be
the string "true" or "false". If "true" then the rules returns
"true" if the evaluation is true. If "false" then the rules returns
"true" if the evaluation is false.

• > / < / >= / <= : Evaluates if the field value is greater than,
less than the value in "Part 3"

• = / != : Evaluates if the field value is equal to value in "Part 3"
(or not, if the negation flag, "!" is prefixed)

• IN / !IN : Evaluates if the field value is in the comma list
equal to value in "Part 3" (or not, if the negation flag, "!" is
prefixed)

• - / !- : Evaluates if the field value is in the range specified by
value in "Part 3" ([min] - [max]) (or not, if the negation flag, "!"
is prefixed)

• EXT : This evaluates based on current status of extensions.
• Part 1 is the extension key
• Part 2 is the evaluation type:

• LOADED : Requires the extension to be loaded if Part3 is
"true" and reversed if Part3 is "false".

• REC : This evaluates based on the current record (doesn't make sense
for flexform fields)
• Part 1 is the type.

• NEW : Requires the record to be new if Part2 is "true" and
reversed if Part2 is "false".

• HIDE_L10N_SIBLINGS : (FlexForms only) This evaluates based on
whether the field is a value for the default language or an alternative
language. Works only for <langChildren>=1, otherwise it has no effect.
• Part 1: Keywords: “except_admin” = will still show field to admin

Display

25

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

users
• HIDE_FOR_NON_ADMINS: This will hide the field for all non-

admin users while admins can see it. Useful for FlexForm container
fields which are not supposed to be edited directly via the FlexForm
but rather through some other interface (TemplaVoilà's Page module
for instance).

• VERSION:
• Part 1 is the type:

• IS : Part 2 is “true” or “false”: If true, the field is shown only if
the record is a version (pid == -1)

For FlexForm elements the fields are tags on same level. If <langChildren>
is enabled, then the value of other fields on same level is taken from the
same language.
The field-values of the FlexForm-parent record are prefixed with
"parentRec.". These fields can be used like every other field (since TYPO3
4.3).

Example:
This example will require the field named "tx_templavoila_ds" to be true,
otherwise the field for which this rule is set will not be displayed:

'displayCond' => 'FIELD:tx_templavoila_ds:REQ:true',

This example requires the extension "static_info_tables" to be loaded,
otherwise the field is not displayed (this is useful if the field makes a look-
up on a table coming from another extension!):

'displayCond' => 'EXT:static_info_tables:LOADED:true',

This example would require the header-field of the FlexForm-parent
record to be true, otherwise the FlexForm field is not displayed (works
only within FlexForm datastructure definitions):

<displayCond>FIELD:parentRec.header:REQ:true</displayC
ond>

defaultExtras string In the “types” configuration of a field you can specify on position 4 a
string of "extra configuration". This string will be the default string of
extra options for a field regardless of types configuration. For instance
this can be used to create an RTE field without having to worry about
special configuration in “types” config.
This is also the way by which you can enable the RTE for FlexForm fields.

Example value:

richtext[cut|copy|paste|formatblock|textcolor|bold|italic|underline|left|
center|right|orderedlist|unorderedlist|outdent|indent|link|table|image|line|
chMode]:rte_transform[mode=ts_css|imgpath=uploads/tx_mininews/rte/]

26

TCA Reference - doc_core_tca $TCA array reference

['columns'][field name]['config'] / Common properties
There are a number of properties which are common to all field types. They are described below.

Key Datatype Description Scope

type string This defines the type of field. It must one of the values described in the
following chapters.

Display
/ Proc.

form_type string This will override the field type when displaying it as a form. It can take any of
the values available for "type" above.

Display

default - This property can be used to set a default value for the field. Its data type is
whatever is appropriate for the given field.

Display
/ Proc.

softref string Used to attach "soft reference parsers". See under "Additional TCA features" for
information about softref keys. The syntax for this value is
key1,key2[parameter1;parameter2;...],...

Proc.

readOnly boolean Renders the form in a way that the user can see the values but cannot edit them.
The rendering is as similar as possible to the normal rendering but may differ in
layout and size.
Notice: Read-only rendering might not be implemented by user defined form
items! It is up to each developer to implement read-only rendering for its own
user-types.

Display

search array Defines additional search-related options for a given field.

• pidonly (boolean): searches in the column only if search happens on
the single page (does not search the field if searching in the whole
table)

• case (boolean): makes the search case-sensitive. This requires a proper
database collation for the field (see your database documentation)

• andWhere (string): additional SQL WHERE statement without
'AND'. With this it is possible to place an additional condition on the
field when it is searched (see example below).

Example:
The "tt_content" table has the following definition:

$TCA['tt_content'] = array(
...
'columns' => array(

...
'bodytext' => array(

...
'config' => array(

...
),
'search' => array(

'andWhere' => 'CType=\'text\' OR
CType=\'textpic\'',

)
),
...

),
...

);

This means that the "bodytext" field of the "tt_content" table will be searched in
only for elements of type Text and Text with image. This helps make any search
more relevant.

Search

27

TCA Reference - doc_core_tca $TCA array reference

['columns'][field name]['config'] / TYPE: "input"
The type "input" generates an <input> field, possibly with additional features applied.

Key Datatype Description Scope

type string [Must be set to "input"] Display
/ Proc.

size integer Abstract value for the width of the <input> field. To set the input field to
the full width of the form area, use the value 48. Default is 30.

Display

max integer Value for the "maxlength" attribute of the <input> field.
If the form element edits a varchar(40) field in the database you should
also set this value to 40.

Display

default string The default value Display
/ Proc.

eval list of keywords Configuration of field evaluation.
Some of these evaluation keywords will trigger a JavaScript pre-evaluation
in the form. Other evaluations will be performed in the backend.
The evaluation functions will be executed in the list-order.

Keywords:
• required : A non-empty value is required in the field (otherwise

the form cannot be saved).
• trim : The value in the field will have white spaces around it

trimmed away.
• date : The field will evaluate the input as a date, automatically

converting the input to a UNIX-time in seconds. The display will
be like "12-8-2003" while the database value stored will be
"1060639200".

• datetime : The field will evaluate the input as a date with time
(detailed to hours and minutes), automatically converting the
input to a UNIX-time in seconds. The display will be like "16:32
12-8-2003" while the database value will be "1060698720".

• time : The field will evaluate the input as a timestamp in
seconds for the current day (with a precision of minutes). The
display will be like "23:45" while the database will be "85500".

• timesec : The field will evaluate the input as a timestamp in
seconds for the current day (with a precision of seconds). The
display will be like "23:45:13" while the database will be "85513".

• year : Evaluates the input to a year between 1970 and 2038. If
you need any year, then use "int" evaluation instead.

• int : Evaluates the input to an integer.
• upper : Converts to uppercase (only A-Z plus a selected set of

Western European special chars).
• lower : Converts the string to lowercase (only A-Z plus a

selected set of Western European special chars).
• alpha : Allows only a-zA-Z characters.
• num : Allows only 0-9 characters in the field.

Display
/ Proc.

28

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

• alphanum : Same as "alpha" but allows also "0-9"
• alphanum_x : Same as "alphanum" but allows also "_" and "-"

chars.
• nospace : Removes all occurrences of space characters (chr(32))
• md5 : Will convert the inputted value to the md5-hash of it (The

JavaScript MD5() function is found in typo3/md5.js)
• is_in : Will filter out any character in the input string which is

not found in the string entered in the key "is_in" (see below).
• password : Will show "*******" in the field after entering the

value and moving to another field. Thus passwords can be
protected from display in the field. Notice that the value during
entering it is visible!

• double2 : Converts the input to a floating point with 2 decimal
positions, using the "." (period) as the decimal delimited (accepts
also "," for the same).

• unique : Requires the field to be unique for the whole table.
(Evaluated on the server only). NOTICE: When selecting on
unique-fields, make sure to select using “AND pid>=0” since the
field CAN contain duplicate values in other versions of records
(always having PID = -1). This also means that if you are using
versioning on a table where the unique-feature is used you
cannot set the field to be truly unique in the database either!

• uniqueInPid : Requires the field to be unique for the current
PID (among other records on the same page). (Evaluated on the
server only)

• tx_* : User defined form evaluations. See below.

All the above evaluations (unless noted) are done by JavaScript with the
functions found in the script t3lib/jsfunc.evalfield.js
"(TCE)" means the evaluation is done in the TCE on the server. The class
used for this is t3lib_TCEmain.

Example:
Setting the field to evaluate the input to a date returned to the database in
UNIX-time (seconds)

'eval' => 'date',

Trimming the value for white space before storing in the database
(important for varchar fields!)

'eval' => 'trim',

By this configuration the field will be stripped for any space characters,
converted to lowercase, only accepted if filled in and on the server the
value is required to be unique for all records from this table:

'eval' => 'nospace,lower,unique,required'

User-defined form evaluations:
You can supply your own form evaluations in an extension by creating a
class with two functions, one which returns the JavaScript code for client
side validation called returnFieldJS() and one which does the server side
validation called evaluateFieldValue().

The function evaluateFieldValue() has 3 arguments:
• $value :The field value to be evaluated.
• $is_in : The "is_in" value of the field configuration from TCA

(see below).
• &$set : Boolean defining if the value is written to the database

or not. Must be passed by reference and changed if needed.

Example:

class.tx_exampleextraevaluations_extraeval1.php:

<?php

29

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

class tx_exampleextraevaluations_extraeval1 {
function returnFieldJS() {

return '
return value + " [added by JS]";

';
}
function evaluateFieldValue($value, $is_in, &$set)

{
return $value . ' [added by PHP]';

}
}
?>

ext_localconf.php

<?php
// here we register
"tx_exampleextraevaluations_extraeval1"
$TYPO3_CONF_VARS['SC_OPTIONS']['tce']['formevals']
['tx_exampleextraevaluations_extraeval1'] =
'EXT:example_extraevaluations/
class.tx_exampleextraevaluations_extraeval1.php';
?>

is_in string If the evaluation type "is_in" (see above, under key "eval") is used for
evaluation, then the characters in the input string should be found in this
string as well. This value is also passed as argument to the evaluation
function if a user-defined evaluation function is registered.

Display
/ Proc.

30

TCA Reference - doc_core_tca $TCA array reference

Key Datatype Description Scope

checkbox string This setting is not used anymore since TYPO3 4.5. To set a default
value, use the "default" property.

If defined (even empty), a checkbox is placed before the input field.
If a value other than the value of 'checkbox' (this value) appears in the
input-field the checkbox is checked.

Example:
'checkbox' => '123',

If you set this value then entering "12345" in the field will render this:

But if you either uncheck the checkbox or just enter the value "123" you
will an empty input field and no checkbox set - however the value of the
field will be "123":

This feature is useful for date-fields for instance. In such cases the
checkbox will allow people to quickly remove the date setting (equal to
setting the date to zero which actually means 1-1 1970 or something like
that).

Example listing:
'config' => array(

'type' => 'input',
'size' => '8',
'max' => '20',
'eval' => 'date',
'checkbox' => '0',
'default' => '0'

)

Will create a field like this below. Checking the checkbox will insert the
date of the current day. Unchecking the checkbox will just remove the
value and silently sent a zero to the server (since the value of the key
"checkbox" is set to "0").

Display
/ Proc.

range array An array which defines an integer range within which the value must be.

Keys:
"lower": Defines the lower integer value.
"upper": Defines the upper integer value.

You can specify both or only one of them.

Notice: This feature is evaluated on the server only so any regulation of the
value will have happened after saving the form.

Example:
Limits an integer to be within the range 10 to 1000:

'eval' => 'int',
'range' => array(

'lower' => 10,
'upper' => 1000

),

In this example the upper limit is set to the last day in year 2020 while
the lowest possible value is set to the date of yesterday.

'range' => array(

Proc.

31

TCA Reference - doc_core_tca

Key Datatype Description Scope

'upper' => mktime(0, 0, 0, 12, 31, 2020),
'lower' => mktime(0,0,0,date('m'), date('d'),

date('Y'))
)

wizards array [See section later for options] Display

Now follows some code listings as examples:

Example: A "date" field

This is the typical configuration for a date field, like "starttime":

 'starttime' => array(
 'exclude' => 1,
 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.starttime',
 'config' => array(
 'type' => 'input',
 'size' => '8',
 'max' => '20',
 'eval' => 'date',
 'default' => '0'
)
),

Example: A "username" field

In this example the field is for entering a username (from "fe_users"). A number of requirements are
imposed onto the field, namely that it must be unique within the page where the record is stored, must
be in lowercase and without spaces in it:

 'username' => array(
 'label' => 'LLL:EXT:cms/locallang_tca.php:fe_users.username',
 'config' => array(
 'type' => 'input',
 'size' => '20',
 'max' => '50',
 'eval' => 'nospace,lower,uniqueInPid,required'
)
),

Example: A typical input field

This is just a very typical configuration which sets the size and a character limit to the field. In addition
the input value is trimmed for surrounding whitespace which is a very good idea when you enter values
into varchar fields.

 'name' => array(
 'exclude' => 1,
 'label' => 'LLL:EXT:lang/locallang_general.php:LGL.name',
 'config' => array(
 'type' => 'input',
 'size' => '40',
 'eval' => 'trim',
 'max' => '80'
)
),

Example: Required values

Here the field is required to be filled in:

 'title' => array(
 'label' => 'LLL:EXT:cms/locallang_tca.php:fe_groups.title',
 'config' => array(
 'type' => 'input',
 'size' => '20',
 'max' => '20',
 'eval' => 'trim,required'
)
),

32

TCA Reference - doc_core_tca

['columns'][field name]['config'] / TYPE: "text"
This field type generates a <textarea> field or inserts a RTE (Rich Text Editor).

Such a field looks like this:

Key Datatype Description Scope

type string [Must be set to "text"] Display
/ Proc.

cols integer Abstract value for the width of the <textarea> field. To set the textarea to
the full width of the form area, use the value 48. Default is 30.

Display

rows integer The number of rows in the textarea. May be corrected for harmonization
between browsers. Will also automatically be increased if the content in
the field is found to be of a certain length, thus the field will automatically
fit the content.

Default is 5. Max value is 20.

Display

wrap ["off",
"virtual"]

Determines the wrapping of the textarea field. There are two options:

• "virtual": (Default) The textarea will automatically wrap the
lines like it would be expected for editing a text.

• "off": The textarea will not wrap the lines as you would expect
when editing some kind of code.

Notice: If the string "nowrap" is found among options in the fields extra
configuration from the "types" listing this will override the setting here to
"off".

Example:
This configuration will create a textarea useful for entry of code lines
since it will not wrap the lines:

'config' => array(
'type' => 'text',
'cols' => '40',
'rows' => '15',
'wrap' => 'off',

)

Display

default string Default value Display
/ Proc.

eval list of
keywords

Configuration of field evaluation.
Some of these evaluation keywords will trigger a JavaScript pre-evaluation
in the form. Other evaluations will be performed in the backend.
The evaluation functions will be executed in the list-order.

Keywords:
• required : A non-empty value is required in the field (otherwise

the form cannot be saved).
• trim : The value in the field will have white spaces around it

trimmed away.
• tx_* : User-defined form evaluations. See the "eval" key

description for input-type field above.

Display
/ Proc.

is_in string If a user-defined evaluation is used for the field (see above, under key
"eval"), then this values will be passed as argument to the user-defined
evaluation function.

Display
/ Proc.

33

TCA Reference - doc_core_tca

Key Datatype Description Scope

wizards array [See section later for options] Display

Now follows some code listings as examples:

Example: A quite normal field

This is the typical configuration for a textarea field:

 'message' => array(
 'label' => 'LLL:EXT:sys_note/locallang_tca.php:sys_note.message',
 'config' => array(
 'type' => 'text',
 'cols' => '40',
 'rows' => '15'
)
),

['columns'][field name]['config'] / TYPE: "check"
This type creates checkbox(es). Such elements might look like this:

You can also configure checkboxes to appear in an array:

You can have between 1 and 10 checkboxes and the field type in the database must be an integer. No
matter how many checkboxes you have each check box will correspond to a single bit in the integer
value. Even if there is only one checkbox (which in turn means that you should theoretically check the
bit-0 of values from single-checkbox fields and not just whether it is true or false!).

Key Datatype Description Scope

type string [Must be set to "check"] Display /
Proc.

items array If set, this array will create an array of checkboxes instead of just a single
"on/off" checkbox.

Notice: You can have a maximum of 10 checkboxes in such an array and
each element is represented by a single bit in the integer value which
ultimately goes into the database.

In this array each entry is itself an array where the first entry is the label
(string or LLL reference) and the second entry is a blank value. The value
sent to the database will be an integer where each bit represents the state
of a checkbox in this array.

Example:

'items' => array(
 array('Green tomatoes', ''),
 array('Red peppers', '')
),

Display

cols integer How many columns the checkbox array are shown in.
Range is 1-10, 1 being default.

(Makes sense only if the 'array' key is defining a checkbox array)

Display

showIfRTE boolean If set, this field will show only if the RTE editor is enabled (which includes Display

34

TCA Reference - doc_core_tca

Key Datatype Description Scope

correct browser version and user-rights altogether.)

default integer Setting the default value of the checkbox(es).

Notice: Each bit corresponds to a check box (even if only one checkbox
which maps to bit-0).

Display /
Proc.

itemsProcFunc string
(function
reference)

PHP function which is called to fill / manipulate the array with elements.

The function/method will have an array of parameters passed to it (where
the item-array is passed by reference in the key 'items'). By modifying the
array of items, you alter the list of items.
For more information, see how user-functions are specified in the section
about 'wizards' some pages below here.

Display

Now follows some code listings as examples:

Example: A single checkbox

A plain vanilla checkbox:

'enforce_date' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.enforce_date',
'config' => array(

'type' => 'check',
)

),

Example: A checkbox array

This is an example of a checkbox array with two checkboxes in it. The first checkbox will have bit-0
and the second bit-1:

'l18n_cfg' => array(
'exclude' => 1,
'label' => 'LLL:EXT:cms/locallang_tca.xml:pages.l18n_cfg',
'config' => array(

'type' => 'check',
'items' => array(

array(
'LLL:EXT:cms/locallang_tca.xml:pages.l18n_cfg.I.1',
'',

),
array(

$GLOBALS['TYPO3_CONF_VARS']['FE']
['hidePagesIfNotTranslatedByDefault'] ?

'LLL:EXT:cms/locallang_tca.xml:pages.l18n_cfg
.I.2a' :

'LLL:EXT:cms/locallang_tca.xml:pages.l18n_cfg
.I.2',

'',
),

),
),

),

 If we wanted both checkboxes to checked by default, we would set the "default" property to '3' (since
this contains both bit-0 and bit-1).

35

TCA Reference - doc_core_tca

['columns'][field name]['config'] / TYPE: "radio"
Radio buttons are seldom used, but sometimes they can be more attractive than their more popular
sisters (selector boxes).

Here you see radio buttons in action for the "Filemounts" records:

Key Datatype Description Scope

type string [Must be set to "radio"] Display
/ Proc.

items array Required.

An array of the values which can be selected.
Each entry is in itself an array where the first entry is the title (string or
LLL reference) and the second entry is the value of the radio button.

See example below.

Display

default mixed Default value. Display
/ Proc.

itemsProcFunc string
(function
reference)

PHP function which is called to fill / manipulate the array with elements.

The function/method will have an array of parameters passed to it (where
the item-array is passed by reference in the key 'items'). By modifying the
array of items, you alter the list of items.
For more information, see how user-functions are specified in the section
about 'wizards' some pages below here.

Display

Example:

An example of radio buttons configuration from "sys_filemounts" (see above):

'base' => array(
'label' => 'LLL:EXT:lang/locallang_tca.xml:sys_filemounts.base',
'config' => array(

'type' => 'radio',
'items' => array(

array('LLL:EXT:lang/locallang_tca.xml:sys_filemounts.base_absolute', 0),
array('LLL:EXT:lang/locallang_tca.xml:sys_filemounts.base_relative', 1)

),
'default' => 0

)
)

['columns'][field name]['config'] / TYPE: "select"
Selectors boxes are very common elements in forms. By the "select" type you can create selector boxes.
In the most simple form this is a list of values among which you can chose only one. In that way it is
similar to the "radio" type above.

36

TCA Reference - doc_core_tca

It is also possible to configure more complex types where the values from from a look up in another
database table and you can even have a type where more than one value can be selected in any given
order you like.

Key Datatype Description Scope

type string [Must be set to "select"] Display
/ Proc.

items array Contains the elements for the selector box unless the property
"foreign_table" or "special" has been set in which case automated
values are set in addition to any values listed in this array.

Each element in this array is in itself an array where:
• First value is the item label (string or LLL reference)
• Second value is the value of the item.
• The special value "--div--" is used to insert a non-

selectable value that appears as a divider label in the
selector box (only for maxitems <=1)

• Values must not contain "," (comma) and "|" (vertical
bar). If you want to use “authMode” you should also
refrain from using “:” (colon).

• Third value is an optional icon.
Default from "t3lib/gfx/" but if prepended with "../" it will
be taken from any PATH_site directory. You can also
prepend the files "ext/" and "sysext/" if they are in global
extension directories. And finally - taking precedence
over any other value - files prepended with "EXT:" will
be found in the respective extension.

• Fourth value is an optional description text. This is only
shown when the list is shown by renderMode "checkbox".

• Fifth value is reserved as keyword “EXPL_ALLOW” or
“EXPL_DENY”. See option “authMode” / “individual”
for more details.

Example:
A configuration could look like this:

 'type' => 'select',
 'items' => array(
 array('English', ''),
 array('Danish', 'dk'),
 array('German', 'de'),
)

A more complex example could be this (includes icons):

'type' => 'select',
'items' => array(
 array('LLL:EXT:cms/locallang_ttc.php:k1', 0,
'selicons/k1.gif'),
 array('LLL:EXT:cms/locallang_ttc.php:k2', 1,
'selicons/k2.gif'),
 array('LLL:EXT:cms/locallang_ttc.php:k3', 2,
'selicons/k3.gif'),
)

Display

itemsProcFunc string PHP function which is called to fill / manipulate the array with Display

37

TCA Reference - doc_core_tca

Key Datatype Description Scope

(function
reference)

elements.

The function/method will have an array of parameters passed to it
(where the item-array is passed by reference in the key 'items'). By
modifying the array of items, you alter the list of items.
For more information, see how user-functions are specified in the
section about 'wizards' some pages below here.

selicon_cols integer (>0) The number of rows in which to position the icons for the selector
box. Default is to render as many columns as icons.

Display

suppress_icons string Lets you disable display of icons. Can be nice to do if icons are
coming from foreign database records and you don't want them.
Set it to "IF_VALUE_FALSE" if you only want to see icons when a
value (non-blank, non-zero) is selected. Otherwise no icons are
shown.
Set it to "ONLY_SELECTED" if you only want to see an icon for
the selected item.
Set to "1" (true) if you never want any icons.

Display

iconsInOptionTags boolean If set, icons will appear in the <option> tags of the selector box.
This feature seems only to work in Mozilla.

Display

noIconsBelowSelect boolean Disables the rendering of the icons after the select even when icons
for the <select>s <option> tags were supplied and
iconsInOptionTags was set.

Display

foreign_table string
(table name)

The item-array will be filled with records from the table defined
here. The table must be configured in $TCA.
See the other related options below.

Proc. /
Display

foreign_table_where string
(SQL
WHERE
clause)

The items from "foreign_table" are selected with this WHERE-
clause.
The table is joined with the "pages"-table and items are selected
only from pages where the user has read access! (Not checking DB
mount limitations!)

Example:

AND [foreign_table].pid=0 ORDER BY
[foreign_table].sorting

Markers:
You can use markers in the WHERE clause:

• ###REC_FIELD_[field name]###
• ###THIS_UID### - is current element uid (zero if new).
• ###CURRENT_PID### - is the current page id (pid of

the record).
• ###STORAGE_PID###
• ###SITEROOT###
• ###PAGE_TSCONFIG_ID### - a value you can set from

Page TSconfig dynamically.
• ###PAGE_TSCONFIG_IDLIST### - a value you can set

from Page TSconfig dynamically.
• ###PAGE_TSCONFIG_STR### - a value you can set

from Page TSconfig dynamically.

The markers are preprocessed so that the value of CURRENT_PID
and PAGE_TSCONFIG_ID are always integers (default is zero),
PAGE_TSCONFIG_IDLIST will always be a comma-separated list
of integers (default is zero) and PAGE_TSCONFIG_STR will be
addslashes'ed before substitution (default is blank string).

See example below "Simple selector box with TSconfig markers".

Proc. /
Display

foreign_table_prefix string or LLL
reference

Label prefix to the title of the records from the foreign-table. Display

foreign_table_loadIcon
s

boolean If set, then the icons for the records of the foreign table are loaded
and presented in the form.

Display

38

TCA Reference - doc_core_tca

Key Datatype Description Scope

This depends on the 'selicon_field' of the foreign tables [ctrl]
section being configured.

neg_foreign_table
neg_foreign_table_whe
re
neg_foreign_table_pre
fix
neg_foreign_table_loa
dIcons
neg_foreign_table_imp
oseValueField

[mixed] Four options corresponding to the 'foreign_table'-keys but records
from this table will be referenced by negative uid-numbers (unless
if MM is configured in which case it works like the group-type).

'neg_foreign_table' is active only if 'foreign_table' is defined also.

Display
/ Proc.

fileFolder string Specifying a folder from where files are added to the item array.
Specify the folder relative to the PATH_site, possibly using the
prefix "EXT:" to point to an extension folder.
Files from the folder is selected recursively to the level specified by
"fileFolder_recursions" (see below) and only files of the extension
defined by "fileFolder_extList" is selected (see below).
Only the file reference relative to the "fileFolder" is stored.
If the files are images (gif,png,jpg) they will be configured as icons
(third parameter in items array).

Example:
'config' => array (
 'type' => 'select',
 'items' => array (
 array('', 0),
),
 'fileFolder' =>
'EXT:cms/tslib/media/flags/',
 'fileFolder_extList' => 'png,jpg,jpeg,gif',
 'fileFolder_recursions' => 0,
 'selicon_cols' => 8,
 'size' => 1,
 'minitems' => 0,
 'maxitems' => 1,
)

Display
/ Proc

fileFolder_extList string List of extensions to select. If blank, all files are selected. Specify
list in lowercase.
See "t3lib_div::getAllFilesAndFoldersInPath()"

Display
/ Proc

fileFolder_recursions integer Depth of directory recursions. Default is 99. Specify in range from
0-99.
0 (zero) means no recursion into subdirectories.
See "t3lib_div::getAllFilesAndFoldersInPath()"

Display
/ Proc

allowNonIdValues boolean If "foreign_table" is enabled:
If set, then values which are not integer ids will be allowed. May be
needed if you use itemsProcFunc or just enter additional items in
the items array to produce some string-value elements for the list.
Notice: If you mix non-database relations with database relations
like this, DO NOT use integers for values and DO NOT use "_"
(underscore) in values either!
Notice: Will not work if you also use "MM" relations!

Proc.

default string Default value.
If empty, the first element in the items array is selected.

Display
/ Proc.

dontRemapTablesOnC
opy

(See same feature for type="group", internal_type="db")
Set it to the exact same value as "foreign_table" if you don't want
values to be remapped on copy.

Proc.

rootLevel boolean If set, the "foreign_table_where" will be ignored and a "pid=0" will
be added to the query to select only records from root level of the
page tree.

Display

MM string
(table name)

Means that the relation to the records of "foreign_table" /
"neg_foreign_table" is done with a M-M relation with a third "join"
table.

Proc.

39

TCA Reference - doc_core_tca

Key Datatype Description Scope

That table has three columns as a minimum:
• uid_local, uid_foreign for uids respectively.
• sorting is a required field used for ordering the items
• sorting_foreign is required if the relation is bidirectional

(see description and example below table)
• tablenames is used if multiple tables are allowed in the

relation.
• uid (auto-incremented and PRIMARY KEY) may be

used if you need the “multiple” feature (which allows the
same record to be references multiple times in the box.
See “MM_hasUidField”

• Other fields may exist, in particular if MM_match_fields
is involved in the set up.

Example SQL #1 (most simple MM table):

CREATE TABLE user_testmmrelations_one_rel_mm (
 uid_local int(11) DEFAULT '0' NOT NULL,
 uid_foreign int(11) DEFAULT '0' NOT NULL,
 sorting int(11) DEFAULT '0' NOT NULL,

 KEY uid_local (uid_local),
 KEY uid_foreign (uid_foreign)
);

Example SQL #2 (Advanced with UID field, “ident” used with
MM_match_fields and sorting_foreign for bidirectional MM
relations):

#
Table structure for table
'user_testmmrelations_two_rel_mm'

#
CREATE TABLE user_testmmrelations_two_rel_mm (
 uid int(11) NOT NULL auto_increment,
 uid_local int(11) DEFAULT '0' NOT NULL,
 uid_foreign int(11) DEFAULT '0' NOT NULL,
 tablenames varchar(30) DEFAULT '' NOT NULL,
 sorting int(11) DEFAULT '0' NOT NULL,
 sorting_foreign int(11) DEFAULT '0' NOT NULL,
 ident varchar(30) DEFAULT '' NOT NULL,

 KEY uid_local (uid_local),
 KEY uid_foreign (uid_foreign),
 PRIMARY KEY (uid),
);

The field name of the config is not used for data-storage anymore
but rather it's set to the number of records in the relation on each
update, so the field should be an integer.
Notice: Using MM relations you can ONLY store real relations for
foreign tables in the list - no additional string values or non-record
values.

MM relations and flexforms
MM relations has been tested to work with flexforms if not in a
repeated element in a section. See example below.

MM_opposite_field string
(field name)

If you want to make a MM relation editable from the foreign side
(bidirectional) of the relation as well, you need to set
MM_opposite_field on the foreign side to the field name on the
local side.
E.g. if the field "companies.employees" is your local side and you
want to make the same relation editable from the foreign side of
the relation in a field called persons.employers, you would need to
set the MM_opposite_field value of the TCA configuration of the
persons.employers field to the string "employees".

Proc.

40

TCA Reference - doc_core_tca

Key Datatype Description Scope

Notice: Bidirectional references only get registered once on the native
side in sys_refindex

MM_match_fields array Array of field=>value pairs to both insert and match against when
writing/reading MM relations

MM_insert_fields array Array of field=>value pairs to insert when writing new MM
relations

MM_table_where string (SQL
WHERE)

Additional where clause used when reading MM relations.

MM_hasUidField boolean If the “multiple” feature is used with MM relations you MUST set
this value to true and include a UID field! Otherwise sorting and
removing relations will be buggy.

special string
(any of
keywords)

This configures the selector box to fetch content from some
predefined internal source. These are the possibilities:

• tables - the list of TCA tables is added to the selector
(excluding "adminOnly" tables).

• pagetypes - all "doktype"-values for the "pages" table
are added.

• exclude - the list of "excludeFields" as found in $TCA is
added.

• modListGroup - module-lists added for groups.
• modListUser - module-lists added for users.
• explicitValues – List values that require explicit

permissions to be allowed or denied. (See “authMode”
directive for the “select” type).

• languages – List system languages (sys_language records
from page tree root + Default language)

• custom – Custom values set by backend modules (see
TYPO3_CONF_VARS[BE][customPermOptions])

As you might have guessed these options are used for backend
user management and pretty worthless for most other purposes.

Display
/ Proc.

size integer Height of the selector box in TCEforms. Display

autoSizeMax integer If set, then the height of multiple-item selector boxes (maxitems >
1) will automatically be adjusted to the number of selected
elements, however never less than "size" and never larger than the
integer value of "autoSizeMax" itself (takes precedence over "size").
So "autoSizeMax" is the maximum height the selector can ever
reach.

Display

selectedListStyle string If set, this will override the default style of the selector box with
selected items (which is “width:200px”).
Applies for when maxitems is > 1

Display

itemListStyle string If set, this will override the default style of the selector box with
available items to select (which is “width:200px”).
Applies for when maxitems is > 1

Display

renderMode string (any of
keywords)

(Only for maxitems > 1)

Renders the list of multiple options as either a list of checkboxes
or as a selector box with multiple choices.
The data type is fully compatible with an ordinary multiple
element list except that duplicate values cannot be represented for
obvious reasons (option "multiple" does not work) and the order of
values is fixed.

Keywords are:
• checkbox - Renders a list of checkboxes
• singlebox - Renders a single multiple selector box
• tree - Renders the selector as tree. This will work

properly only when referrring to a foreign table, so make
sure that the "foreign_table" property is set. See
"treeConfig" property configuration options.

41

TCA Reference - doc_core_tca

Key Datatype Description Scope

When renderMode is “checkbox” or “singlebox” all values selected
by “foreign_table” settings will automatically have their icon part
in the items array set to the record icon (unless overruled by
“selicon_field” of that table).

Notice: “maxitems” and “minitems” are not enforced in the
browser for any of the render modes here! However they will be on
the server. It is recommended to set “minitems” to zero and
“maxitems” to a very large number exceeding the possible number
of values you can select (for instance set it to 1000 or so).

treeConfig (configuration
options)

Configuration if the renderMode is set to "tree". Either
childrenField or parentField has to be set - childrenField takes
precedence.

Sub-properties:
• childrenField (string): Field name of the foreign_table

that references the uid of the child records (either child
• parentField (string): Field name of the foreign_table

that references the uid of the parent record
• rootUid (integer, optional): uid of the record that

shall be considered as the root node of the tree. In
general this might be set by Page TSconfig

• appearance (array, optional):
• showHeader (boolean): Whether to show the
header of the tree that contains a field to filter the
records and allows to expand or collapse all nodes
• expandAll (boolean): Whether to show the
tree with all nodes expanded
• maxLevels (integer): The maximal amount of
levels to be rendered (can be used to stop possible
recursions)
• nonSelectableLevels (list, default "0"):
Comma-separated list of levels that will not be
selectable, by default the root node (which is "0")
cannot be selected

multiple boolean Allows the same item more than once in a list.

If used with bidirectional MM relations it must be set for both the
native and foreign field configuration. Also, with MM relations in
general you must use a UID field in the join table, see description
for “MM”

Display
/ Proc.

maxitems integer > 0 Maximum number of items in the selector box. (Default = 1) Display
/ Proc

minitems integer > 0 Minimum number of items in the selector box. (Default = 0) Display

wizards array [See section later for options] Display

disableNoMatchingVal
ueElement

boolean If set, then no element is inserted if the current value does not
match any of the existing elements. A corresponding options is
also found in Page TSconfig.

Display

authMode string
keyword

Authorization mode for the selector box. Keywords are:

• explicitAllow – All static values from the “items” array of the
selector box will be added to a matrix in the backend user
configuration where a value must be explicitly selected if a
user (other than admin) is allowed to use it!)

• explicitDeny – All static values from the “items” array of the
selector box will be added to a matrix in the backend user
configuration where a value must be explicitly selected if a
user should be denied access.

• individual – State is individually set for each item in the
selector box. This is done by the keywords “EXPL_ALLOW”
and “EXPL_DENY” entered at the 5. position in the item
array (see “items” configuration above). Items without any of

Display
/ Proc

42

TCA Reference - doc_core_tca

Key Datatype Description Scope

these keywords can be selected as usual without any access
restrictions applied.

Notice: The authentication modes will work only with values that
are statically present in the “items” configuration. Any values
added from foreign tables, file folder or by user processing will not
be configurable and the evaluation of such values is not
guaranteed for!

maxitems > 1
“authMode” works also for selector boxes with maxitems > 1. In
this case the list of values is traversed and each value is evaluated.
Any disallowed values will be removed.
If all submitted values turns out to be removed the result will be
that the field is not written – basically leaving the old value. For
maxitems <=1 (single value) this means that a non-allowed value is
just not written. For multiple values (maxitems >1) it depends on
whether any elements are left in the list after evaluation of each
value.

authMode_enforce string
keyword

Various additional enforcing options for authMode.

Keywords are:
• strict - If set, then permission to edit the record will be

granted only if the “authMode” evaluates OK. The
default is that a record having an authMode configured
field with a “non-allowed” value can be edited – just the
value of the authMode field cannot be set to a value that
is not allowed.
Notice: This works only when maxitems <=1 (and no
MM relations) since the “raw” value in the record is all
that is evaluated!

Display
/ Proc

exclusiveKeys string (list of) List of keys that exclude any other keys in a select box where
multiple items could be selected.

"Show at any login" of "fe_groups" (tables "pages" and "tt_content")
is an example where such a configuration is used.

localizeReferencesAtP
arentLocalization

boolean Defines whether referenced records should be localized when the
current record gets localized (mostly used in Inline Relational
Record Editing)

Proc.

Here follow some code listings as examples:

Example - A simple selector box:

This is the most simple selector box you can get. It contains a static set of options you can select from:

'tx_examples_options' => array (
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options',
'config' => array (

'type' => 'select',
'items' => array (

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.0', '1'),

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.1', '2'),

43

TCA Reference - doc_core_tca

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.2', '--div--'),

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.3', '3'),
),
'size' => 1,
'maxitems' => 1,

)
),

In the configuration the elements are configured by the "items" array. Each entry in the array contains
pairs of label/value. Notice the third entry of the “items” array. It defines a divider. This value cannot be
selected. It only helps to divide the list of options with a label indicating a new section.

Example - Simple selector box with TSconfig markers

This example shows the use of markers inside the "foreign_table_where" clause and how the
corresponding TSconfig must be set up.

In the TCA definition of the "haiku" table ("examples" extension) there is a simple select field to create a
reference to a page in the "pages" table:

'reference_page' => array(
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.reference_page',
'config' => array(

'type' => 'select',
'foreign_table' => 'pages',
'foreign_table_where' => "AND pages.title LIKE '%###PAGE_TSCONFIG_STR###%'",
'size' => 1,
'minitems' => 0,
'maxitems' => 1

),
),

Without any TSconfig, the selector will display a full list of pages:

Let's add the following bit of Tsconfig to the page containing our "haiku" record:

TCEFORM.tx_examples_haiku.reference_page.PAGE_TSCONFIG_STR = image

44

TCA Reference - doc_core_tca

The list of pages that we can select from is now reduced to:

Example - A multiple value selector with contents from a database table

The user group selector is based on the fe_groups table. It appears as a multiple selector:

The corresponding TCA configuration:

'fe_group' => array(
'exclude' => 1,
'label' => 'LLL:EXT:lang/locallang_general.xml:LGL.fe_group',
'config' => array(

'type' => 'select',
'size' => 7,
'maxitems' => 20,
'items' => array(

array(
'LLL:EXT:lang/locallang_general.xml:LGL.hide_at_login',
-1,

),
array(

'LLL:EXT:lang/locallang_general.xml:LGL.any_login',
-2,

),
array(

'LLL:EXT:lang/locallang_general.xml:LGL.usergroups',
'--div--',

),
),
'exclusiveKeys' => '-1,-2',
'foreign_table' => 'fe_groups',
'foreign_table_where' => 'ORDER BY fe_groups.title',

),
),

The value stored in the database will be a comma list of uid numbers of the records selected.

The interesting point of this example is that it shows that static values can be mixed with values fetched
from a database table.

45

TCA Reference - doc_core_tca

Example - Using a look up table for single value

In this case the selector box looks up languages in a static table from an extension "static_info_tables":

The configuration looks like this (taken from the sys_lang table):

'static_lang_isocode' => array(
'exclude' => 1,
'label' => 'LLL:EXT:lang/locallang_tca.php:sys_language.isocode',
'displayCond' => 'EXT:static_info_tables:LOADED:true',
'config' => array(

'type' => 'select',
'items' => array(

array('', 0),
),
'foreign_table' => 'static_languages',
'foreign_table_where' => 'AND static_languages.pid=0 ORDER BY

static_languages.lg_name_en',
'size' => 1,
'minitems' => 0,
'maxitems' => 1,

)
),

Notice how a condition is set that this box should only be displayed if the extension it relies on exists!
This is very important since otherwise the table will not be in the database and we will get SQL errors.

Example - Adding icons for selection

This example shows how you can add icons to the selection choice very easily. Each icon is associated
with an option in the selector box and clicking the icon will automatically select the option in the
selector box and more the black arrow:

46

TCA Reference - doc_core_tca

The configuration looks like this.

'imageorient' => array(
'label' => 'LLL:EXT:cms/locallang_ttc.xml:imageorient',
'config' => array(

'type' => 'select',
'items' => array(

array(
'LLL:EXT:cms/locallang_ttc.xml:imageorient.I.0',
0,
'selicons/above_center.gif',

),
array(

'LLL:EXT:cms/locallang_ttc.xml:imageorient.I.1',
1,
'selicons/above_right.gif',

),
array(

'LLL:EXT:cms/locallang_ttc.xml:imageorient.I.2',
2,
'selicons/above_left.gif',

),
...
array(

'LLL:EXT:cms/locallang_ttc.xml:imageorient.I.10',
26,
'selicons/intext_left_nowrap.gif',

),
),
'selicon_cols' => 6,
'default' => '0',
'iconsInOptionTags' => 1,

),
),

Notice how each label/value pair contains an icon reference on the third position. Towards the bottom
the layout of the icons is defined as being arranged in 6 columns.

Example - Render the General Record Storage Page selector as a tree of page

The following configuration change:

t3lib_div::loadTCA('pages');
$tempConfiguration = array(

'type' => 'select',
'foreign_table' => 'pages',
'size' => 10,
'renderMode' => 'tree',
'treeConfig' => array(

'expandAll' => true,
'parentField' => 'pid',
'appearance' => array(

'showHeader' => TRUE,
),

),
);
$TCA['pages']['columns']['storage_pid']['config'] = array_merge(

$TCA['pages']['columns']['storage_pid']['config'],
$tempConfiguration

);

47

TCA Reference - doc_core_tca

will transform the General Record Storage Page selector into:

Example - Adding wizards

This example shows how wizards can be added to a selector box. The three typical wizards for a
selector box is edit, add and list items. This enables the user to create new items in the look up table
while being right at the selector box where he want to select them:

The configuration is rather long and looks like this (notice, that wizards are not exclusively available for
selector boxes!):

'file_mountpoints' => array(
'label' => 'LLL:EXT:lang/locallang_tca.xml:be_users.options_file_mounts',
'config' => array(

'type' => 'select',
'foreign_table' => 'sys_filemounts',
'foreign_table_where' => ' AND sys_filemounts.pid=0 ORDER BY

sys_filemounts.title',
'size' => '3',
'maxitems' => '10',
'autoSizeMax' => 10,
'iconsInOptionTags' => 1,
'wizards' => array(

'_PADDING' => 1,
'_VERTICAL' => 1,
'edit' => array(

'type' => 'popup',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:file_mountpoints_edit_title',
'script' => 'wizard_edit.php',
'icon' => 'edit2.gif',
'popup_onlyOpenIfSelected' => 1,
'JSopenParams' =>

'height=350,width=580,status=0,menubar=0,scrollbars=1',
),
'add' => array(

'type' => 'script',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:file_mountpoints_add_title',
'icon' => 'add.gif',
'params' => array(

'table' => 'sys_filemounts',
'pid' => '0',
'setValue' => 'prepend'

),
'script' => 'wizard_add.php',

),
'list' => array(

'type' => 'script',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:file_mountpoints_list_title',
'icon' => 'list.gif',
'params' => array(

'table' => 'sys_filemounts',
'pid' => '0',

),
'script' => 'wizard_list.php',

48

TCA Reference - doc_core_tca

)
)

)
),

The part with the wizards is highlighted in bold. See the wizard section in this document for more
information.

Notice the configuration of "autoSizeMax". This value will make the height of the selector boxes adjust

themselves automatically depending on the content in them. The result is as follows:

Example – Bidirectional MM relations

For a table, “user_testmmrelations_two”, we have a field “rel” with configured with MM relations:

"rel" => Array (
"exclude" => 1,
"label" => "Relations:",
"config" => Array (

"type" => "select",
"foreign_table" => "user_testmmrelations_one",
"foreign_table_where" => "ORDER BY user_testmmrelations_one.uid",

"size" => 10,
"minitems" => 0,
"maxitems" => 10,
"MM" => "user_testmmrelations_two_rel_mm",
'MM_match_fields' => array('ident'=>'table_two')

)
),

The MM table is called “user_testmmrelations_two_rel_mm”, and the field “ident” is used to match on
with the word “table_two”. Doing this enables us to use the same MM table for other fields using other
keywords for the “ident” field.

In another table “user_testmmrelations_one” a field called “rel2” constitutes the foreign side of the
bidirectional relation:

"rel2" => Array (
"label" => "Foreign relation:",
"config" => Array (

"type" => "select",
"foreign_table" => "user_testmmrelations_two",
"foreign_table_where" => "ORDER BY user_testmmrelations_two.uid",

"size" => 10,
"minitems" => 0,
"maxitems" => 10,
"MM" => "user_testmmrelations_two_rel_mm",
'MM_match_fields' => array('ident'=>'table_two'),
"MM_opposite_field" => "rel"

)
),

Notice how in both cases “ foreign_table” points to the table name of the other. Also they use the exact
same set up except in the foreign side case above the field “MM_opposite_field” is set to “rel” - the
name of the field in table “user_testmmrelations_two"!

49

TCA Reference - doc_core_tca

The SQL looks like:

#
Table structure for table 'user_testmmrelations_two_rel_mm'

#
CREATE TABLE user_testmmrelations_two_rel_mm (
 uid int(11) NOT NULL auto_increment,
 uid_local int(11) DEFAULT '0' NOT NULL,
 uid_foreign int(11) DEFAULT '0' NOT NULL,
 tablenames varchar(30) DEFAULT '' NOT NULL,
 sorting int(11) DEFAULT '0' NOT NULL,
 sorting_foreign int(11) DEFAULT '0' NOT NULL,
 ident varchar(30) DEFAULT '' NOT NULL,

 KEY uid_local (uid_local),
 KEY uid_foreign (uid_foreign),
 PRIMARY KEY (uid),
);

In the backend the form could look like:

So, from a record in table two (native) there are two relations made to records in table one.

If we look at one of the records from table one we see the relation made from “TWO (1)”:

In the database it looks like this:

50

TCA Reference - doc_core_tca

Example – FlexForms and MM relations

MM relations can be used with flexforms. Here is an example:

The flexform field configuration looks like this:

<rel1>
 <TCEforms>
 <label>Relation:</label>
 <config>
 <type>group</type>
 <internal_type>db</internal_type>
 <allowed>user_testmmrelations_three</allowed>
 <size>10</size>
 <minitems>0</minitems>
 <maxitems>10</maxitems>
 <MM>user_testmmrelations_two_rel_mm</MM>
 <MM_match_fields>
 <ident>table_one_flex</ident>
 </MM_match_fields>
 <multiple>1</multiple>
 <MM_hasUidField>1</MM_hasUidField>
 </config>
 </TCEforms>
</rel1>

As you can see the same element (titled “3-3 (UID-3)”) is selected twice (the “<multiple>” flag has been
set) – and as a consequence <MM_hasUidField>1</MM_hasUidField> is set as well. In fact this
configuration is sharing the MM table with another field (see the previous example) so the configuration

 <MM_match_fields>
 <ident>table_one_flex</ident>
 </MM_match_fields>

makes sure all MM relations for this flexform field is marked with the string “table_one_flex”.

In the database the entry looks like:

51

TCA Reference - doc_core_tca

(The first two entries belong to that other field, see previous example).

Of course you can specify a dedicated join table to the flexform instead of sharing it.

What will not work in flexforms is if you put MM relation fields in elements that can get repeated,
like in sections:

Here I have added three sections and tried to add entries to each. However, when saved the two last
entries are loaded for all of them. The result of the save was:

52

TCA Reference - doc_core_tca

The reason is that the fields all use the same uid (that of the record) to find the MM records. This could
work when MM fields were used outside sections of flexform fields which could only occur one time per
record, but here it's not possible.

Data format of "select" elements
Since the "select" element allows to store references to multiple elements we might want to look at how
these references are stored internally. The principle is the same as with the "group" type (see below).

['columns'][field name]['config'] / TYPE: "group"
The group element in TYPO3 makes it possible to create references to records from multiple tables in
the system. This is especially useful (compared to the "select" type) when records are scattered over the
page tree and requires the Element Browser to be selected. In this example, Content Element records
are attached (taken from the "Insert records" content element):

53

TCA Reference - doc_core_tca

The "group" element is also the element you can use to bind files to records in TYPO3. In this case
image files:

One thing to notice about such a field is that the files that are referenced actually get moved into an
internal file folder for TYPO3! It does not create references to the files' original positions!

Key Datatype Description Scope

type string [Must be set to "group"] Display
/ Proc.

internal_type string Required!
Configures the internal type of the "group" type of element.
There are four possible options to choose from:

• "file" - this will create a field where files can be attached
to the record

• "file_reference" - this will create a field where files can be
referenced. In contrast to "file", referenced files (usually
from fileadmin/) will not be copied to the upload folder.
Warning: use this carefully. Your references will be broken
if you delete referenced files in the filesystem!

• “folder” - this will create a field where folders can be
attached to the record

• "db" - this will create a field where database records can
be attached as references.

The default value is none of them - you must specify one of the
values correctly!

Display
/ Proc.

allowed string
(list of)

For the "file" internal type (Optional):
A lowercase comma list of file extensions that are permitted. E.g.
'jpg,gif,txt'. Also see 'disallowed'.

For the "db" internal type (Required!):
A comma list of tables from $TCA.
For example the value could be "pages,be_users".
Value from these tables are always the 'uid' field.
First table in list is understood as the default table, if a table-name
is not prepended to the value.
If the value is '*' then all tables are allowed (in this case you should
set "prepend_tname" so all tables are prepended with their table
name for sure).

Notice, if the field is the foreign side of a bidirectional MM relation,
only the first table is used and that must be the table of the
records on the native side of the relation.

Proc. /
Display

disallowed string
(list of)

[internal_type = file ONLY] Proc. /
Display

54

TCA Reference - doc_core_tca

Key Datatype Description Scope

Default value is '*' which means that anything file-extension which
is not allowed is denied.

If you set this value (to for example "php,php3") AND the
"allowed" key is an empty string all extensions are permitted except
".php" and ".php3" files (works like the [BE][fileExtensions] config
option).
In other words:

• If you want to permit only certain file-extensions, use
'allowed' and not disallowed.

• If you want to permit all file-extensions except a few, set
'allowed' to blank ("") and enter the list of denied
extensions in 'disallowed'.

• If you wish to allow all extensions with no exceptions, set
'allowed' to '*' and disallowed to ''

MM string
(table name)

Defines MM relation table to use.

Means that the relation to the files/db is done with a M-M relation
through a third "join" table.

A MM-table must have these four columns:
• uid_local - for the local uid.
• uid_foreign - for the foreign uid.

If the "internal_type" is "file" then the "uid_foreign"
should be a varchar or 60 or so (for the filename) instead
of an unsigned integer as you would use for the uid.

• tablenames - is required if you use multi-table relations
and this field must be a varchar of approx. 30
In case of files, the tablenames field is never used.

• sorting - is a required field used for ordering the items.

see ['columns'][fieldname]['config'] / TYPE: "select" => MM for
additional features.

Proc.

MM_opposite_field string
(field name)

see ['columns'][fieldname]['config'] / TYPE: "select" =>
MM_opposite_field

Proc.

MM_match_fields array see ['columns'][fieldname]['config'] / TYPE: "select" =>
MM_match_fields

MM_insert_fields array see ['columns'][fieldname]['config'] / TYPE: "select" =>
MM_insert_fields

MM_table_where string (SQL
WHERE)

see ['columns'][fieldname]['config'] / TYPE: "select" =>
MM_table_where

MM_hasUidField boolean see ['columns'][fieldname]['config'] / TYPE: "select" =>
MM_hasUidField

max_size integer [internal_type = file ONLY]

Files: Maximum file size allowed in KB

Proc.

uploadfolder string [internal_type = file ONLY]

Path to folder under PATH_site in which the files are stored.
Example: 'uploads' or 'uploads/pictures'

Notice: TYPO3 does NOT create a reference to the file in its
original position! It makes a copy of the file into this folder and
from that moment that file is not supposed to be manipulated from
outside. Being in the upload folder means that files are understood
as a part of the database content and should be managed by
TYPO3 only.

Warning: do NOT add a trailing slash (/) to the upload folder
otherwise the full path stored in the references will contain a
double slash (e.g. “uploads/pictures//stuff.png”).

Proc.

55

TCA Reference - doc_core_tca

Key Datatype Description Scope

prepend_tname boolean [internal_type = db ONLY]

Will prepend the table name to the stored relations (so instead of
storing "23" you will store e.g. "tt_content_23").

Proc.

dontRemapTablesOnC
opy

string
(list of tables)

[internal_type = db ONLY]

A list of tables which should not be remapped to the new element
uids if the field holds elements that are copied in the session.

Proc.

show_thumbs boolean Show thumbnails for the field in the TCEform Display

size integer Height of the selector box in TCEforms. Display

autoSizeMax integer If set, then the height of element listing selector box will
automatically be adjusted to the number of selected elements,
however never less than "size" and never larger than the integer
value of "autoSizeMax" itself (takes precedence over "size"). So
"autoSizeMax" is the maximum height the selector can ever reach.

Display

selectedListStyle string If set, this will override the default style of element selector box
(which is “width:200px”).

Display

multiple boolean Allows the same item more than once in a list.

If used with bidirectional MM relations it must be set for both the
native and foreign field configuration. Also, with MM relations in
general you must use a UID field in the join table, see description
for “MM”

Display
/ Proc.

maxitems integer > 0 Maximum number of items in the selector box. (Default = 1) Display
/ Proc?

minitems integer > 0 Minimum number of items in the selector box. (Default = 0) Display
/ Proc?

disable_controls string Disables sub-controls inside "group" control. Comma-separated list
of values. Possible values are: browser (disables browse button for
list control), list (disables list and browse button, but not delete
button), upload (disables upload control) and delete (disables the
delete button). See example image below.

NOTE: if you use the delete button when the list is disabled, all
entries in the list will be deleted.

Display
/ Proc.

56

TCA Reference - doc_core_tca

Key Datatype Description Scope

wizards array [See section later for options] Display

57

TCA Reference - doc_core_tca

Example - References to database records

The "Insert records" content element can be used to reference records from the "tt_content" table (and
possibly others, like "tt_news" in the screenshot below):

The corresponding TCA code:

'records' => array(
'label' => 'LLL:EXT:cms/locallang_ttc.xml:records',
'config' => array(

'type' => 'group',
'internal_type' => 'db',
'allowed' => 'tt_content',
'size' => '5',
'maxitems' => '200',
'minitems' => '0',
'show_thumbs' => '1',
'wizards' => array(

'suggest' => array(
'type' => 'suggest',

),
),

),
),

Note in particular how the "internal_type" of the group field is set to "db". Then the allowed tables is
defined as "tt_content" (Content Elements table). This could very well be a list of tables which means
you can mix references as you like!

The limit is set to a maximum of 200 references and thumbnails should be displayed, if possible. Finally
a suggest wizard is added.

In this case it wouldn't have made sense to use a "select" type field since the situation implies that
records might be found all over the system in a table which could potentially carry thousands of entries.
In such a case the right thing to do is to use the "group" field so you have the Element Browser available
for selector of the records.

Example - Reference to another page

You will often see "group" type fields used when a reference to another page is required. This makes
sense since pages can hardly be presented effectively in a big selector box and thus the Element
Browser that follows the "group" type fields is useful. An example is the "General Record Storage page"
reference:

The configuration looks like:

'storage_pid' => array(
'exclude' => 1,
'label' => 'LLL:EXT:lang/locallang_tca.php:storage_pid',
'config' => array(

'type' => 'group',
'internal_type' => 'db',
'allowed' => 'pages',
'size' => '1',
'maxitems' => '1',

58

TCA Reference - doc_core_tca

'minitems' => '0',
'show_thumbs' => '1',
'wizards' => array(

'suggest' => array(
'type' => 'suggest',

),
),

),
),

Notice how "maxitems" is used to ensure that only one relation is created despite the ability of the
"group" type field to create multiple references.

Example - Attaching images

Attaching files to a database record is also achieved with group-type fields:

Notice how all the image names end with "_0" and some number. This happens because all files
attached to records through a group-type field are copied to a location defined by the "uploadfolder"
setting in the configuration (see below). When a file is referenced several times, it is also copied several
times. TYPO3 automatically appends a number so that each reference is unique.

'image' => array(
'label' => 'LLL:EXT:lang/locallang_general.xml:LGL.images',
'config' => array(

'type' => 'group',
'internal_type' => 'file',
'allowed' => $GLOBALS['TYPO3_CONF_VARS']['GFX']['imagefile_ext'],
'max_size' => $GLOBALS['TYPO3_CONF_VARS']['BE']['maxFileSize'],
'uploadfolder' => 'uploads/pics',
'show_thumbs' => '1',
'size' => '3',
'maxitems' => '200',
'minitems' => '0',
'autoSizeMax' => 40,

),
),

Notice how the "group" type is defined to contain files. Next the list of allowed file extensions are
defined (here, taking the default list of image types for TYPO3). A maximum size (in kilobytes) for files
is also defined. The "uploadfolder" property indicates that all files will be copied to the "uploads/pics"
folder. Notice that this path is relative to the PATH_site of TYPO3, one directory below PATH_typo3.

59

TCA Reference - doc_core_tca

Data format of "group" elements
Since the "group" element allows to store references to multiple elements we might want to look at how
these references are stored internally.

Storage methods

There are two main methods for this:

‒ Stored in a comma list

‒ Stored with a join table (MM relation)

The default and most wide spread method is the comma list.

Reserved tokens

In the comma list the token "," is used to separate the values. In addition the pipe sign "|" is used to
separate value from label value when delivered to the interface. Therefore these tokens are not allowed
in reference values, not even if the MM method is used.

The "Comma list" method (default)

When storing references as a comma list the values are simply stored one after another, separated by a
comma in between (with no space around!). The database field type is normally a varchar, text or blob
field in order to handle this.

From the examples above the four Content Elements will be stored as "26,45,49,1" which is the UID
values of the records. The images will be stored as their filenames in a list like
"DSC_7102_background.jpg,DSC_7181.jpg,DSC_7102_background_01.jpg".

Since "db" references can be stored for multiple tables the rule is that uid numbers without a table name
prefixed are implicitly from the first table in the allowed table list! Thus the list "26,45,49,1" is implicitly
understood as "tt_content_26,tt_content_45,tt_content_49,tt_content_1". That would be equally good for
storage, but by default the "default" table name is not prefixed in the stored string. As an example, lets
say you wanted a relation to a Content Element and a Page in the same list. That would look like
"tt_content_26,pages_123" or alternatively "26,pages_123" where "26" implicitly points to a "tt_content"
record given that the list of allowed tables were "tt_content,pages".

The "MM" method

Using the MM method you have to create a new database table which you configure with the key "MM".
The table must contain a field, "uid_local" which contains the reference to the uid of the record that
contains the list of elements (the one you are editing). The "uid_foreign" field contains the uid of the
reference record you are referring to. In addition a "tablename" and "sorting" field exists if there are
references to more than one table.

Lets take the examples from before and see how they would be stored in an MM table:

uid_local uid_foreign tablename sorting

[uid of the record you are editing] 26 tt_content 1

[uid of the record you are editing] 45 tt_content 2

[uid of the record you are editing] 49 tt_content 3

[uid of the record you are editing] 1 tt_content 4

Or for "tt_content_26,pages_123":

uid_local uid_foreign tablename sorting

[uid of the record you are editing] 26 tt_content 1

[uid of the record you are editing] 123 pages 2

Or for "DSC_7102_background.jpg,DSC_7181.jpg,DSC_7102_background_01.jpg":

60

TCA Reference - doc_core_tca

uid_local uid_foreign tablename sorting

[uid of the record you are editing] DSC_7102_background.jpg N/A 1

[uid of the record you are editing] DSC_7181.jpg N/A 2

[uid of the record you are editing] DSC_7102_background_01.jpg N/A 3

API for getting the reference list

In t3lib/ the class "t3lib_loaddbgroup" is designed to transform the stored reference list values into an
array where all uids are paired with the right table name. Also, this class will automatically retrieve the
list of MM relations. In other words, it provides an API for getting the references from "group" elements
into a PHP array regardless of storage method.

Passing the list of references to TCEforms

Regardless of storage method, the reference list has to be "enriched" with proper title values when given
to TCEforms for rendering. In particular this is important for database records. Passing the list
"26,45,49,1" will not give TCEforms a chance to render the titles of the records.

The t3lib/ class "t3lib_transferdata" is doing such transformations (among other things) and this is how
the transformation happens:

Int. type: In Database: When given to TCEforms:

"db" 26,45,49,1 tt_content_26|%20adfs%20asdf%20asdf%20,tt_content_45|This%20is
%20a%20test%20%28copy%203%29,tt_content_49|%5B...
%5D,tt_content_1|%5B...%5D

"file" DSC_7102_background.jpg,DSC_718
1.jpg,DSC_7102_background_01.jpg

DSC_7102_background.jpg|DSC_7102_background.jpg,DSC_7181.jpg|
DSC_7181.jpg,DSC_7102_background_01.jpg|
DSC_7102_background_01.jpg

The syntax is:

[ref. value]|[ref. label rawurlencoded],[ref. value]|[ref. label rawurlencoded],....

Values are transferred back to the database as a comma separated list of values without the labels but if
labels are in the value they are automatically removed.

Alternatively you can also submit each value as an item in an array; TCEmain will detect an array of
values and implode it internally to a comma list. (This is used for the "select" type, in renderMode
"singlebox" and "checkbox").

Managing file references

When a new file is attached to a record the TCE will detect the new file based on whether it has a path
prefixed or not. New files are copied into the upload folder that has been configured and the final value
list going into the database will contain the new filename of the copy.

If images are removed from the list that is detected by simply comparing the original file list with the
one submitted. Any files not listed anymore are deleted.

Examples:

Current DB value Submitted data from
TCEforms

New DB value Processing done

first.jpg,second.jpg first.jpg,/www/typo3/filea
dmin/newfile.jpg,second.
jpg

first.jpg,newfile_01.jpg,second.jpg /www/typo3/fileadmin/newfile.jpg
was copied to "uploads/[some-
dir]/newfile_01.jpg". The filename
was appended with "_01" because
another file with the name
"newfile.jpg" already existed in the
location.

first.jpg,second.jpg first.jpg first.jpg "uploads/[some-dir]/second.jpg" was
deleted from the location.

61

TCA Reference - doc_core_tca

['columns'][field name]['config'] / TYPE: "none"
This type will just show the value of the field in the backend. The field is not editable.

Key Datatype Description

type string [Must be set to "none"]

pass_content boolean If set, then content from the field is directly outputted in the <div> section.
Otherwise the content will be passed through htmlspecialchars() and possibly nl2br()
if there is configuration for rows.
Be careful to set this flag since it allows HTML from the field to be outputted on the
page, thereby creating the possibility of XSS security holes.

rows integer If this value is greater than 1 the display of the non-editable content will be shown
in a <div> area trying to simulate the rows/columns known from a "text" type
element.

cols integer See "rows" and "size"

fixedRows boolean If this is set the <div> element will not automatically try to fit the content length but
rather respect the size selected by the value of the "rows" key.

size integer If rows is less than one, the "cols" value is used to set the width of the field and if
"cols" is not found, then "size" is used to set the width.
The measurements corresponds to those of "input" and "text" type fields.

['columns'][field name]['config'] / TYPE: "passthrough"
Can be saved/updated through TCE but the value is not evaluated in any way and the field has no
rendering in the TCEforms.

You can use this to send values directly to the database fields without any automatic evaluation. But still
the update gets logged and the history/undo function will work with such values.

Since there is no rendering mode for this field type it is specifically fitted for direct API usage with the
TCEmain class.

Key Datatype Description

type string [Must be set to "passthrough"]

Example:

This field is found in a number of table, e.g. the "pages" table. It is used by the system extension
"impexp" to store some information.

'tx_impexp_origuid' => array('config' => array('type' => 'passthrough'))

62

TCA Reference - doc_core_tca

['columns'][field name]['config'] / TYPE: "user"
Allows you to render a whole form field by a user function or class method.

Key Datatype Description

type string [Must be set to "user"]

userFunc string Function or method reference.
If you want to call a function, just enter the function name. The function name must
be prefixed "user_" or "tx_".
If you want to call a method in a class, enter "[classname]->[methodname]". The
class name must be prefixed "user_" or "tx_".

Two arguments will be passed to the function/method: The first argument is an
array (passed by reference) which contains the current information about the current
field being rendered. The second argument is a reference to the parent object (an
instance of the t3lib_TCEforms class).

The array with the current information will contain any parameters declared with
the "parameters" property described below.

Notice: The class must be registered with the TYPO3 autoloader. It's also possible
to include it manually, but using the autoloader is the preferred way.

parameters array Array that will be passed as is to the userFunc as the "parameters" key of the first
argument received by the user function.

See example below.

noTableWrappi
ng

boolean If set, then the output from the user function will not be wrapped in the usual table
- you will have to do that yourself.

Example:

This field is rendered by custom PHP code:

The configuration in TCA is as simple as this:

'tx_examples_special' => array (
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_special',
'config' => array (

'type' => 'user',
'size' => '30',
'userFunc' => 'EXT:examples/class.tx_examples_tca.php:tx_examples_tca->

specialField',
'parameters' => array(

'color' => 'blue'
)

)
),

This is how the corresponding PHP class looks like:

class tx_examples_tca {
function specialField($PA, $fObj) {

$color = (isset($PA['parameters']['color'])) ? $PA['parameters']['color']:'red';
$formField = '<div style="padding: 5px; background-color: ' . $color . ';">';
$formField .= '<input type="text" name="' . $PA['itemFormElName'] . '"';
$formField .= ' value="' . htmlspecialchars($PA['itemFormElValue']) . '"';
$formField .= ' onchange="' . htmlspecialchars(implode('',

$PA['fieldChangeFunc'])) . '"';
$formField .= $PA['onFocus'];
$formField .= ' /></div>';
return $formField;

}
}

This is not the place to dig into more details about user-defined forms. By this example you can start

63

TCA Reference - doc_core_tca

yourself up but you will have to figure out by yourself what options are available in the $PA array and
how to use them.

Note in particular how the "parameters" array declared in the TCA configuration can be retrieved as
part of the first argument ($PA) received by the method invoked.

['columns'][field name]['config'] / TYPE: "flex"
Rendering a FlexForm element - essentially this consists in a hierarchically organized set of fields which
will have their values saved into a single field in the database, stored as XML.

Key Datatype Description

type string [Must be set to "flex"]

ds_pointerField string Field name(s) in the record which point to the field where the key for “ds” is
found. Up to two field names can be specified comma separated.

ds array Data Structure(s) defined in an array.

Each key is a value that can be pointed to by “ds_pointerField”. Default key
is “default” which is what you should use if you do not have a
“ds_pointerField” value of course.

If you specified more than one ds_pointerField, the keys in this “ds” array
should contain comma-separated value pairs where the asterisk * matches
all values (see the example below). If you don't need to switch for the
second ds_pointerField, it's also possible to use only the first
ds_pointerField's value as a key in the "ds" array without necessarily
suffixing it with ",*" for a catch-all on the second ds_pointerField.

For each value in the array there are two options:
• Either enter XML directly
• Make a reference to an external XML file

Example with XML directly entered:

'config' => array(
 'type' => 'flex',
 'ds_pointerField' => 'list_type',
 'ds' => array(
 'default' => '
 <T3DataStructure>
 <ROOT>
 <type>array</type>
 <el>
 <xmlTitle>
 <TCEforms>
 <label>The Title:</label>
 <config>
 <type>input</type>
 <size>48</size>
 </config>
 </TCEforms>
 </xmlTitle>
 </el>
 </ROOT>
 </T3DataStructure>
 ',
)
)

Example with XML in external file:
(File reference is relative)

'config' => array(
 'type' => 'flex',
 'ds_pointerField' => 'list_type',
 'ds' => array(
 'default' => 'FILE:EXT:mininews/flexform_ds.xml'
,
)
)

64

TCA Reference - doc_core_tca

Key Datatype Description

Example using two ds_pointerFields (as used for tt_content.pi_flexform
since TYPO3 4.2.0):

'config' => array(
 'type' => 'flex',
 'ds_pointerField' => 'list_type,CType',
 'ds' => array(
 'default' => 'FILE:...',

'tt_address_pi1,list' => 'FILE:EXT:tt_address/pi1/f
lexform.xml', // DS for list_type=tt_address_pi1 and
CType=list

'*,table' => 'FILE:EXT:css_styled_content/flexform_
ds.xml', // DS for CType=table, no matter which
list_type value

'tx_myext_pi1' => 'FILE:EXT:myext/flexform.xml', //
DS for list_type=tx_myext_pi1 without specifying a
CType at all
)
)

ds_tableField string Contains the value “[table]:[field name]” from which to fetch Data Structure
XML.

“ds_pointerField” is in this case the pointer which should contain the uid of
a record from that table.

This is used by TemplaVoila extension for instance where a field in the
tt_content table points to a TemplaVoila Data Structure record:

'tx_templavoila_flex' => array(
 'exclude' => 1,
 'label' => '...',
 'displayCond' => 'FIELD:tx_templavoila_ds:REQ:true'
,
 'config' => array(
 'type' => 'flex',
 'ds_pointerField' => 'tx_templavoila_ds',
 'ds_tableField' => 'tx_templavoila_datastructure
:dataprot',
)
),

ds_pointerField_search
Parent

string Used to search for Data Structure recursively back in the table assuming
that the table is a tree table. This value points to the “pid” field.
See “templavoila” for example - uses this for the Page Template.

ds_pointerField_search
Parent_subField

string Points to a field in the “rootline” which may contain a pointer to the “next-
level” template.
See “templavoila” for example - uses this for the Page Template.

Pointing to a Data Structure
Basically the configuration for a FlexForm field is all about pointing to the Data Structure which will
contain form rendering information in the application specific tag “<TCEforms>”.

For general information about the backbone of a Data Structure, please see the <T3DataStructure>
chapter in the Data Formats section.

FlexForm facts
FlexForms create a form-in-a-form. The content coming from this form is still stored in the associated
database field - but as an XML structure (stored by t3lib_div::array2xml())!

The “TCA” information needed to generate the FlexForm fields are found inside a <T3DataStructure>
XML document. When you configure a FlexForm field in a Data Structure (DS) you can use basically all
column types documented here for TCA. The limitations are:

‒ “unique” and “uniqueInPid” evaluation is not available

‒ You cannot nest FlexForm configurations inside of FlexForms.

65

TCA Reference - doc_core_tca

‒ Charset follows that of the current backend (since TYPO3 4.7, the only accepted character
encoding is UTF-8. When storing FlexForm information in external files, make sure that they
are using UTF-8 too).

<T3DataStructure> extensions for “<TCEforms>”
For FlexForms the DS is extended with a tag, “<TCEforms>” which define all settings specific to the
FlexForms usage.

Also a few meta tag features are used.

Sometimes it may be necessary to reload flexform if content of the field in the flexform is changed. This
is accomplished by adding “<onChange>reload</onChange>” inside <TCEforms>. A typical example for
that is a field that defines operational modes for an extension. When the mode changes, a flexform may
need to show a new set of fields. By combining the <onChange> tag for mode fields with <displayCond>
tag for other fields, it is possible to create truly dynamic flexforms.

Notice that changing the mode does not delete hidden field values of the flexform. Always use the
“mode” field to determine which parameters to use.

The tables below document the extension elements:

“Array” Elements:

Element Description Child elements

<meta> Can contain application specific meta settings. For
FlexForms this means a definition of how languages are
handled in the form.

<langChildren>
<langDisable>

<[application tag]> In this case the application tag is “<TCEforms>” A direct reflection of a ['columns']
['field name']['config'] PHP array
configuring a field in TCA. As
XML this is expressed by
array2xml()'s output. See example
below.

<ROOT><TCEforms> For <ROOT> elements in the DS you can add
application specific information about the sheet that the
<ROOT> element represents.

<sheetTitle>
<sheetDescription>
<sheetShortDescr>

“Value” Elements:

Element Format Description

<langDisable> boolean, 0/1 If set, then handling of localizations is disabled. Otherwise FlexForms will
allow editing of additional languages than the default according to
“sys_languages” table contents.
The language you can select from is the language configured in
“sys_languages” but they must have ISO country codes set - see example
below.

<langChildren> boolean, 0/1 If set, then localizations are bound to the default values 1-1 (“value” level).
Otherwise localizations are handled on “structure level”

<sheetTitle> string or LLL
reference

Specifies the title of the sheet.

<sheetDescription> string or LLL
reference

Specifies a description for the sheet shown in the flexform.

<sheetShortDescr> string or LLL
reference

Specifies a short description of the sheet used in the tab-menu.

Sheets and FlexForms
FlexForms always resolve sheet definitions in a Data Structure. If only one sheet is defined that must be
the “sDEF” sheet (default). In that case no tab-menu for sheets will appear (see examples below).

66

TCA Reference - doc_core_tca

FlexForm data format, <T3FlexForms>
When saving FlexForm elements the content is stored as XML using t3lib_div::array2xml() to convert
the internal PHP array to XML format. The structure is as follows:

“Array” Elements:

Element Description Child elements

<T3FlexForms> Document tag <meta>
<data>

<meta> Meta data for the content. For instance information about which
sheet is active etc.

<currentSheetId>
<currentLangId>

<data> Contains the data; sheets, language sections, field and values <sheet>

<sheet> Contains the data for each sheet in the form. If there are no
sheets, the default sheet “<sDEF>” is always used.

<sDEF>
<s_[sheet keys]>

<sDEF>
<[sheet keys]>

For each sheet it contains elements for each language. If
<meta><langChildren> is false then all languages are stored on
this level, otherwise only the <lDEF> tag is used.

<lDEF>
<l[ISO language code]>

<lDEF>
<[language keys]>

For each language the fields in the form will be available on this
level.

<[field name]>

<[field name]> For each field name there is at least one element with the value,
<vDEF>. If <meta><langChildren> is true then there will be a <v*>
tag for each language holding localized values.

<vDEF>
<v[ISO language code]>

<currentLangId> Numerical array of language ISO codes + “DEF” for default which
are currently displayed for editing.

<n[0-x]>

“Value” Elements:

Element Format Description

<vDEF>
<v[ISO language
code]>

string Content of the field in default or localized versions

<currentSheetId> string Points to the currently shown sheet in the DS.

67

TCA Reference - doc_core_tca

Example: Simple FlexForm

The extension “examples” provides some sample FlexForms. The “simple FlexForm” plugin provides a
very basic configuration with just a select-type field to choose a page from the “pages” table.

The DS used to render this field is found in the file “flexform_ds1.xml” inside the “examples” extension.
Notice the <TCEforms> tags:

<T3DataStructure>
<meta>

<langDisable>1</langDisable>
</meta>
<sheets>

<sDEF>
<ROOT>

<TCEforms>
<sheetTitle>LLL:EXT:examples/locallang_db.xml:

examples.pi_flexform.sheetGeneral</sheetTitle>
</TCEforms>
<type>array</type>
<el>

<pageSelector>
<TCEforms>

<label>LLL:EXT:examples/locallang_db.xml:
examples.pi_flexform.pageSelector</label>

<config>
<type>select</type>
<items type="array">

<numIndex index="0" type="array">
<numIndex

index="0">LLL:EXT:examples/locallang_db.xml:examples.pi_flexform.choosePage</numIndex>
<numIndex index="1">0</numIndex>

</numIndex>
</items>
<foreign_table>pages</foreign_table>
<foreign_table_where>ORDER BY

title</foreign_table_where>
<minitems>0</minitems>
<maxitems>1</maxitems>

</config>
</TCEforms>

</pageSelector>
</el>

</ROOT>
</sDEF>

</sheets>
</T3DataStructure>

68

TCA Reference - doc_core_tca

It's clear that the contents of <TCEforms> is a direct reflection of the field configurations we normally
set up in the $TCA array.

The Data Structure for this FlexForm is loaded in the “pi_flexform” field of the “tt_content” table by
adding the following to the ext_tables.php file of the “examples” extension:

$TCA['tt_content']['types']['list']['subtypes_addlist'][$_EXTKEY . '_pi1'] = 'pi_flexform';
t3lib_extMgm::addPiFlexFormValue($_EXTKEY . '_pi1', 'FILE:EXT:examples/flexform_ds1.xml');

In the first line the tt_content field “pi_flexform” is added to the display of fields when the Plugin type is
selected and set to “examples_pi1”. In the second line the DS xml file is configured to be the source of
the FlexForm DS used.

If we browse the definition for the “pi_flexform” field in “tt_content” using the Admin > Configuration
module, we can see the following:

As you can see there are quite a few extensions that have added pointers to their Data Structures.
Towards the bottom we can find the one we have just been looking at.

Example: FlexForm with two sheets

In this example we create a FlexForm field with two “sheets”. Each sheet can contain a separate
FlexForm structure. We build it up on top of the previous example, so the first sheet still has a select-
type field related to the “pages” table. In the second sheet, we add a simple input field and a text field.

<T3DataStructure>
<meta>

<langDisable>1</langDisable>
</meta>
<sheets>

<sDEF>
<ROOT>

<TCEforms>
<sheetTitle>LLL:EXT:examples/locallang_db.xml:

examples.pi_flexform.sheetGeneral</sheetTitle>
</TCEforms>
<type>array</type>
<el>

<pageSelector>
<TCEforms>

<label>LLL:EXT:examples/locallang_db.xml:
examples.pi_flexform.pageSelector</label>

<config>
<type>select</type>
<items type="array">

<numIndex index="0" type="array">
<numIndex

index="0">LLL:EXT:examples/locallang_db.xml:examples.pi_flexform.choosePage</numIndex>
<numIndex index="1">0</numIndex>

</numIndex>
</items>
<foreign_table>pages</foreign_table>
<foreign_table_where>ORDER BY

title</foreign_table_where>
<minitems>0</minitems>

69

file:///Users/EXT:examples/flexform_ds1.xml

TCA Reference - doc_core_tca

<maxitems>1</maxitems>
</config>

</TCEforms>
</pageSelector>

</el>
</ROOT>

</sDEF>
<s_Message>

<ROOT>
<TCEforms>

<sheetTitle>LLL:EXT:
examples/locallang_db.xml:examples.pi_flexform.s_Message</sheetTitle>

</TCEforms>
<type>array</type>
<el>

<header>
<TCEforms>

<label>LLL:EXT:
examples/locallang_db.xml:examples.pi_flexform.header</label>

<config>
<type>input</type>
<size>30</size>

</config>
</TCEforms>

</header>
<message>

<TCEforms>
<label>LLL:EXT:

examples/locallang_db.xml:examples.pi_flexform.message</label>
<config>

<type>text</type>
<cols>40</cols>
<rows>5</rows>

</config>
</TCEforms>

</message>
</el>

</ROOT>
</s_Message>

</sheets>
</T3DataStructure>

The part that is different from the first Data Structure is highlighted in bold. The result from this
configuration is a form which looks like this:

70

TCA Reference - doc_core_tca

This looks very much like the first example, but notice the second tab. Clicking on “Message”, we can
access the second sheet which shows some other fields:

If you look at the XML stored in the database field “pi_flexform” this is how it looks:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<T3FlexForms>
 <data>
 <sheet index="sDEF">
 <language index="lDEF">
 <field index="pageSelector">
 <value index="vDEF">9</value>
 </field>
 </language>
 </sheet>
 <sheet index="s_Message">
 <language index="lDEF">
 <field index="header">
 <value index="vDEF">My Header</value>
 </field>
 <field index="message">
 <value index="vDEF">And my message.

On several lines.</value>
 </field>
 </language>
 </sheet>
 </data>

71

TCA Reference - doc_core_tca

</T3FlexForms>

Notice how the data of the two sheets are separated (sheet names highlighted in bold above).

Example: Rich Text Editor in FlexForms

Creating a RTE in FlexForms is done by adding “defaultExtras” content to the <TCEforms> tag:

<TCEforms>
<config>

<type>text</type>
<cols>48</cols>
<rows>5</rows>

</config>
<label>Subtitle</label>
<defaultExtras>richtext[*]:rte_transform[mode=ts_css]</defaultExtras>

</TCEforms>

Handling languages in FlexForms
FlexForms allows you to handle translations of content in two ways. But before you can enable those
features you have to install the extension “static_info_tables” which contains country names and ISO-
language codes which are the ones by which FlexForms stores localized content:

Then you must configure languages in the database:

And finally, you have to make sure that each of these languages points to the right ISO code:

By default, you will not see any changes. Indeed if you look at the example XML displayed above, you
will notice the following line, at the top, in the “meta” section:

<langDisable>1</langDisable>

This means that translation of the FlexForm is disabled. In the example above, the FlexForm is part of a
content element. That content element can still be translated as usual. What we're going to look at
below is how a FlexForm field may end up containing its own translations. There are two methods for
this.

Localization method #1

The first localization method just requires to change the “langDisable” flag mentioned above to 0:

<langDisable>0</langDisable>

72

TCA Reference - doc_core_tca

This means that translations are now allowed for that FlexForm. This is how it looks like:

The data XML in the data base looks like this:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<T3FlexForms>
 <data>
 <sheet index="sDEF">
 <language index="lDEF">
 <field index="pageSelector">
 <value index="vDEF">9</value>
 </field>
 </language>
 <language index="lDE">
 <field index="pageSelector">
 <value index="vDEF"></value>
 </field>
 </language>

73

TCA Reference - doc_core_tca

 <language index="lEN">
 <field index="pageSelector">
 <value index="vDEF"></value>
 </field>
 </language>
 </sheet>
 <sheet index="s_Message">
 <language index="lDEF">
 <field index="header">
 <value index="vDEF">My Header</value>
 </field>
 <field index="message">
 <value index="vDEF">And my message.

On several lines.</value>
 </field>
 </language>
 <language index="lDE">
 <field index="header">
 <value index="vDEF">Hallo!</value>
 </field>
 <field index="message">
 <value index="vDEF">Das is auf Deutsch!</value>
 </field>
 </language>
 <language index="lEN">
 <field index="header">
 <value index="vDEF"></value>
 </field>
 <field index="message">
 <value index="vDEF"></value>
 </field>
 </language>
 </sheet>
 </data>
</T3FlexForms>

Note how each language is stored separately at a level above the “field” level. Each language tag carries
an attribute identifying the language like “lDE” or “lEN”.

Localization method #2

In the first method of localization each language can potentially contain a differently structured data
set. This is possible because as soon as a DS defines sections with array objects inside the number of
objects can be individual!

The second method of localization handles each language on the value level instead, thus requiring a
translation for each and every field in the default language! You enable this by setting the
“langChildren” tag to “1” in the “meta” section:

<meta>
<langDisable>0</langDisable>
<langChildren>1</langChildren>

</meta>

74

TCA Reference - doc_core_tca

The editing form will now look like this:

You can see how all translation fields for the “Header” are grouped together with the default header.
Likewise for the “Message” field.

The difference is also seen in the <T3FlexForms> content:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<T3FlexForms>
 <data>
 <sheet index="sDEF">
 <language index="lDEF">
 <field index="pageSelector">
 <value index="vDEF"></value>
 <value index="vDE"></value>
 <value index="vEN"></value>
 <value index="vDE.vDEFbase"></value>
 <value index="vEN.vDEFbase"></value>
 </field>
 </language>
 </sheet>
 <sheet index="s_Message">
 <language index="lDEF">
 <field index="header">

75

TCA Reference - doc_core_tca

 <value index="vDEF">My header</value>
 <value index="vDE">Hallo!</value>
 <value index="vEN"></value>
 <value index="vDE.vDEFbase">My header</value>
 <value index="vEN.vDEFbase">My header</value>
 </field>
 <field index="message">
 <value index="vDEF">And my message.

On several lines.</value>
 <value index="vDE">Das is auf Deutsch!</value>
 <value index="vEN"></value>
 <value index="vDE.vDEFbase">And my message.

On several lines.</value>
 <value index="vEN.vDEFbase">And my message.

On several lines.</value>
 </field>
 </language>
 </sheet>
 </data>
</T3FlexForms>

In this case, there's only on “language” tag per sheet and all values are repeated with a language index
attribute to tell them apart.

The additional “value” tags with an index attribute like “vDE.vDEFbase” are used to store the previous
value that the field contained, so that a translation diff view can be displayed:

NOTICE: The two localization methods are NOT compatible! You cannot suddenly change from the
one method to the other without having to do some conversion of the data format. That is obvious
when you look at how the two methods also require different data structures underneath!

76

TCA Reference - doc_core_tca

['columns'][field name]['config'] / TYPE: "inline"
Inline-Relational-Record-Editing (IRRE) offers a way of directly editing parent-child-relations in one
backend view. New child records are created using AJAX calls to prevent a reload of the complete
backend view. This type was first integrated in TYPO3 4.1.

Please note that IRRE does not fully work in conjunction with versioning. Only 1:n relationships are
supported in workspaces (since TYPO3 4.5).

Note
TCAdefaults.<table>.pid = <page id> can be used to define the pid of new child records.
Thus, it's possible to have special storage folders on a per-table-basis.

Key Datatype Description Scope

type string [Must be set to "inline"] Display
/ Proc.

foreign_table string
(table name)

[Must be set, there is no type “inline” without a foreign table]
The table name of the child records is defined here. The table
must be configured in $TCA.
See the other related options below.

Display
/ Proc.

appearance array Has information about the appearance of child-records, namely:
• collapseAll (boolean)

Show all child-records collapsed (if false, all are
expanded)

• expandSingle (boolean)

Display

77

TCA Reference - doc_core_tca

Key Datatype Description Scope

Show only one child-record expanded each time. If a
collapsed record is clicked, the currently open one
collapses and the clicked one expands.

• newRecordLinkAddTitle (boolean)
Adds the title of the foreign_table to the “New record”
link.
false: “Create new”
true: “Create new <title of foreign_table>”, e.g. “Create
new address”

• newRecordLinkPosition (string)
Deprecated: use levelLinksPosition instead

• levelLinksPosition (string)
Values: 'top', 'bottom', 'both', 'none' – default: 'top'
Defines where to show the “New record” link in relation
to the child records.

• useCombination (boolean)
This is only useful on bidirectional relations using an
intermediate table with attributes. In a “combination” it
is possible to edit the attributes AND the related child
record itself.
If using a foreign_selector in such a case, the
foreign_unique property must be set to the same field as
the foreign_selector.

• useSortable (boolean)
Active Drag&Drop Sorting by the script.aculo.us Sortable
object.

• showPossibleLocalizationRecords (boolean)
Show unlocalized records which are in the original
language, but not yet localized.

• showRemovedLocalizationRecords (boolean)
Show records which were once localized but do not exist
in the original language anymore.

• showAllLocalizationLink (boolean)
Defines whether to show the "localize all records" link to
fetch untranslated records from the original language.

• showSynchronizationLink (boolean)
Defines whether to show a "synchronize" link to update
to a 1:1 translation with the original language.

• enabledControls (array)
Associative array with the keys 'info', 'new', 'dragdrop',
'sort', 'hide', 'delete', 'localize'. If the accordant values are
set to a boolean value (true or false), the control is shown
or hidden in the header of each record.

• showPossibleRecordsSelector (boolean) (since TYPO3 4.7)
Can be used to hide the foreign record selector from the
interface, even if you have a foreign_selector configured.
This can be used to keep the technical functionality of
the foreign_selector but is useful if you want to replace it
with your own implementation using a custom control
(see "customControls").

behaviour array Has information about the behavior of child-records, namely:
• localizationMode ('keep', 'select')

Defines in general whether children are really localizable (set
to 'select') or just taken from the default language (set to
'keep'). If this property is not set, but the affected parent and
child tables were localizable, the mode 'select' is used by
default.

• Mode 'keep': This is not a real localization,
since the children are taken from the parent
of the original language. But the children can
be moved, deleted, modified etc. on the
localized parent which - of course - also
affects the original language.

• Mode 'select': This mode provides the
possibility to have a selective localization and

Display
/ Proc.

78

TCA Reference - doc_core_tca

Key Datatype Description Scope

to compare localized data to the pendants of
the original language. Furthermore this mode
is extended by a 'localize all' feature, which
works similar to the localization of content
on pages, and a 'synchronize' feature which
offers the possibility to synchronize a
localization with its original language.

• localizeChildrenAtParentLocalization (boolean)
Defines whether children should be localized when the
localization of the parent gets created.

• disableMovingChildrenWithParent (boolean)
Disables that child records get moved along with their parent
records.

customControls array (Since TYPO3 4.7) Numerical array containing definitions of
custom header controls for IRRE fields. This makes it possible to
create special controls by calling user-defined functions
(userFuncs). Each item in the array item must be an array itself,
with at least on key "userFunc" pointing to the user function to
call.
The userFunc string is defined as usual in TYPO3 as [file-
reference":"]["&"]class/function["->"method-name] ,
e.g.

EXT:myext/class.tx_myext_myclass:tx_myext_myclas
s->myUserFuncMethod

For more details, see the implementation in
"t3lib/class.t3lib_tceforms_inline.php" and search for
"customControls".

Display

foreign_field string The foreign_field is the field of the child record pointing to the
parent record. This defines where to store the uid of the parent
record.

Display
/ Proc.

foreign_label string If set, it overrides the label set in $TCA[<foreign_table>]['ctrl']
['label'] for the inline-view.

Display
/ Proc.

foreign_selector string A selector is used to show all possible child records that could be
used to create a relation with the parent record. It will be rendered
as a multi-select-box. On clicking on an item inside the selector a
new relation is created.
The foreign_selector points to a field of the foreign_table that is
responsible for providing a selector-box – this field on the
foreign_table usually has the type “select” and also has a
“foreign_table” defined.

Display
/ Proc.

foreign_sortby string Define a field on the child record (or on the intermediate table)
that stores the manual sorting information. It is possible to have a
different sorting, depending from which side of the relation we
look at parent or child.

Display
/ Proc.

foreign_default_sortby string If a field name for foreign_sortby is defined, then this is ignored.
Otherwise this is used as the “ORDER BY” statement to sort the
records in the table when listed.

Display

foreign_table_field string The foreign_table_field is the field of the child record pointing to
the parent record. This defines where to store the table name of
the parent record. On setting this configuration key together with
foreign_field, the child record knows what its parent record is – so
the child record could also be used on other parent tables.
This issue is also known as “weak entity”.
Do not confuse with foreign_table or foreign_field. It has its own
behavior.

Display
/ Proc.

foreign_unique string Field which must be unique for all children of a parent record.
Example: Say you have two tables, products, your parent table, and
prices, your child table (products) can have multiple prices. The
prices table has a field called customer_group, which is a selector
box. Now you want to be able to specify prices for each customer
group when you edit a product, but of course you don't want to

Display
/ Proc.

79

TCA Reference - doc_core_tca

Key Datatype Description Scope

specify contradicting prices for one product (i.e. two different
prices for the same customer_group). That's why you would set
foreign_unique to the field name “customer_group”, to prevent that
two prices for the same customer group can be created for one
product.

MM string
(table name)

Means that the relation to the records of "foreign_table" is done
with a M-M relation with a third "join" table.
That table typically has three columns:

• uid_local, uid_foreign for uids respectively.
• sorting is a required field used for ordering the items.

The field which is configured as “inline” is not used for data-
storage any more but rather it's set to the number of records in the
relation on each update, so the field should be an integer.
Notice: Using MM relations you can ONLY store real relations for
foreign tables in the list - no additional string values or non-record
values (so no attributes).

Proc.

foreign_table_match array (Since TYPO3 4.7) Array of field-value pairs to both insert and
match against when writing/reading IRRE relations. Using the
match fields, it is possible to re-use the same child table in more
than one field of the parent table by using a match field with
different values for each of the use cases.

Example

Imagine you have a parent table called "company" and a child
table called "persons". Now, if you want the company table to have
two fields of type "inline", one called "employees" and one called
"customers", both containing "persons". Then you could use a
(hidden) field called "role" on the child (person) table to keep them
apart. The match TCA configuration of the parent table would
then look like this:

$TCA['ty_myext_company'] = array (
...
'columns' => array (

...
'employees' => array (

'config' => array (
'type' => 'inline',
'foreign_table' =>

'ty_myext_person',
'foreign_field' => 'company',
'foreign_match_fields' =>

array(
'role' => 'employee',

),
),

),
'customers' => array (

'config' => array (
'type' => 'inline',
'foreign_table' =>

'ty_myext_person',
'foreign_field' => 'company',
'foreign_match_fields' =>

array(
'role' => 'customer',

),
),

),
),
...

);

Proc.

foreign_types array (Since TYPO3 4.7) This can be used to control which fields of the
child table are displayed. You can override the "showitem", etc.
settings of the child table here, by supplying an override for the

Display

80

TCA Reference - doc_core_tca

Key Datatype Description Scope

"types" array of that table. For details on how the types array is
constructed, see the chapter "['types'][key] section" later in this
manual.

size integer Height of the selector box in TCEforms. Display

autoSizeMax integer If set, then the height of multiple-item selector boxes (maxitem > 1)
will automatically be adjusted to the number of selected elements,
however never less than "size" and never larger than the integer
value of "autoSizeMax" itself (takes precedence over "size"). So
"autoSizeMax" is the maximum height the selector can ever reach.

Display

maxitems integer > 0 Maximum number of items in the selector box. Defaults to 100000.
Note that this is different from types "select" and "group" which
default to 1.

Display
/ Proc

minitems integer > 0 Minimum number of items in the selector box. (Default = 0) Display

symmetric_field string This works like foreign_field, but in case of using bidirectional
symmetric relations. symmetric_field defines in which field on the
foreign_table the uid of the “other” parent is stored.

Display
/ Proc.

symmetric_label string If set, it overrides the label set in $TCA[<foreign_table>]['ctrl']
['label'] for the inline-view and only if looking to a symmetric
relation from the “other” side.

Display
/ Proc.

symmetric_sortby string This works like foreign_sortby, but in case of using bidirectional
symmetric relations. Each side of a symmetric relation could have
its own sorting, so symmetric_sortby defines a field on the
foreign_table where the sorting of the “other” side is stored.

Display
/ Proc.

Example “comma-separated list”:

This combines companies with persons (employees) using a comma separated list, so no “foreign_field”
is used here.

$TCA['company'] = array(
 'ctrl' => ...,
 'interface' => ...,
 'feInterface' => ...,
 'columns' => array(
 'hidden' => ...,
 'employees' => array(
 'exclude' => 1,
 'label' => 'LLL:EXT:myextension/locallang_db.xml:company.employees',
 'config' => array(
 'type' => 'inline',
 'foreign_table' => 'person',
 'maxitems' => 10,
 'appearance' => array(
 'collapseAll' => 1,
 'expandSingle' => 1,
),
),
),
),
 'types' => ...
 'palettes' => ...
);

Example “attributes on anti-symmetric intermediate table”:

This example combines companies with persons (employees) using an intermediate table. It is also
possible to add attributes to every relation – in this example, an attribute “jobtype” on the
“person_company” table is defined. It is also possible to look at the relation from both sides (parent and
child).

$TCA['person'] = array(
 'columns' => array(
 'employers' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person.employers',
 'config' => array(
 'type' => 'inline',
 'foreign_table' => 'person_company',

81

TCA Reference - doc_core_tca

 'foreign_field' => 'person',
 'foreign_label' => 'company',
),
),
),
);

$TCA['company'] = array(
 'columns' => array(
 'employees' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:company.employees',
 'config' => array(
 'type' => 'inline',
 'foreign_table' => 'person_company',
 'foreign_field' => 'company',
 'foreign_label' => 'person',
),
),
),
);

$TCA['person_company'] = array(
 'columns' => array(
 'person' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person_company.person',
 'config' => array(
 'type' => 'select',
 'foreign_table' => 'person',
 'size' => 1,
 'minitems' => 0,
 'maxitems' => 1,
),
),
 'company' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person_company.company',
 'config' => array(
 'type' => 'select',
 'foreign_table' => 'company',
 'size' => 1,
 'minitems' => 0,
 'maxitems' => 1,
),
),
 'jobtype' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person_company.jobtype',
 'config' => array(
 'type' => 'select',
 'items' => array(
 array('Project Manager (PM)', '0'),
 array('Chief Executive Officer (CEO)', '1'),
 array('Chief Technology Officer (CTO)', '2'),
),
 'size' => 1,
 'maxitems' => 1,
),
),
),
);

Example “attributes on symmetric intermediate table”:

This example combines two persons with each other – imagine they are married. One person on the
first side is the husband, and one person on the other side is the wife (or generally “spouse” in the
example below). Symmetric relations combine object of the same with each other and it does not
depend, from which side someone is looking to the relation – so the husband knows it's wife and the
wife also know it's husband.

Sorting could be individually defined for each of the both sides (perhaps this should not be applied to a
wife-husband-relationship in real life).

$TCA['person'] = array(
 'columns' => array(
 'employers' => array(

82

TCA Reference - doc_core_tca

 'label' => 'LLL:EXT:myextension/locallang_db.xml:person.employers',
 'config' => array(
 'type' => 'inline',
 'foreign_table' => 'person_symmetric',
 'foreign_field' => 'person',
 'foreign_sortby' => 'sorting_person',
 'foreign_label' => 'spouse',
 'symmetric_field' => 'spouse',
 'symmetric_sortby' => 'sorting_spouse',
 'symmetric_label' => 'person',
),
),
),
);

$TCA['person_symmetric'] = array(
 'columns' => array(
 'person' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person_symmetric.person',
 'config' => array(
 'type' => 'select',
 'foreign_table' => 'person',
 'size' => 1,
 'minitems' => 0,
 'maxitems' => 1,
),
),
 'spouse' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person_symmetric.spouse',
 'config' => array(
 'type' => 'select',
 'foreign_table' => 'person',
 'size' => 1,
 'minitems' => 0,
 'maxitems' => 1,
),
),
 'someattribute' => array(
 'label' => 'LLL:EXT:myextension/locallang_db.xml:person_symmetric.someattribute',
 'config' => array(
 'type' => 'input',
),
),
 'sorting_person' => array(
 'config' => array(
 'type' => 'passthrough',
),
),
 'sorting_spouse' => array(
 'config' => array(
 'type' => 'passthrough',
),
),
),
);

83

TCA Reference - doc_core_tca

['types'][key] section
You have to add at least one entry in the "types"-configuration before any of the configured fields from
the ['columns'] section will show up in TCEforms.

Required configuration
Let's take the internal notes (sys_note) as an example. The input form looks like this:

It corresponds to the following “types” configuration:

'types' => array(
'0' => array('showitem' => 'category;;;;2-2-2, author, email, personal, subject;;;;3-

3-3, message')
)

The key "showitem" lists the order in which to define the fields: "category, author, email, personal,
subject, message".

Optional possibilities
The power of the "types"-configuration becomes clear when you want the form composition of a record
to depend on a value from the record. Let's look at the “dummy” table from the “examples” extension.
The “ctrl” section of its TCA looks like this:

$TCA['tx_examples_dummy'] = array(
'ctrl' => array(

'title' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_dummy',
'label' => 'title',
'tstamp' => 'tstamp',
'crdate' => 'crdate',
'cruser_id' => 'cruser_id',
'type' => 'record_type',
'default_sortby' => 'ORDER BY title',
'delete' => 'deleted',
'enablecolumns' => array(

'disabled' => 'hidden',
),
'dynamicConfigFile' => t3lib_extMgm::extPath($_EXTKEY) . 'tca.php',
'iconfile' => t3lib_extMgm::extRelPath($_EXTKEY) .

'icon_tx_examples_dummy.gif',
)

);

84

TCA Reference - doc_core_tca

The line in bold indicates that the field called “record_type” will used to indicate the “type” of any
given record of the table. Let's look at how this field is defined:

'record_type' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.record_type',
'config' => array(

'type' => 'select',
'items' => array(

array('LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.record_type.0',
0),

array('LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.record_type.1',
1),

array('LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.record_type.2',
2),

)
)

),

There's nothing unusual here. It's a pretty straightforward select field, with three options. Finally, in the
“types” section, we defined what fields should appear and in what order for every value of the “type”
field:

'types' => array(
'0' => array('showitem' => 'hidden, record_type, title, some_date '),
'1' => array('showitem' => 'record_type, title '),
'2' => array('showitem' => 'title, some_date, hidden, record_type '),

),

The result if the following display when type “Normal” is chosen:

Changing to type “Short” reloads the form and displays the following:

85

TCA Reference - doc_core_tca

And finally, type “Weird” also shows all fields, but in a different order:

Default values
If no "type" field is defined the type value will default to "0" (zero). If the type value (coming from a
field or being zero by default) does not point to a defined index in the "types"-configuration, the
configuration for key "1" will be used by default.

Notice: You must not show the same field more than once in the editing form. If you do, the field will
not detect the value properly.

Key Datatype Description

showitem string
(list of field
configuration
sets)

Required.
Configuration of the displayed order of fields in TCEforms.
The whole string is divided by tokens according to a - unfortunately -
complex ruleset.

• #1: Overall the value is divided by a "comma" (,). Each part represents
the configuration for a single field.

• #2: Each of the field configurations is further divided by a semi-colon
(;). Each part of this division has a special significance.
• Part 1: Field name reference (Required!)
• Part 2: Alternative field label (string or LLL reference)
• Part 3: Palette number (referring to an entry in the "palettes"

section).
• Part 4: Special configuration (split by colon (:)), e.g. 'nowrap' and

'richtext[(list of keys or *)]' (see “Additional $TCA features”)
• Part 5: Form style codes (see “Visual style of TCEforms”)

Notice: Instead of a real field name you can insert "--div--" and you should
have a divider line shown. However this is not rendered by default. If you set
the dividers2tabs option (see ['ctrl'] section), each –div-- will define a new
tab. Furthermore using a value "newline" for Part 3, will start a newline with
this tab.

Example:
'types' => array(

'0' => array('showitem' => 'hidden;;;;1-1-1,
title;;;;2-2-2, poem, filename;;;;3-3-3, season;;;;4-4-
4, weirdness, color,
--div--;LLL:EXT:examples/locallang_db.xml:tx_examples_ha
iku.images, image1, image2, image3, image4, image5'),
),

Another special field name, '--palette--', will insert a link to a palette (of
course you need to specify a palette and title then...)

subtype_value_field string
(field name)

Field name, which holds a value being a key in the 'subtypes_excludelist'
array. This is used to specify a secondary level of 'types' - basically hiding
certain fields of those found in the types-configuration, based on the value
of another field in the row.

86

TCA Reference - doc_core_tca

Key Datatype Description

Example (from sysext/cms/tbl_tt_content.php):
'subtype_value_field' => 'list_type',
'subtypes_excludelist' => array(

'3' => 'layout',
'2' => 'layout',
'5' => 'layout',
...
'21' => 'layout'

),

subtypes_excludelist array See "subtype_value_field".

Syntax:
“[field value]” => “[comma-separated list of fields (from the main types-
config) which are excluded]”

subtypes_addlist array A list of fields to add when the "subtype_value_field" matches a key in this
array.

See "subtype_value_field".

Syntax:
“[value]” => “[comma-separated list of fields which are added]

Notice: that any transformation configuration used by TCE will NOT work
because that configuration is visible for the TCEforms class only during the
drawing of fields. In other words any configuration in this list of fields will
work for display only.”

bitmask_value_field string
(field name)

Field name, which holds a value being the integer (bit-mask) for the
'bitmask_excludelist_bits' array.
It works much like 'subtype_value_field' but excludes fields based on whether
a bit from the value field is set or not. See 'bitmask_excludelist_bits';
[+/-] indicates whether the bit [bit-number] is set or not.

Example:

'bitmask_value_field' => 'active',
'bitmask_excludelist_bits' => array(
 '-0' => 'tmpl_a_subpart_marker,tmpl_a_description',
 '-1' => 'tmpl_b_subpart_marker,tmpl_b_description',
 '-2' => 'tmpl_c_subpart_marker,tmpl_c_description'
)

bitmask_excludelist
_bits

array See "bitmask_value_field"

“[+/-][bit-number]” => “[comma-separated list of fields (from the main types-
config) excluded]”

87

TCA Reference - doc_core_tca

['palettes'][key] section
"Palettes" represent a way to move less frequently used form fields out of sight. Palettes are groups of
field which are associated with another field in the main form. When this field is activated the palette
fields are displayed. In the backend, “palettes” are known as "secondary options".

Let's add a palette to the example from the previous section. The palette itself is defined like this:

'palettes' => array(
'1' => array('showitem' => 'enforce_date'),

),

Now we change the “types” configuration to link the palette to the “some_date” field:

'0' => array('showitem' => 'hidden, record_type, title, some_date;;1 '),

When a palette exists, an icon appears next to the relevant field:

Clicking on this icon, the palette is revealed:

Palette display can be activated permanently by checking the “Show secondary options” box at the
bottom of any forms screen:

Note
This checkbox may be hidden per TSConfig, so it may not appear all the time.

88

TCA Reference - doc_core_tca

Key Datatype Description

showitem string
(list of field
names)

Required.
Configuration of the displayed order of fields in the palette. Remember that a field
name must not appear in more than one palette and not more than one time!. E.g.
'hidden,starttime,endtime'

canNotCollapse boolean If set, then this palette is not allowed to 'collapse' in the TCEforms-display.
This basically means that if "Show secondary options" is not on, this palette is still
displayed in the main form and not linked with an icon.

isHiddenPalette boolean (Since TYPO3 4.7) If set, then this palette will never be shown, but the fields of the
palette are technically rendered as hidden elements in the TCEForm.

This is sometimes useful when you want to set a field's value by JavaScript from
another user-defined field. You can also use it along with the IRRE (TCA type
"inline") foreign_selector feature if you don't want the relation field to be displayed
(it must be technically present and rendered though, that's why you should put it to
a hidden palette in that case).

All fields in a palette are shown on a single line. Since TYPO3 4.3, it is possible to place them on
several lines by using the --linebreak-- keyword.

Example
'palettes' => array(
 '1' => array('showitem' => 'salutation, firstname, lastname, --linebreak--, mobile,
phone, fax, --linebreak--, email, email_work),
)

89

TCA Reference - doc_core_tca Additional $TCA features

Additional $TCA features
Special Configuration introduction

In relation to "types"-configuration it is possible to pass special parameters to a field only for certain
“types”-configurations. For instance you can define that a text field should not wrap text lines for
certain types. Let's add the “description” field to our previous example, a field which was not displayed
until now. The configuration for type “0” becomes:

'0' => array('showitem' => 'hidden;;;;1-1-1, record_type;;;;2-2-2, title;;;;3-3-3,
description;;;nowrap, some_date;;1 '),

Notice the keyword "nowrap" in position 4 for the field "description". The field itself is defined like this
in the columns section:

'description' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.description',
'config' => array(

'type' => 'text',
'cols' => 50,
'rows' => 3

)
)

The result is a textarea field where lines are not wrapped automatically when reaching the width of the
box:

The point of setting "nowrap" in the “types”-configuration is that under other "types"-configurations the
field will wrap lines. Likewise you can configure an RTE to appear for a field only if a certain type of
the record is set and in other cases not.

Default Special Configuration (defaultExtras)
Since "types"-configuration does not apply for FlexForms and since a feature available as special
configuration is sometimes needed regardless of type value you can also configure the default value of
the special configuration. This is done with a key in the ['columns'][field name] array. Thus, the
alternative configuration for the example above could be:

'description' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_dummy.description',
'config' => array(

'type' => 'text',
'cols' => 50,
'rows' => 3

),
'defaultExtras' => 'nowrap'

)

and the “nowrap” parameter doesn't appear in the “types”-configuration anymore:

'0' => array('showitem' => 'hidden;;;;1-1-1, record_type;;;;2-2-2, title;;;;3-3-3,
description, some_date;;1 '),

This works equally well.

90

TCA Reference - doc_core_tca Additional $TCA features

Special Configuration options
Keywords
This table lists the options for keywords in special configuration. Each keyword is followed by a value
wrapped in [] (square brackets).

It is possible to use several keywords. Each must be separated by a colon (:). See examples below.

Keyword Description Value syntax Examples

nowrap Disables line wrapping in "text"
type fields.

[no options]

richtext Enables the RTE for the field
and allows you to set which
toolbar buttons must be shown
on top of the existing
configuration.

Blank, * or
keywords separated by
"|"

richtext[*] = all RTE options
richtext[] = inherit default
configuration
richtext[cut|copy|paste] = ensures that
cut, copy and paste options are shown
regardless of RTE configuration
See RTE API definition later for more
details.

rte_transform Configuration of RTE
transformations and other
options.
See table below for a list of the key
values possible.

key1=value2|key2=value2|
key3=value3|...

rte_transform[key1=value1|
key2=value2|key3=value3]

fixed-font Use a monospace font in
“textarea” type fields.

[no options]

enable-tab Enable tabulator inside
“textarea” type fields.

[no options]

rte_only If set, the field can only be
edited with a Rich Text Editor -
otherwise it will not show up.

boolean (0/1)

static_write This allows to configure a field
value to be written to a file.
See table below for value of f1-f5

f1|f2|f3|f4|f5

wizards Used to specifically enable
wizards configured for a field.
See option
"enableByTypeConfig" in the
wizard configuration.

wizard-key1|wizard-
key2|...

wizards[table]

rte_transform[] key/value pairs
Keyword Description Value syntax Examples

flag This points to a field in the row
which determines whether or
not the RTE is disabled. If the
value of the field is set, then the
RTE is disabled.

Field name rte_transform[flag=rte_disable]

mode Configures which
transformations the content will
pass through between the
database and the RTE
application.

Transformation keywords
separated by dashes ("-").
The order is calling
order when direction is
"db".
See RTE API section for
list of transformations
available.

rte_transform[mode=ts_css-images]

91

TCA Reference - doc_core_tca Additional $TCA features

Keyword Description Value syntax Examples

imgpath This sets an alternative path for
Rich Text Editor images. Default
is configured by the value
TYPO3_CONF_VARS["BE"]
["RTE_imageStorageDir"]
(default is “uploads/”)

path relative to
PATH_site, e.g.
“uploads/rte_test/”

Example - Setting up Rich Text Editors

Let's take another table from the “examples” extension to look at how to set up a text will with a RTE.
The table is called “tx_examples_haiku” and it contains a column called “poem” on which we want to
have the RTE. Its configuration looks like this:

'poem' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.poem',
'config' => array(

'type' => 'text',
'cols' => 40,
'rows' => 6

),
'defaultExtras' => 'richtext[]:static_write[filename|poem]'

)

Concentrate on just the part in bold. This example contains no additional configuration (notice the
empty square brackets), meaning the RTE will inherit from the TYPO3-wide configuration (as defined
by Page and User TSconfig). This may look like this (depending on your local RTE configuration):

92

TCA Reference - doc_core_tca Additional $TCA features

static_write[] parameters
Keyword Description

f1 The field name which contains the name of the file being edited. This filename should be relative to
the path configured in $TYPO3_CONF_VARS[“BE”][“staticFileEditPath”] (which is
"fileadmin/static/" by default).

The file must exist and be writable.

f2 The field name which will also receive a copy of the content (in the database).
This should probably be the field name that carries this configuration.

f3 The field name containing the alternative subpart marker used to identify the editable section in
the file.
The default marker is ###TYPO3_STATICFILE_EDIT### and may be encapsulated in HTML
comments. There must be two markers, one to identify the beginning and one for the end of the
editable section.
Optional.

f4 The field name of the record which - if true - indicates that the content should always be loaded
into the form from the file and not from the duplicate field in the database.

f5 The field name which will receive a status message as a short text string.
Optional.

Example - Write to static file

Let's go back to the above example and look at the second part of the “defaultExtras” configuration (in
bold):

'poem' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.poem',
'config' => array(

'type' => 'text',
'cols' => 40,
'rows' => 6

),
'defaultExtras' => 'richtext[]:static_write[filename|poem]'

)

93

TCA Reference - doc_core_tca Additional $TCA features

This configuration means that the content of the “poem” field will be written to the file given in
“filename”. It looks like this in the BE:

Before saving the content of "fileadmin/static/myhaiku.txt" must be:

###TYPO3_STATICFILE_EDIT###
###TYPO3_STATICFILE_EDIT###

After saving the content of "fileadmin/static/myhaiku.txt" looks like this:

###TYPO3_STATICFILE_EDIT###
<p>Documentation</p><p>Community is happy</p><p>If kept up to date</p>
###TYPO3_STATICFILE_EDIT###

Soft References
"Soft References" are references to database elements, files, email addresses, URls etc. which are found
in-text in content. The <link [page_id]> tag from typical bodytext fields are an example of this.

The Soft Reference parsers are used by the system to find these references and process them
accordingly in import/export actions and copy operations. Also, the soft references are utilized by
integrity checking functions.

Default soft reference parsers
The class “t3lib_softrefproc” contains generic parsers for the most well-known types which are default
for most TYPO3 installations. This is the list of the possible keys:

“softref” key Description

substitute A full field value targeted for manual substitution (for import /export features)

notify Just report if a value is found, nothing more.

images HTML tags for RTE images / images from fileadmin/

94

TCA Reference - doc_core_tca Additional $TCA features

“softref” key Description

typolink References to page id or file, possibly with anchor/target, possibly comma-separated list.

typolink_tag As typolink, but searching for <link> tag to encapsulate it.

TSconfig Processing (filerefs? Domains? what do we know...)

TStemplate Free text references to "fileadmin/" files. HTML resource links like <a>, , <form>

ext_fileref Relative file reference, prefixed "EXT:[extkey]/" - for finding extension dependencies

email Email highlight

url URL highlights (with a scheme)

These are by default set up in the config_default.php file:

'SC_OPTIONS' => array(
'GLOBAL' => array(

'softRefParser' => array(
'substitute' =>

't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'notify' => 't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'images' => 't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'typolink' =>

't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'typolink_tag' =>

't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'TSconfig' =>

't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'TStemplate' =>

't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'ext_fileref' =>

't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'email' => 't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',
'url' => 't3lib/class.t3lib_softrefproc.php:&t3lib_softrefproc',

)
)

),

User-defined soft reference parsers
Soft References can also be user-defined. It is easy to set them up by simply adding new keys in
$TYPO3_CONF_VARS['SC_OPTIONS']['GLOBAL']['softRefParser'] . Use key names based on the extension
you put it in, e.g. “tx_myextensionkey”.

The class containing the soft reference parser must have a function named “findRef”. Please refer to the
class “t3lib_softrefproc” from t3lib/ for the API to use and return.

Wizards Configuration
Wizards are configurable for some field types, namely “input”, “text”, "select" and "group" types. They
provide a way to insert helper-elements, links to wizard scripts etc.

A well known example of a wizard application is the form wizard:

The wizard is configured for the text area field and appears as an icon to the right. Clicking the icon
will guide the user to a view where the "cryptic" form code is presented in a more user-friendly

95

TCA Reference - doc_core_tca Additional $TCA features

interface:

Another example of wizards are the new / edit / suggest wizards which are available for "group" or
"select" type fields:

Configuration of wizards
The value of the “wizards” key in the field config-array is an array. Each key is yet another array which
configures the individual wizards for a field. The order of the keys determines the order the wizards are
displayed in. The key-values themselves play no important role (except from a few reserved words listed
in a table below).

The configuration for the new / edit / suggest wizards shown above looks like this:

'basedOn' => array(
'label' => 'LLL:EXT:cms/locallang_tca.xml:sys_template.basedOn',
'config' => array(

'type' => 'group',
'internal_type' => 'db',
'allowed' => 'sys_template',
'show_thumbs' => '1',
'size' => '3',
'maxitems' => '50',
'autoSizeMax' => 10,
'minitems' => '0',
'default' => '',
'wizards' => array(

'_PADDING' => 4,
'_VERTICAL' => 1,

96

TCA Reference - doc_core_tca Additional $TCA features

'suggest' => array(
'type' => 'suggest',

),
'edit' => array(

'type' => 'popup',
'title' => 'Edit template',
'script' => 'wizard_edit.php',
'popup_onlyOpenIfSelected' => 1,
'icon' => 'edit2.gif',
'JSopenParams' =>

'height=350,width=580,status=0,menubar=0,scrollbars=1',
),
'add' => array(

'type' => 'script',
'title' => 'LLL:EXT:cms/locallang_tca.xml:sys_template.basedOn_add',
'icon' => 'add.gif',
'params' => array(

'table'=>'sys_template',
'pid' => '###CURRENT_PID###',
'setValue' => 'prepend'

),
'script' => 'wizard_add.php',

)
)

)
),

The part specific to the wizards configuration is highlighted in bold. The first two lines of this
configuration make use of two reserved keywords to define settings for the display of icons.

Reserved keys
Each wizard is identified by a key string. However some strings are reserved for general configuration.
These are listed in this table and as a rule of thumb they are prefixed with an underscore ("_"):

Key Type Description

_POSITION string Determines the position of the wizard-icons/titles.
Default is “right”.
Possible values are “left”, “top”, “bottom”.

_ VERTICAL boolean If set, the wizard icons (if more than one) will be positioned in a column
(vertically) and not a row (horizontally, which is default)

_ DISTANCE int+ The distance in pixels between wizard icons (if more than one).

_PADDING int+ The cellpadding of the table which keeps the wizard icons together.

_VALIGN string valign attribute in the table holding things together.

_HIDDENFIELD boolean If set, the field itself will be a hidden field (and so not visible...)

[any other key] PHP-Array Configuration of the wizard types, see below.

General configuration options
This table lists the general configuration options for (almost) all wizard types. In particular the value of
the "type" key is important because it denotes what additional options are available.

Key Type Description

type string Defines the type of wizard. The options are listed as headlines in the table
below.
This setting is required!

title string or LLL
reference

This is the title of the wizard. For those wizards which require a physical
representation – e.g. a link - this will be the link if no icon is presented.

icon fileref This is the icon representing the wizard.
If the first 3 chars are NOT “../” then the file is expected to be in
“t3lib/gfx/”. So to insert custom images, put them in “../typo3conf/” or so.
You can also prefix icons from extensions with "EXT:ext/[extension
key]/directory.../". Generally, the format is the same as for referring to icons
for selector box options.

97

TCA Reference - doc_core_tca Additional $TCA features

Key Type Description

If the icon is not set, the title will be used for the link.

enableByTypeCon
fig

boolean If set, then the wizard is enabled only if declared in the Special
Configuration of specific types (using “wizards[list of wizard-keys]”). See
wizard section.

RTEonly boolean If set, then this wizard will appear only if the wizard is presented for a RTE
field.

hideParent array If set, then the real field will not be shown (but rendered as a hidden field).
In “hideParent” you can configure the non-editable display of the content as
if it was a field of the “none” type. The options are the same as for the
“config” key for “none” types.

Specific wizard configuration options based on type
Key Type Description

Type: script
Creates a link to an external script which can do "context sensitive" processing of the field. This is how the Form and
Table wizards are used.

notNewRecords boolean If set, the link will appear only if the record is not new (that is, it has a
proper UID)

script PHP-script
filename

If the first 3 chars are NOT “../” then the file is expected to be in “typo3/”.
So to link to custom script, put it in “../typo3conf/”. File reference can be
prefixed "EXT:[extension key]/" to point to a file inside an extension.
A lot of parameters are passed to the script as GET-vars in an array, P.

params array Here you can put values which are passed to your script in the P array.

popup_onlyOpenI
fSelected

boolean If set, then an element (one or more) from the list must be selected.
Otherwise the popup will not appear and you will get a message alert
instead. This is supposed to be used with the wizard_edit.php script for
editing records in "group" type fields.

Type: popup (+colorbox)
Creates a link to an external script opened in a pop-up window.

notNewRecords boolean See above, type “script”

script PHP-script
filename

See above, type “script”

params See above, type “script”

JSopenParams string Parameters to open JS window:

Example:

"JSopenParams" =>
"height=300,width=250,status=0,menubar=0,scrollbars=1",

Type: userFunc
Calls a user function/method to produce the wizard or whatever they are up to.

notNewRecords boolean See above, type “script”

userFunc string Calls a function or a method in a class.

Methods: [classname]->[methodname]

Functions: [functionname]
The function/class must be included on beforehand. This is advised to be
done within the localconf.php file.
Two parameters are passed to the function/method: 1) An array with
parameters, much like the ones passed to scripts. One key is special though:
the “item” key, which is passed by reference. So if you alter that value it is
reflected back! 2) $this (reference to the TCEform-object).
The content returned from the function call is inserted at the position where
the the icon/title would normally go.

98

TCA Reference - doc_core_tca Additional $TCA features

Key Type Description

Type: colorbox
Renders a square box (table) with the background color set to the value of the field. The id-attribute is set to a md5-
hash so you might change the color dynamically from pop-up- wizard.
The icon is not used, but the title is given as alt-text inside the color-square.

dim W x H, pixels Determines the dimensions of the box. Default is 20 pixels.

"dim" => "50x20",

tableStyle style-attribute
content in table-
tag

Sets the border style of the table, eg:

"tableStyle" => "border:solid 1px black;"

exampleImg string Reference to a sample (relative to PATH_typo3 directory).
You can prefix with "EXT:" to get image from extension.
An image width of 350 is optimal for display.

Example:
'exampleImg' => 'gfx/wizard_colorpickerex.jpg'

Type: select
This renders a selector box. When a value is selected in the box, the value is transferred to the field and the field
(default) element is thereafter selected (this is a blank value and the label is the wizard title).
“select” wizards make no use of the icon.
The “select” wizard's select-properties can be manipulated with the same number of TSconfig options which are
available for “real” select-types in TCEFORM.[table].[field]. The position of these properties is “TCEFORM.[table].
[field].wizards.[wizard-key]”.

mode append, prepend,
[blank]

Defines how the value is processed: Either added to the front or back or
(default) substitutes the existing.

items,
foreign_table_
etc...

Options related to
the selection of
elements known
from “select”
form-element type
in $TCA.

Example:

'items' => array(
array('8 px', '8'),
array('10 px', '10'),
array('11 px', '11'),
array('12 px', '12'),
array('14 px', '14'),
array('16 px', '16'),
array('18 px', '18'),
array('20 px', '20')

)

Type: suggest
This renders an input field next to a select field of type "group" (internal_type=db) or of type "select" (using
foreign_table). After the user has typed at least 2 (minimumCharacters) characters in this field, a search will start and
show a list of records matching the search word. The "suggest" wizard's properties can be configured directly in TCA
or in page TSConfig (TCEFORM.suggest.default, TCEFORM.suggest.[queryTable], see TSconfig manual).
The configuration options are applied to each table queried by the suggest wizard. There's a general “default”
configuration that applies to all tables. On top of that, there can be specific configurations for each table (use the
table's name as a key). See wizard example below.

pidList list of values Limit the search to certain pages (and their subpages). When pidList is
empty all pages will be included in the search (as long as the be_user is
allowed to see them).

Example:

$TCA['pages']['columns']['storage_pid']['config']
['wizards']['suggest'] = array(
 'type' => 'suggest',
 'default' => array(
 'pidList' => '1,2,3,45',
),
);

99

TCA Reference - doc_core_tca Additional $TCA features

Key Type Description

pidDepth integer Expand pidList by this number of levels. Has an effect only if pidList has a
value.

Example:

$TCA['pages']['columns']['storage_pid']['config']
['wizards']['suggest'] = array(
 'type' => 'suggest',
 'default' => array(
 'pidList' => '6,7',
 'pidDepth' => 4
),
);

minimumCharact
ers

integer Minimum number of characters needed to start the search. Works only in
"default" configuration.

maxPathTitleLen
gth

integer Maximum number of characters to display when a path element is too long

searchWholePhra
se

boolean Whether to do a LIKE=%mystring% (searchWholePhrase = 1) or a
LIKE=mystring% (to do a real find as you type), default: 0

Example:

$TCA['pages']['columns']['storage_pid']['config']
['wizards']['suggest'] = array(

'type' => 'suggest',
'default' => array(

'searchWholePhrase' => 1,
),

);

searchCondition string Additional WHERE clause (no AND needed to prepend)

Example:

// configures the suggest wizard for the field
"storage_pid" in table "pages" to search only for pages
with doktype=1
$TCA['pages']['columns']['storage_pid']['config']
['wizards']['suggest'] = array(

'type' => 'suggest',
'default' => array(

'searchCondition' => 'doktype=1',
),

);

cssClass string Add a CSS class to every list item of the result list.

receiverClass string PHP class alternative receiver class - the file that holds the class needs to be
included manually before calling the suggest feature (default:
t3lib_tceforms_suggest_defaultreceiver), should be derived from
"t3lib_tceforms_suggest_defaultreceiver".

renderFunc string User function to manipulate the displayed records in the results.

Type: slider
This renders a slider next to the field. It works for either input-type fields or select-type fields. For select-type fields,
the wizard will "slide" through the items making up the field. For input-type fields, it will work only for fields
evaluated to integer, float and time. It is advised to also define a "range" property, otherwise the slider will go from 0
to 10000.
Note: the range is properly taken into account only as of TYPO3 4.6.1.

step integer/float Sets the step size the slider will use. For floating point values this can itself
be a floating point value.

width pixels Defines the width of the slider

In the next section the more complex core wizard scripts are demonstrated with examples. Before that,
here are a few examples of simpler core wizards.

100

TCA Reference - doc_core_tca Additional $TCA features

Example - Selector box of preset values

You can add a selector box containing preset values next to a field:

When an option from the selector box is selected it will be transferred to the input field of the element.
The mode of transfer can be either substitution (default) or prepending or appending the value to the
existing value.

This is the corresponding TCA configuration:

'season' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.season',
'config' => array(

'type' => 'input',
'size' => 20,
'eval' => 'trim',
'wizards' => array(

'season_picker' => array(
'type' => 'select',
'mode' => '',
'items' => array(

array('LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.season.spring', 'Spring'),
array('LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.season.summer', 'Summer'),
array('LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.season.autumn', 'Autumn'),
array('LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.season.winter', 'Winter'),

)
)

)
)

),

Example - User defined wizard (processing with PHP function)

The "userFunc" type of wizard allows you to render all the wizard code yourself. Theoretically, you
could produce all of the other wizard kinds ("script", "popup", "colorbox", etc.) with your own user
function if you wanted to alter their behavior.

In this example the wizard provides to JavaScript-powered buttons that make it possible to increase or
decrease the value in the field by 1. The wizard also highlights the field with a background color. This is
how it looks:

The corresponding configuration is:

'weirdness' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.weirdness',
'config' => array(

'type' => 'input',
'size' => 10,
'eval' => 'int',
'wizards' => array(

'specialWizard' => array(
'type' => 'userFunc',
'userFunc' =>

'EXT:examples/class.tx_examples_tca.php:tx_examples_tca->someWizard',
'params' => array(

'color' => 'green'
)

)

101

TCA Reference - doc_core_tca Additional $TCA features

)
)

),

Notice the “params” array, which is passed to the user function that handles the wizard. And here's the
code of the user function (from file class.tx_examples_tca.php of the “examples” extension):

function someWizard($PA, $fObj) {
// Note that the information is passed by reference,
// so it's possible to manipulate the field directly
// Here we highlight the field with the color passed as parameter

$backgroundColor = 'white';
if (!empty($PA['params']['color'])) {

$backgroundColor = $PA['params']['color'];
}
$PA['item'] = '<div style="background-color: ' . $backgroundColor . '; padding:

4px;">' . $PA['item'] . '</div>';

// Assemble the wizard itself
$output = '<div style="margin-top: 8px; margin-left: 4px;">';

// Create the + button
$onClick = "document." . $PA['formName'] . "['" . $PA['itemName'] . "'].value++;

return false;";
$output .= '<a href="#" onclick="' . htmlspecialchars($onClick) . '" style="padding:

6px; border: 1px solid black; background-color: #999">+';
// Create the - button

$onClick = "document." . $PA['formName'] . "['" . $PA['itemName'] . "'].value--;
return false;";

$output .= '<a href="#" onclick="' . htmlspecialchars($onClick) . '" style="padding:
6px; border: 1px solid black; background-color: #999">-';

$output .= '</div>';
return $output;

}

First the HTML code of the field itself is manipulated, by adding a div tag around it. Notice how all you
need to do is to change the value of $PA['item'] since that value is passed by reference to the function
and therefore doesn't need a return value - only to be changed. In that div, we use the color received as
parameter.

After that we create the JavaScript and the links for both the “+” and “-” buttons and we return the
resulting HTML code.

Use the debug() function to find more about what is available in the $PA array.

Example - add a suggest wizard

As an example, let's look at the suggest wizard setup for the “General Record Storage page”. The
wizard looks like this:

And here's the wizard in action:

Here's the corresponding TCA configuration:

$TCA['pages']['columns']['storage_pid']['config']['wizards']['suggest'] = array(
'type' => 'suggest',

102

TCA Reference - doc_core_tca Additional $TCA features

'default' => array(
'searchWholePhrase' => 1,
'maxPathTitleLength' => 40,
'maxItemsInResultList' => 5

),
'pages' => array(

'searchCondition' => 'doktype=1',
),

);

The tables that are queried are the ones used in $TCA['pages']['columns']['storage_pid']['config']
['allowed'].

The wizard can be configured differently for each of these tables. The settings in "default" is applied to
all tables. In the example above, there's a special setting for the “pages” table.

Example – Add a slider wizard

The "haiku" table in the "examples" extension implements a slider wizard for the "Angle" field. The field
configuration looks like this:

'angle' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.angle',
'config' => array(

'type' => 'input',
'size' => 5,
'eval' => 'trim,int',
'range' => array(

'lower' => -90,
'upper' => 90

),
'default' => 0,
'wizards' => array(

'angle' => array(
'type' => 'slider',
'step' => 10,
'width' => 200

)
)

)
),

Note the range which defines the possible values as varying from -90 to 90. With the step property we
indicate that we want to progress by increments of 10. The slider wizard is rendered like this:

Wizard scripts in the core
The wizard interface allows you to use any PHP-script for your wizards but there is a useful set of
default wizard scripts available in the core of TYPO3. These are found in PATH_typo3 and are all
prefixed "wizard_" (except "browse_links.php").

Below is a description of each of them including a description of their special parameters and an
example of usage.

wizard_add.php
This script links to a form which allows you to create a new record in a given table which may
optionally be set as the value on return to the real form.

Key Type Description

table string Table to add record in.

pid int pid of the new record.
You can use the “markers” (constants) as values instead if you wish:

103

TCA Reference - doc_core_tca Additional $TCA features

Key Type Description

###CURRENT_PID###
###THIS_UID###
###STORAGE_PID###
###SITEROOT###

(see TCA/select for description)

setValue “prepend”, “set”,
“append”

“set” = the field will be forced to have the new value on return
“append”/“prepend” = the field will have the value appended/prepended.
You must set one of these values.

As an example, let's look at BE user records where one can see several wizards in use:

The wizard appears as a “+” icon. When clicked, the user is directed to a form where a new BE user
group can be created:

When the new template is saved and the user clicks the close button of the form the new group is
automatically inserted as the list of selected groups.

The configuration looks like this:

'usergroup' => array(
'label' => 'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup',
'config' => array(

'type' => 'select',
'foreign_table' => 'be_groups',
'foreign_table_where' => 'ORDER BY be_groups.title',
'size' => '5',
'maxitems' => '20',
'iconsInOptionTags' => 1,
'wizards' => array(

'_PADDING' => 1,
'_VERTICAL' => 1,
'edit' => array(

'type' => 'popup',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup_edit_title',
'script' => 'wizard_edit.php',
'popup_onlyOpenIfSelected' => 1,
'icon' => 'edit2.gif',
'JSopenParams' =>

'height=350,width=580,status=0,menubar=0,scrollbars=1',
),
'add' => array(

104

TCA Reference - doc_core_tca Additional $TCA features

'type' => 'script',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup_add_title',
'icon' => 'add.gif',
'params' => array(

'table' => 'be_groups',
'pid' => '0',
'setValue' => 'prepend'

),
'script' => 'wizard_add.php',

),
'list' => array(

'type' => 'script',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup_list_title',
'icon' => 'list.gif',
'params' => array(

'table' => 'be_groups',
'pid' => '0',

),
'script' => 'wizard_list.php',

)
)

)
),

The part in bold is related to the Add-wizard. Note how it points to the "wizard_add.php" script. The
“params” array instructs the Add-wizard how to handle the creation of the new record, i.e. which table,
where to store it, etc.. In particular the "setValue" parameter tells the wizard script that the uid of the
newly created record should be inserted in the relations field of the original record (the one where we
clicked the Add-wizard's icon).

wizard_edit.php
The Edit wizard gives you a shortcut to edit references in "select" or "group" type form elements. Again
let's look at the BE user records:

When a record is selected and the Edit-wizard button is clicked, that record opens in a new window for
modification. Let's look again at the configuration (just the Edit-wizard part):

'usergroup' => array(

105

TCA Reference - doc_core_tca Additional $TCA features

'label' => 'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup',
'config' => array(

...
'wizards' => array(

...
'edit' => array(

'type' => 'popup',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup_edit_title',
'script' => 'wizard_edit.php',
'popup_onlyOpenIfSelected' => 1,
'icon' => 'edit2.gif',
'JSopenParams' =>

'height=350,width=580,status=0,menubar=0,scrollbars=1',
),
...

)
)

),

The wizard is set to type “popup” which makes it so that the selected record will open in a new window.
There are no parameters to pass along like there were for the Add-wizard.

wizard_list.php
This links to the Web>List module for only one table and allows the user to manipulate stuff there.
Again, the BE user records have it:

By clicking the icon the user gets taken to the Web>List module. Notice the "Back" link found in the
upper left corner, which leads back to the edit form.

This wizard has a few parameters to configure in the "params" array:

Key Type Description

table string Table to manage records for

pid int id of the records you wish to list.
You can use the “markers” (constants) as values instead if you wish:

###CURRENT_PID###
###THIS_UID###
###STORAGE_PID###
###SITEROOT###

(see TCA/select for description)

106

TCA Reference - doc_core_tca Additional $TCA features

For the BE users table, the configuration look like this (just the List-wizard part):

'usergroup' => array(
'label' => 'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup',
'config' => array(

...
'wizards' => array(

...
'list' => array(

'type' => 'script',
'title' =>

'LLL:EXT:lang/locallang_tca.xml:be_users.usergroup_list_title',
'icon' => 'list.gif',
'params' => array(

'table' => 'be_groups',
'pid' => '0',

),
'script' => 'wizard_list.php',

)
)

)
),

The type is also the "script" type. In the "params" array the table and pid passed to the script is set.

wizard_colorpicker.php
The colorpicker wizard allows you to select a HTML color value from a user-friendly pop-up box. The
wizard type is "colorbox" which will first of all add a colored box next to an input field. Here's how it
looks in a “haiku” record of the “examples” extension:

The color of the box is set to the value of the text field. Clicking the box will open a popup window
with the full color picker wizard:

107

TCA Reference - doc_core_tca Additional $TCA features

Here you can select from the web-color matrix, pick a color from the sample image or select a HTML-
color name from a selector box.

The corresponding TCA configuration looks like this:

'color' => array(
'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.color',
'config' => array(

'type' => 'input',
'size' => 10,
'eval' => 'trim',
'wizards' => array(

'colorChoice' => array(
'type' => 'colorbox',
'title' =>

'LLL:EXT:examples/locallang_db.xml:tx_examples_haiku.colorPick',
'script' => 'wizard_colorpicker.php',
'dim' => '20x20',
'tableStyle' => 'border: solid 1px black; margin-left: 20px;',
'JSopenParams' =>

'height=600,width=380,status=0,menubar=0,scrollbars=1',
'exampleImg' => 'EXT:examples/res/images/japanese_garden.jpg',

)
)

)
),

108

TCA Reference - doc_core_tca Additional $TCA features

Notice the wizard type which is "colorbox".

wizard_forms.php
The forms wizard is used typically with the Content Elements, type "Mailform". It allows to edit the
code-like configuration of the mail form with a nice editor. This is shown in the introduction to Wizards
above.

This is the available parameters:

Key Type Description

xmlOutput boolean If set, the output from the wizard is XML instead of the strangely formatted
TypoScript form-configuration code.

The configuration used for the editor in Content Elements looks like this:

'forms' => array(
'notNewRecords' => 1,
'enableByTypeConfig' => 1,
'type' => 'script',
'title' => 'Forms wizard',
'icon' => 'wizard_forms.gif',
'script' => 'wizard_forms.php?special=formtype_mail',
'params' => array('xmlOutput' => 0)

)

wizard_table.php
The tables wizard is used typically with the Content Elements, type "Table". It allows to edit the code-
like configuration of the tables with a visual editor.

This is the available parameters:

Key Type Description

xmlOutput boolean If set, the output from the wizard is XML instead of the TypoScript table
configuration code.

numNewRows integer Setting the number of blank rows that will be added in the bottom of the
table when the plus-icon is pressed. The default is 5, the range is 1-50.

This is the configuration code used for the table wizard in the Content Elements:

'table' => array(
'notNewRecords' => 1,
'enableByTypeConfig' => 1,
'type' => 'script',
'title' => 'Table wizard',
'icon' => 'wizard_table.gif',
'script' => 'wizard_table.php',
'params' => array('xmlOutput' => 0)

),

wizard_rte.php
This wizard is used to show a "full-screen" Rich Text Editor field. The configuration below shows an
example taken from the Text field in Content Elements:

'RTE' => array(
'notNewRecords' => 1,

109

TCA Reference - doc_core_tca Additional $TCA features

'RTEonly' => 1,
'type' => 'script',
'title' => 'LLL:EXT:cms/locallang_ttc.php:bodytext.W.RTE',
'icon' => 'wizard_rte2.gif',
'script' => 'wizard_rte.php',

),

wizard_tsconfig.php
This wizard is used for the TSconfig fields and TypoScript Template "Setup" fields. It is specialized for
that particular situations and it is not likely you will need it for anything on your own.

browse_links.php
The "Links" wizard is used many places where you want to insert link references.

Key Type Description

allowedExtensions string Comma separated list of allowed file extensions. By default, all extensions
are allowed.

blindLinkOptions string Comma separated list of link options that should not be displayed. Possible
values are file, mail, page, spec, and url. By default, all link options are
displayed.

This works not only in the Rich Text Editor but also in "typolink" fields. Here's an example from
tt_content:

110

TCA Reference - doc_core_tca Additional $TCA features

Clicking the wizard icons opens the Element Browser window:

Such a wizard can be configured like this:

'image_link' => array(
'exclude' => 1,
'label' => 'LLL:EXT:cms/locallang_ttc.php:image_link',
'config' => array(

'type' => 'input',
'size' => '15',
'max' => '256',
'checkbox' => '',
'eval' => 'trim',
'wizards' => array(

'_PADDING' => 2,
'link' => array(

'type' => 'popup',
'title' => 'Link',
'icon' => 'link_popup.gif',
'script' => 'browse_links.php?mode=wizard',
'JSopenParams' =>

'height=300,width=500,status=0,menubar=0,scrollbars=1'
)

),
'softref' => 'typolink[linkList]'

)
),

Notice how the "browse_links.php" script requires an extra parameter since it has to return content back
to the input field (and not the RTE for instance which it also supports).

111

TCA Reference - doc_core_tca Extending the $TCA array

Extending the $TCA array
Being a PHP array, the Table Configuration Array can be easily extended. TYPO3 also provides APIs
for making this simpler.

Storing the changes
Changes to the $TCA are generally packaged into extensions and – more precisely – reside in the
"ext_tables.php" file (more details about extension structure can be found in the "Core APIs" manual).

They can also be written in the "typo3conf/extTables.php" file. The name of this file can be changed – if
you so wish – by changing the value of the global variable $typo_db_extTableDef_script in the
"typo3conf/localconf.php" file. It's also possible to remove the "typo3conf/extTables.php" file by setting:

$typo_db_extTableDef_script = 1;

also in "typo3conf/localconf.php". This variable is then stored into the constant
TYPO3_extTableDef_script.

The advantage of the TYPO3_extTableDef_script file is that it is loaded last. This means that you are
sure that your changes are not overridden by some other customizations.

The advantage of putting your changes inside an extension is that they are nicely packaged in a self-
contained entity which can be easily deployed on multiple servers. The drawback is that the extension
loading order cannot be finely controlled, except by editing the loaded extension list manually. At a
somewhat coarser level, setting the "priority" property in the "ext_emconf.php" file can help (a "bottom"
extension will load last, but its exact load order may vary if there are several "bottom"-priority
extensions).

Customization examples
Many extracts can be found throughout the manual, but this section provides more complete examples.

Example 1: extending the fe_users table
The "examples" extension adds two fields to the "fe_users" table. Here's the complete code:

$temporaryColumns = array (
'tx_examples_options' => array (

'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options',
'config' => array (

'type' => 'select',
'items' => array (

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.0', '1'),

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.1', '2'),

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.2', '--div--'),

array('LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_options.I.3', '3'),
),
'size' => 1,
'maxitems' => 1,

)
),
'tx_examples_special' => array (

'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:fe_users.tx_examples_special',
'config' => array (

'type' => 'user',
'size' => '30',
'userFunc' => 'EXT:examples/class.tx_examples_tca.php:tx_examples_tca-

>specialField'
)

),
);

112

TCA Reference - doc_core_tca Extending the $TCA array

t3lib_div::loadTCA('fe_users');
t3lib_extMgm::addTCAcolumns('fe_users', $temporaryColumns,1);
t3lib_extMgm::addToAllTCAtypes('fe_users', 'tx_examples_options;;;;1-1-1,
tx_examples_special');

First of all, the fields that we want to add are detailed according to the $TCA syntax for columns. This
configuration is stored in the $temporaryColumns array.

After that come three precise steps:

‒ first we load the full $TCA for the "fe_users" table. This is necessary so that all columns
definition are loaded. Otherwise the new columns cannot be added properly.

‒ second the columns are actually added to the table by using t3lib_extMgm::addTCAcolumns().

‒ lastly the fields are added to the "types" definition of the "fe_users" table by using
t3lib_extMgm::addToAllTCAtypes(). It is possible to be more fine-grained.

This does not create the corresponding fields in the database. The new fields must also be defined in the
"ext_tables.sql" file of the extension:

CREATE TABLE fe_users (
tx_examples_options int(11) DEFAULT '0' NOT NULL,
tx_examples_special varchar(255) DEFAULT '' NOT NULL

);

Caution
The above statement uses the SQL CREATE TABLE statement. This is the way TYPO3
expects it to be. The Extension Manager will automatically transform this into a ALTER
TABLE statement when it detects that the table already exists.

By default new fields are added at the bottom of the form when editing a record from that table. If the
table uses tabs, new fields are added at the bottom of the "Extended" tab (this tab is created if it does
not exist). The following screenshot shows the placement of the two new fields when editing a "fe_users"
record:

The next example shows how to place a field more precisely.

Example 2: extending the tt_content table
In this second example, we will add a "No print" field to all content element types. First of all, we add
its SQL definition in "ext_tables.sql":

CREATE TABLE tt_content (
tx_examples_noprint tinyint(4) DEFAULT '0' NOT NULL

);

Then we add it to the $TCA in "ext_tables.php":

113

TCA Reference - doc_core_tca Extending the $TCA array

$temporaryColumn = array(
'tx_examples_noprint' => array (

'exclude' => 0,
'label' => 'LLL:EXT:examples/locallang_db.xml:tt_content.tx_examples_noprint',
'config' => array (

'type' => 'check',
)

)
);
t3lib_extMgm::addTCAcolumns('tt_content', $temporaryColumn, 1);
t3lib_extMgm::addFieldsToPalette('tt_content', 'visibility', 'tx_examples_noprint',
'after:linkToTop');

The code is mostly the same as in the first example, but the last line is very different and requires an
explanation. Since TYPO3 4.5 the "pages" and "tt_content" input forms were totally reorganized for
increased usability. For reasons of flexibility, palettes were used intensively for all fields and not just for
secondary options. This led to the introduction of new API methods for manipulating the content of
palettes. The syntax is similar to the one we saw in the first example, but we have to additionally
specify the palette's key, in this case "visibility".

The result is the following:

Because we added the field into an existing palette and after a specific field (as per the "after:linkToTop"
directive), it gets added "inside" the form and not in the "Extended" tab.

Obviously this new field will no magically exclude a content element from being printed. For it to have
any effect, it must be used during the rendering by modifying the TypoScript used to render the
"tt_content" table. Although this is outside the scope of this manual, here is an example of what you
could do, for the sake of showing a complete process.

Assuming you are using "css_styled_content" (which is installed by default), you could add the following
TypoScript to your template:

tt_content.stdWrap.outerWrap = <div class="noprint">|</div>
tt_content.stdWrap.outerWrap.if.isTrue.field = tx_examples_noprint

This will wrap a "div" tag with a "noprint" class around any content element that has its "No print"
checkbox checked. The final step would be to declare the appropriate selector in the print-media CSS
file so that "noprint" elements don't get displayed.

This is just an example of how the effect of the "No print" checkbox can be ultimately implemented. It
is meant to show that just adding the field to the $TCA is not enough.

Verifying the $TCA
You may find it necessary – at some point – to verify the full structure of the $TCA in your TYPO3
installation. The Admin Tools > Configuration module makes it possible to have an overview of the
complete $TCA, with all customizations taken into account.

If you cannot find your new field, it probably means that you have made some mistake.

114

TCA Reference - doc_core_tca Extending the $TCA array

This view is also useful when trying to find out where to insert a new field, to explore the combination
of types and palettes that may be used for the table that we want to extend.

115

TCA Reference - doc_core_tca Appendix A – Skinning considerations

Appendix A – Skinning considerations
The new reference for skinning is the "Core Skinning Guidelines" manual. However the reference below
has been kept as an appendix since it contains information that is not yet available elsewhere, even
though a part of it is obsolete. So read it if you are interested but note that not everything may work as
described below.

Visual style of TCEforms
The design of the auto-generated forms in TYPO3 (typically referred to as "TCEforms") can be
controlled down to fine detail. The fifth parameter in the $TCA/types configuration is used for this.

The value consists of three integer pointers separated by a dash (“-”). The first parameter points to a
color scheme, the second points to a style scheme for the form elements and the third points to the a
border scheme for the table surrounding all form elements until the next border is defined.

The integer pointers refer to entries in the global $TBE_STYLES variable. Here the definitions for each
pointer is configured.

$TBE_STYLES entries related to TCEforms
The array $TBE_STYLES is a part of the skinning API in TYPO3 and therefore the full description is
found in the section about skinning. However the definition of the three entries related to TCEforms will
be explained in detail here below.

Default integer pointers

The "[0-x]" values in the "Subkeys" column in the table below represents the integer pointers that you
use in the types-configuration of $TCA. You can set up any positive integer key you like, but TYPO3s
core parts already implements the keys from 0-5 with a certain meaning which you are encouraged to
follow as well:

Int. pointer Title Description

0 Default Default index. Always used on main-palettes in the bottom of the forms.

1 Meta fields Typically used for "Hidden", "Type" and other primary "meta" fields

2 Headers For fields related to header information

3 Main content For main content

4 Extras For extra content, like images, files etc.

5 Advanced For special content

Even if these pointers are used in the core of TYPO3 the default configuration as found in
t3lib/stddb/tables.php includes only a definition of the default "0" (zero) pointer:

$TBE_STYLES = array(
'colorschemes' => array(

'0' => '#E4E0DB,#CBC7C3,#EDE9E5',
),
'borderschemes' => array(

'0' => array('border:solid 1px black;',5)
)

);

116

TCA Reference - doc_core_tca Appendix A – Skinning considerations

Reference table:

Key Sub-keys Description

colorschemes [0-x] This value is a comma separated list of five color/class definitions. The
meaning of each color/class is defined as:

[general cell] , [header cell] , [palette header cell] , [header label] , [palette
header label]

Each composite color/class value is split with a "|" (vertical bar). The first
part is a color value, typically setting a background color or font color.
The second part is a class attribute value which will be set either for the
table cell (td) or the span-tag around text

For both color and class values these facts apply:
● Omitting a color (blank value) will use the default value (from index

"0" and if index "0" is not defined, based on the general mainColors in
$TBE_STYLES)

● Setting a color value to dash (“-”) will make it transparent (or just not
set).

Class attributes are set only if there was a class value set. There are no
default class values.

Example:
$TBE_STYLES['colorschemes']
[0]='red,yellow,blue,olive,green';

Example:
$TBE_STYLES['colorschemes'][0]='-|class-red,-|
class-yellow,-|class-blue,-|class-olive,-|
class-green';

This sets class attribute values instead. If you add this to the stylesheet you
will get the same result as entering the real color values:

TABLE.typo3-TCEforms .class-red { background-
color: red; }
TABLE.typo3-TCEforms .class-yellow
{ background-color: yellow; }
TABLE.typo3-TCEforms .class-blue { background-
color: blue; }
TABLE.typo3-TCEforms .class-olive { color:
olive; }
TABLE.typo3-TCEforms .class-green { color:
green; }

117

TCA Reference - doc_core_tca Appendix A – Skinning considerations

Key Sub-keys Description

styleschemes [0-x][elementKey] This value is the content of the "style" attribute of a form element (defined
by "elementKey").
If the value is prefixed "CLASS:" then it will set the class attribute instead
to the value after the prefix.

"elementKey" is the value of a ['columns']['field name']['config'] / TYPE (e.g.
"text", "group", "check", "flex" etc.) or the string "all" (for defining a default
value)

Example:
$TBE_STYLES['styleschemes'][0]['all'] =
'background-color:#F7F7F3;';
$TBE_STYLES['styleschemes'][0]['check'] = '';

This (above) sets the background-color CSS attribute of all form elements
except checkboxes!

Example:

$TBE_STYLES['styleschemes'][0]['all'] =
'CLASS: formField';

This will set the class attribute to 'formField' for all elements. The
associated stylesheet could look like:

TABLE.typo3-TCEforms .formField { background-
color: #F7F7F3; }

borderschemes [0-x][key] This value defines the border style of the group of fields.
Technically the group of fields are wrapped into a table.

"key" is an index defining various values:
● "0" : "style" attribute of the table wrapping the section
● "1" : Distance in pixels after the wrapping table
● "2" : "background" attribute of table wrapping the section: Reference to

background image is relative to typo3/ folder (prefixed with
->backPath)

● "3" : "class" attribute of table wrapping the section.

Example:
$TBE_STYLES['borderschemes'][0][0] =
'border:solid 1px black;';
$TBE_STYLES['borderschemes'][0][1] = 5;
$TBE_STYLES['borderschemes'][0][2] =
'../typo3conf/freestyler_transp.gif';

This renders the form fields like this:

(Black border, the distance to the next section is 5 pixels and there is a
background image)

Example:

$TBE_STYLES['borderschemes'][0]=
array('','','','wrapperTable');

With an associated stylesheet you can get the same result (image not
included):

TABLE.typo3-TCEforms .wrapperTable { border:
1px solid black; margin-top: 5px; }

118

TCA Reference - doc_core_tca Appendix A – Skinning considerations

See next chapter for examples of how to configure your TCEforms.

Style pointers in the "types" configuration
The following is examples of how to use the styling features of TCEforms in real life. These examples
will give you a chance to figure out how the features described in the reference table above is
implemented.

In the examples below the $TBE_STYLES configuration includes the following:

$TBE_STYLES['colorschemes'] = Array (
 '0' => '#F7F7F3,#E3E3DF,#EDEDE9',
 '1' => '#94A19A,#7C8D84,#7C8D84',
 '2' => '#E4D69E,#E7DBA8,#E9DEAF',
 '3' => '#C2BFC0,#C7C5C5,#C7C5C5',
 '4' => '#B2B5C3,#C4C6D1,#D5D7DE',
 '5' => '#C3B2B5,#D1C4C6,#DED5D7'
);
$TBE_STYLES['styleschemes'] = Array (
 '0' => array('all'=>'background-color: #F7F7F3;border:#7C8D84 solid 1px;', 'check'=>''),
 '1' => array('all'=>'background-color: #94A19A;border:#7C8D84 solid 1px;', 'check'=>''),
 '2' => array('all'=>'background-color: #E4D69E;border:#7C8D84 solid 1px;', 'check'=>''),
 '3' => array('all'=>'background-color: #C2BFC0;border:#7C8D84 solid 1px;', 'check'=>''),
 '4' => array('all'=>'background-color: #B2B5C3;border:#7C8D84 solid 1px;', 'check'=>''),
 '5' => array('all'=>'background-color: #C3B2B5;border:#7C8D84 solid 1px;', 'check'=>''),
);
$TBE_STYLES['borderschemes'] = Array (
 '0' => array('border:solid 1px black;',5),
 '1' => array('border:solid 1px black;',5),
 '2' => array('border:solid 1px black;',5),
 '3' => array('border:solid 1px black;',5),
 '4' => array('border:solid 1px black;',5),
 '5' => array('border:solid 1px black;',5)
);

Examples

First, lets look at a plain types-configuration which merely renders a list of fields:

'types' => Array (
 '0' => Array('showitem' => 'title;;1,photodate,description,images,fe_cruser_id')
),

It renders this form:

119

TCA Reference - doc_core_tca Appendix A – Skinning considerations

Now I modify the types config to include the fifth parameters (in red):

'types' => Array (
'0' => Array('showitem' => 'title;;1;;1--0,photodate;;;;-4-,description;;;;2-

0-,images;;;;1--0,fe_cruser_id')
),

And this looks like:

To understand how the style pointers works, lets organize them into a table. This is the "types"-
configuration string:

title;;1;;1--0,photodate;;;;-4-,description;;;;2-0-,images;;;;1--0,fe_cruser_id

Splitting this information into a table looks like this:

Fieldname 5th param: 'colorscheme' pnt: 'stylescheme' pnt: 'borderscheme' pnt:

title 1--0 1 [blank] 0

photodate -4- [blank] 4 [blank]

description 2-0- 2 0 [blank]

images 1--0 1 [blank] 0

fe_cruser_id [blank] [blank] [blank] [blank]

Explanation:

‒ "colorscheme" : The pointer is set to "1" for the first field ("title" field). This gives a green style
(according to definitions in $TBE_STYLES['colorscheme'][1]) which is active until the
"description" field is rendered. Here the pointer is changed to "2" which gives the yellow style.
Immediately after the pointer is set back to "1" and that is active throughout the form.

‒ "stylescheme" : The pointer starts by being blank. Since no previous value is set, the pointer is
implicitly "0" (zero) then. At the field "photodate" the pointer is set to "4" which means the style
attribute gets the value "background-color: #B2B5C3;border:#7C8D84 solid 1px;" (according to
the current configuration of $TBE_STYLES['stylescheme'][4]). This gives the blueish background
of the date field. Immediately after the pointer is back at "0" again and that lasts for the rest of

120

TCA Reference - doc_core_tca Appendix A – Skinning considerations

the fields.

‒ "borderscheme" : The pointer is set to "0", then blank for three fields and then set to "0" again
for the last two fields. In effect we get the form divided into two sections. As you can see setting
the borderscheme pointer explicitly - even if set to the same value! - breaks up the form each
time into a new section. Setting the first pointer to the default border scheme was actually not
necessary but served to illustrate that the same border was applied twice.

It should also be clear now, that setting an empty pointer (blank string) will just let the former value
pass through.

The three schemes are designed to go in pairs. It is most likely that all three pointers should be set each
time you apply the fifth parameter value. Example:

'types' => Array (
'0' => Array('showitem' => 'title;;1;;1-1-1,photodate;;;;2-2-2,description;;;;3-3-

3,images,fe_cruser_id;;;;5-5-5')
),

121

TCA Reference - doc_core_tca Appendix B - Performance considerations

Appendix B - Performance considerations
This appendix contains some old musings of Kasper about performance when loading the full $TCA.
The content is not entirely up to date and some code constructs don't exist anymore, but the general
meaning is still interesting.

Loading the full $TCA dynamically
You may load table descriptions dynamically (as needed) from separate files using the function
t3lib_div::loadTCA($tablename) where $tablename is the name of the table you wish to load a complete
description of.

Dynamic tables must always be configured with a full [ctrl]-section (and [feInterface] section if needed).
That is, it must be represented by $TCA[$table]['ctrl']. If the table is dynamic, the value of [ctrl]
[dynamicConfigFile] points to an includefile with the full array in.

The loadTCA-function determines whether a table is fully loaded based on whether $TCA[$table]
[columns] is an array. If it is found to be an array the function just returns - else it loads the table if
there is a value for “dynamicConfigFile”

The table “pages” must not be dynamic. All others can be in principle. You can also define more than
one table in a dynamicConfigFile - as long as the $TCA array is correctly updated with table
information it doesn't matter if a file contains configuration for more than the requested table - although
the requested table should of cause always be configured, because it's expected to be. In fact there is not
much error checking; The function loadTCA simply includes the file in blind faith that this action will
fully configure the table in question.

Locating places where t3lib_div::loadTCA call is needed
To find places in your backend code where this should probably be implemented search for:

"each($TCA)" - This is potentially dangerous in a construction like this:

while(list($table,$config)=each($TCA))

where $config would obtain non-complete content. Hopefully there are none left. Instead it should look
like:

while(list($table)=each($TCA)) {
t3lib_div::loadTCA($table);
$config=$TCA[$table]
...

}

\[“?(palettes|types|columns|interface)”?\] (regex) - to find places where the palettes, types,
columns and interfaces keys are used - which would require the whole array to be loaded!

It's recommended to always call the function t3lib_div::loadTCA() before using the non-[ctrl] sections of
the $TCA array. The function returns immediately if the table is already loaded, so the overhead should
be small and the importance is great.

Benchmarks on dynamic tables:
Module tables.php with all configuration Dynamic loading

Cache No cache Cache No cache

Web>List (loads all) 173 ms 322 ms 177 ms 328 ms

Web>Info (loads none) 72 ms 174 ms 66 ms 136 ms

Benchmarks on a PIII/500 MHz Linux PHP4.1.2/Apache, 256 MB RAM. PHP-Cache is PHP-accelerator.
All figures are parse times in milliseconds.

122

TCA Reference - doc_core_tca Appendix B - Performance considerations

Analysis:
What we see is, when showing a page in Web>List where all tables are loaded, the dynamic loading of
tables includes a little overhead (177-173=4 ms) regardless of script-caching. This seems fair, probably
due to file operations. It's also evident that the script-caching boosts the parsing considerably in both
cases, saving approximately 150 ms in parse time!

The Web>Info module does not load any tables (at least not in the mode, this was tested). This is the
whole point of all this - that the full table definitions are loaded only if needed (as they were by the
Web>List module). Again the point of caching is clear. But the main thing to look at is, that the
Web>Info module is loaded in 66/136 seconds (cache/non-cache) with dynamic loading (was later tested
to 60/118 ms when tt_content was not loaded by default) which is LOWER than if the whole tables.php
was included (72/174 ms).

At this point the performance gain is not significant but welcomed. However the mechanism of dynamic
loading of tables provides the basis for much greater number of tables in TYPO3. Testing 31 duplicates
of the tt_content table added to the default number of configured tables (total of 62 tables configured)
gave this benchmark:

Module Dynamic loading

Cache No cache

Web>List (loads all) 580 ms 1090 ms

Web>Info (loads none) 67 ms 139 ms

This shows once again the work of the caching (1090-580 ms gained by PHPA) but clearly demonstrates
the main objective of dynamic loading; The Web>Info module is not at all affected by the fact that 31
big tables has been added.

The serialized size of the $TCA in this case was measured to approx 2MB. The total number of KB in
table-definition PHP-files was approx. 1.7 MB.

Extreme tests of this configuration has also been done.

A duplicate of tt_content was added x number of times and yielded these results:

Number of tt_content dupl. Serialized size of $TCA Max size of httpd process (from
“top”)

Parse time of the
included documents

100 5,9 MB 23 MB 380 ms

250 14,5 MB 52 MB 12000 ms

500 28,8 MB 100 MB x

The configuration of tt_content is approx. 52 kb PHP code. The testing was done just loading the
content into $TCA - no further processing. However serializing the $TCA array (when that was tested)
gave a double up on the amount of memory the httpd process allocated. This was to expect of course.

From this table we learn, that PHP does not crash testing this. However it makes not much sense to use
500 tables of this size. 250 tables might be alright and 100 tables is a more realistic roof over the
number of tables in TYPO3 of the size of tt_content!

Conducting the same experiment with a table configuration of only 8 kb with 9 fields configured (a
reduced configuration for the tt_content duplicate - which represents a more typical table) yielded these
results:

Number of
tables

Serialized size
of $TCA

Max size of httpd process (from
“top”)

Parse time of the included
documents

Web>List listing

1 240 kB 12 MB 0 ms 174 ms (12 MB)

100 1,0 MB 12 MB 77 ms 550 ms (12 MB)

250 2,4 MB 12 MB 200 ms 1050 ms (12 MB)

500 4,7 MB 22 MB 450 ms 1900 ms (20 MB)

123

TCA Reference - doc_core_tca Appendix B - Performance considerations

Number of
tables

Serialized size
of $TCA

Max size of httpd process (from
“top”)

Parse time of the included
documents

Web>List listing

1000 9,3 MB 33 MB 900 ms 5000 ms (34 MB)

2000 18,6 MB 51 MB 2000 ms 18000 ms (60 MB)

124

	TCA Reference
	Introduction
	About this document
	What's new
	Credits
	Feedback

	What is $TCA?
	Structure of the $TCA array
	The table entries (first level)
	Inside the table entries (second level)
	Deeper levels

	Glossary
	The [ctrl] section vs. the other sections

	$TCA array reference
	['ctrl'] section
	Reference for the ['ctrl'] section:
	Examples

	['interface'] section
	Example

	['feInterface'] section
	['columns'][field name] section
	['columns'][field name]['config'] / Common properties
	['columns'][field name]['config'] / TYPE: "input"
	Example: A "date" field
	Example: A "username" field
	Example: A typical input field
	Example: Required values

	['columns'][field name]['config'] / TYPE: "text"
	Example: A quite normal field

	['columns'][field name]['config'] / TYPE: "check"
	Example: A single checkbox
	Example: A checkbox array

	['columns'][field name]['config'] / TYPE: "radio"
	Example:

	['columns'][field name]['config'] / TYPE: "select"
	Example - A simple selector box:
	Example - Simple selector box with TSconfig markers
	Example - A multiple value selector with contents from a database table
	Example - Using a look up table for single value
	Example - Adding icons for selection
	Example - Render the General Record Storage Page selector as a tree of page
	Example - Adding wizards
	Example – Bidirectional MM relations
	Example – FlexForms and MM relations
	Data format of "select" elements

	['columns'][field name]['config'] / TYPE: "group"
	Example - References to database records
	Example - Reference to another page
	Example - Attaching images
	Data format of "group" elements
	Storage methods
	Reserved tokens
	The "Comma list" method (default)
	The "MM" method
	API for getting the reference list
	Passing the list of references to TCEforms
	Managing file references

	['columns'][field name]['config'] / TYPE: "none"
	['columns'][field name]['config'] / TYPE: "passthrough"
	Example:

	['columns'][field name]['config'] / TYPE: "user"
	Example:

	['columns'][field name]['config'] / TYPE: "flex"
	Pointing to a Data Structure
	FlexForm facts
	<T3DataStructure> extensions for “<TCEforms>”
	Sheets and FlexForms
	FlexForm data format, <T3FlexForms>
	Example: Simple FlexForm
	Example: FlexForm with two sheets
	Example: Rich Text Editor in FlexForms

	Handling languages in FlexForms
	Localization method #1
	Localization method #2

	['columns'][field name]['config'] / TYPE: "inline"
	Example “comma-separated list”:
	Example “attributes on anti-symmetric intermediate table”:
	Example “attributes on symmetric intermediate table”:

	['types'][key] section
	Required configuration
	Optional possibilities
	Default values

	['palettes'][key] section
	Example

	Additional $TCA features
	Special Configuration introduction
	Default Special Configuration (defaultExtras)

	Special Configuration options
	Keywords
	rte_transform[] key/value pairs
	Example - Setting up Rich Text Editors

	static_write[] parameters
	Example - Write to static file

	Soft References
	Default soft reference parsers
	User-defined soft reference parsers

	Wizards Configuration
	Configuration of wizards
	Reserved keys
	General configuration options
	Specific wizard configuration options based on type
	Example - Selector box of preset values
	Example - User defined wizard (processing with PHP function)
	Example - add a suggest wizard
	Example – Add a slider wizard

	Wizard scripts in the core
	wizard_add.php
	wizard_edit.php
	wizard_list.php
	wizard_colorpicker.php
	wizard_forms.php
	wizard_table.php
	wizard_rte.php
	wizard_tsconfig.php
	browse_links.php

	Extending the $TCA array
	Storing the changes
	Customization examples
	Example 1: extending the fe_users table
	Example 2: extending the tt_content table

	Verifying the $TCA

	Appendix A – Skinning considerations
	Visual style of TCEforms
	$TBE_STYLES entries related to TCEforms
	Default integer pointers
	Reference table:

	Style pointers in the "types" configuration
	Examples

	Appendix B - Performance considerations
	Loading the full $TCA dynamically
	Locating places where t3lib_div::loadTCA call is needed

	Benchmarks on dynamic tables:
	Analysis:

