
TypoScript Reference

Extension Key: doc_core_tsref
Language: en
Version: 4.7.0
Keywords: forAdmins, forIntermediates
Copyright 2000-2012, Documentation Team, <documentation@typo3.org>

This document is published under the Open Content License
available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3
- a GNU/GPL CMS/Framework available from www.typo3.org

Official documentation
This document is included as part of the official TYPO3 documentation. It has been approved by the
TYPO3 Documentation Team following a peer-review process. The reader should expect the information in
this document to be accurate - please report discrepancies to the Documentation Team
(documentation@typo3.org). Official documents are kept up-to-date to the best of the Documentation
Team's abilities.

Core Manual
This document is a Core Manual. Core Manuals address the built in functionality of TYPO3 and are
designed to provide the reader with in-depth information. Each Core Manual addresses a particular
process or function and how it is implemented within the TYPO3 source code. These may include
information on available APIs, specific configuration options, etc.
Core Manuals are written as reference manuals. The reader should rely on the Table of Contents to
identify what particular section will best address the task at hand.

http://www.typo3.org/

TypoScript Reference - doc_core_tsref TypoScript Reference

Table of Contents
TypoScript Reference.............................1

Introduction...4
About this document...4
What's new..4
Credits..4
Feedback..4
General information...4

Data types...6
Introduction...6
Data types reference...6

Objects and properties...13
Introduction..13

Conditions...18
Condition reference..18

Functions..32
stdWrap..32
imgResource..42
imageLinkWrap..44
numRows..45
select...45
split..47
replacement..48
if...49
typolink..50
textStyle...55
encapsLines...56
tableStyle...58
addParams...58
filelink...59
round...61
numberFormat...61
parseFunc..62
makelinks...65
tags...66
HTMLparser...67
HTMLparser_tags...67
cache..68

Setup...70
Top-level objects..70
The "plugin" TLO...71
"CONFIG"...72
"CONSTANTS"..96
"PAGE"...96
"FE_DATA"...102
"FE_TABLE"..102
"FRAMESET"...103
"FRAME"...103
"META"...104
"CARRAY"..104

Content Objects (cObject).......................................106
HTML..108
TEXT...108
COBJ_ARRAY (COA, COA_INT)................................109

FILE..109
IMAGE..110
IMG_RESOURCE..111
CLEARGIF...111
CONTENT...111
RECORDS...113
HMENU..114
CTABLE...125
OTABLE..126
COLUMNS...126
HRULER...127
IMGTEXT...127
CASE...131
LOAD_REGISTER...132
RESTORE_REGISTER...132
FORM...133
SEARCHRESULT..140
USER and USER_INT...142
TEMPLATE...143
FLUIDTEMPLATE..147
MEDIA...148
SWFOBJECT...150
QTOBJECT...151
MULTIMEDIA..152
SVG..153
EDITPANEL..154

GIFBUILDER..156
GIFBUILDER...156
Object names in this section.....................................158
NON-GifBuilderObj...166

MENU Objects..167
Common properties..167
Common item states for TMENU, GMENU and
IMGMENU series:...170
[menuObj].sectionIndex...171
GMENU..172
GMENU_LAYERS / TMENU_LAYERS........................174
GMENU_FOLDOUT...177
TMENU...180
TMENUITEM..180
IMGMENU...182
IMGMENUITEM..184
JSMENU...184
JSMENUITEM..185

Appendix A – media/scripts/ Plugins...................186
media/scripts/ in general...186
fe_adminLib.inc..186
tipafriendLib.inc...196
plaintextLib.inc...197

Appendix B – Standard Templates.......................200
static_template...200
Media..200

Appendix C – PHP include scripts..........................201
Introduction..201

2

TypoScript Reference - doc_core_tsref TypoScript Reference

TypoScript Configuration...201
Including your script..203
Case story..205
Storing user-data or session-data...........................206
Using the built in "shopping basket".......................207

Appendix D – index.php...209

Introduction...209
Submitting data to index.php..................................209
Search..209
Emailforms...210
Database-submit...210

3

TypoScript Reference - doc_core_tsref Introduction

Introduction
About this document

This document is a complete reference to all objects and properties of TypoScript as used in TYPO3
templates (and not in TSconfig).

For explanations about the syntax of TypoScript itself, please refer to the "TypoScript Syntax and In-
Depth Study" manual.

This version is updated for TYPO3 version 4.7.

What's new
The main changes include new config.stat_* options which allow anonymized storage of log
information. For page.includeCSS and page.includeJS* conditions are now available.

The new stdWrap properties "cache" and "orderedStdWrap" were added. stdWrap has been added to
the HMENU options "maxItems", "minItems" and "begin". The option config.htmlTag_stdWrap, which
makes more modifications of the html tag possible, has been appended.

New properties of filelink.icon were appended. The option config.pageTitleSeparator has been added
allowing further customizations of the website title. The meta object now offers the new subproperty
"httpEquivalent", which makes handling of meta tags more flexible.

Additionally various descriptions were improved and many smaller mistakes were fixed.

For more details about changes in the various TYPO3 versions please refer to the links below.

More information about changed properties
You can find a list of changes for more recent TYPO3 versions here:
TYPO3 4.2: http://wiki.typo3.org/Documentation_changes_in_4.2
TYPO3 4.3: http://wiki.typo3.org/Documentation_changes_in_4.3
TYPO3 4.4 and 4.5: http://wiki.typo3.org/Documentation_changes_in_4.4_and_4.5
TYPO3 4.6: http://wiki.typo3.org/Documentation_changes_in_4.6
TYPO3 4.7: http://forge.typo3.org/projects/typo3v4-doc_core_tsref/versions/1454

Credits
The manual was originally written by Kasper Skårhøj. Over the years it has been maintained and
updated successively by Michael Stucki, François Suter and Christopher Stelmaszyk.

Feedback
For general questions about the documentation get in touch by writing to documentation@typo3.org.

If you find a bug in this manual, please file an issue in this manual's bug tracker:
http://forge.typo3.org/projects/typo3v4-doc_core_tsref/issues

Maintaining quality documentation is hard work and the Documentation Team is always looking for
volunteers. If you feel like helping please join the documentation mailing list
(typo3.projects.documentation on lists.typo3.org).

General information
Case sensitivity
All names and references in TypoScript are case sensitive! This is very important to notice. That
means that:

4

http://forge.typo3.org/projects/typo3v4-doc_core_tsref/issues
mailto:documentation@typo3.org
http://forge.typo3.org/projects/typo3v4-doc_core_tsref/versions/1454
http://wiki.typo3.org/Documentation_changes_in_4.6
http://wiki.typo3.org/Documentation_changes_in_4.4_and_4.5
http://wiki.typo3.org/Documentation_changes_in_4.3
http://wiki.typo3.org/Documentation_changes_in_4.2

TypoScript Reference - doc_core_tsref Introduction

myObject = TEXT
myObject.value = Some HTML code

is not the same as

myObject = text
myObject.Value = Some HTML code

While the first will be recognized as the content-object "TEXT" and will produce the desired output,
the latter will not be recognized and will not output anything. Even if you wrote "TEXT" in uppercase
in the second example, it would still not work, because the property "value" is misspelled.

Always remember: In this manual the case of objects is important.

Version numbers
For new features TSref includes a note in which TYPO3 version the feature was added. If such a note
is missing, the feature is part of TYPO3 since version 4.5 at least.

5

TypoScript Reference - doc_core_tsref Data types

Data types
Introduction

The values you assign to properties in TypoScript are often of a specific format. The following table
describes these formats.

E.g. if a value is defined as the type "<tag>", you're supposed to supply HTML-code. If it is of the type
"resource", it's a reference to a file from the resource-field in the template. If the type is "GraphicColor"
a color-definition is expected and you should supply an HTML-valid color-code or RGB-values
comma-separated.

Data types reference
Data type: Examples: Comment: Default:

<tag> <BODY bgcolor="red">

align right right / left / center
Decides alignment, typically in HTML-tags

left

VHalign Horizontal alignment = right and
Vertical alignment = center:
r , c

Pair of values separated by a comma. The first
value determines the horizontal alignment, the
second one the vertical alignment.

Possible values:
r/c/l , t/c/b

Horizontal values standing for: right, center,
left
Vertical values standing for: top, center,
bottom

l , t

resource From the resourcefield:
toplogo*.gif

Reference to filesystem:
fileadmin/picture.gif

1. A reference to a file from the
resource-field in the template.
You can write the exact filename or
you can include an asterisk (*) as
wildcard.
It's recommended to include a "*"
before the file extension (see example
to the left). This will ensure that the
file is still referenced correct even if
the template is copied and the file
will have it's name prepended with
numbers!!

2. If the value contains a "/" it's
expected to be a reference (absolute
or relative) to a file on the file-system
instead of the resource-field. No
support for wildcards.

imgResource Here "file" is an imgResource:
file = toplogo*.gif
file.width = 200

GIFBUILDER:
file = GIFBUILDER
file {
 ... (GIFBUILDER-
properties here)
}

1. A "resource" (see above) +
imgResource-properties (see example
to the left and object-reference
below)
Filetypes can be anything among the
allowed types defined in the
configuration variable
$TYPO3_CONF_VARS['GFX']
['imagefile_ext']. Standard is
pdf, gif, jpg, jpeg, tif, bmp, ai, pcx,
tga, png.

2. GIFBUILDER-object

HTML-code Some text in bold pure HTML-code

target _top
_blank

target in <A>-tag.
This is normally the same value as the name of

6

TypoScript Reference - doc_core_tsref Data types

Data type: Examples: Comment: Default:

content the root-level object that defines the frame.

imageExtensi
on

jpg
web (gif or jpg ..)

Image extensions can be anything among the
allowed types defined in the global variable
$TYPO3_CONF_VARS['GFX']
['imagefile_ext']. Standard is pdf, gif, jpg,
jpeg, tif, bmp, ai, pcx, tga, png.
The value "web" is special. This will just
ensure that an image is converted to a web
image format (gif or jpg) if it happens not to be
already!

degree -90 to 90, integers

posint / int+ Positive integer

int integer
(sometimes used generally though another type
would have been more appropriate, like
"pixels")

str / string /
value

string.
(sometimes used generally though another type
would have been more appropriate, like
"align")

boolean 1 boolean
non-empty strings (but not zero) are "true"

rotation integer, degrees from 0 - 360

x,y,w,h 10,10,5,5 x,y is the offset from the upper left corner.
w,h is the width and height

HTML-color red
#ffeecc

HTML-color codes:

Black = "#000000"
Silver = "#C0C0C0"
Gray = "#808080"
White = "#FFFFFF"
Maroon = "#800000"
Red = "#FF0000"
Purple = "#800080"
Fuchsia = "#FF00FF"
Green = "#008000"
Lime = "#00FF00"
Olive = "#808000"
Yellow = "#FFFF00"
Navy = "#000080"
Blue = "#0000FF"
Teal = "#008080"
Aqua = "#00FFFF"

GraphicColor red (HTML-color)
#ffeecc (HTML-color)
255,0,255 (RGB-integers)

Extra:
red : *0.8 ("red" is darkened
by factor 0.8)
#ffeecc : +16 ("ffeecc" is going to
#fffedc because 16 is added)

The color can be given as HTML-colors or as
a comma-separated list of RGB-values
(integers)
You can add an extra parameter that will
modify the color mathematically:
Syntax:
[colordef] : [modifier]
where modifier can be and integer which is
added/subtracted to the three RGB-channels or
a floating point with an "*" before, which will
then multiply the values with that factor.

page_id this
34

A page id (int) or "this" (=current page id)

pixels 345 pixel-distance

list item,item2,item3 list of values

margins This sets leftmargin to 10 and l,t,r,b

7

TypoScript Reference - doc_core_tsref Data types

Data type: Examples: Comment: Default:

bottom-margin to 5. Top and right is
not set (zero)
10,0,0,5

left, top, right, bottom

wrap This will cause the value to be
wrapped in a font-tag coloring the
value red:

 |

<...> | </...>
Used to wrap something. The part on the left
and right of the vertical line is placed on the
left and right side of the value.

linkWrap This will make a link to the root-
level of a website:

 |

<.. {x}.> | </...>
{x}; x is an integer (0-9) and points to a key in
the PHP-array rootLine. The key is equal to
the level the current page is on measured
relatively to the root of the website.
If the key exists the uid of the level that key
pointed to is inserted instead of {x}.
Thus we can insert page_ids from previous
levels.

case upper Case-conversion.

Possible keywords:
upper: Convert all letters of the string to
uppercase.
lower: Convert all letters of the string to
lowercase.
capitalize: (Since TYPO3 4.6) Uppercase the
first character of each word in the string.
ucfirst: (Since TYPO3 4.6) Convert the first
letter of the string to uppercase.
lcfirst: (Since TYPO3 4.6) Convert the first
letter of the string to lowercase.

space 5 | 5 "before | after"
Used for content and sets space "before | after".

date-conf d-m-y (dd-mm-yy format) See PHP function Date()!

a - "am" or "pm"
A - "AM" or "PM"
d - day of the month, numeric, 2 digits (with
leading zeros)
D - day of the week, textual, 3 letters; e.g. "Fri"
F - month, textual, long; e.g. "January"
h - hour, numeric, 12 hour format
H - hour, numeric, 24 hour format
i - minutes, numeric
j - day of the month, numeric, without leading
zeros
l (lowercase 'L') - day of the week, textual,
long; i.e. "Friday"
m - month, numeric
M - month, textual, 3 letters; e.g. "Jan"
s - seconds, numeric
S - English ordinal suffix, textual, 2 characters;
i.e. "th", "nd"
U - seconds since the epoch
Y - year, numeric, 4 digits
w - day of the week, numeric, 0 represents
Sunday
y - year, numeric, 2 digits
z - day of the year, numeric; e.g. "299"

strftime-conf Date "DD-MM-YY" =
%e:%m:%y

Time "HH:MM:SS" =

%a - abbreviated weekday name according to
the current locale
%A - full weekday name according to the
current locale

8

TypoScript Reference - doc_core_tsref Data types

Data type: Examples: Comment: Default:

%H:%M:%S

or just
%T

%b - abbreviated month name according to the
current locale
%B - full month name according to the current
locale
%c - preferred date and time representation for
the current locale
%C - century number (the year divided by 100
and truncated to an integer, range 00 to 99)
%d - day of the month as a decimal number
(range 00 to 31)
%D - same as %m/%d/%y
%e - day of the month as a decimal number, a
single digit is preceded by a space (range ' 1' to
'31')
%h - same as %b
%H - hour as a decimal number using a 24-
hour clock (range 00 to 23)
%I - hour as a decimal number using a 12-hour
clock (range 01 to 12)
%j - day of the year as a decimal number
(range 001 to 366)
%m - month as a decimal number (range 01 to
12)
%M - minute as a decimal number
%n - newline character
%p - either `am' or `pm' according to the given
time value, or the corresponding strings for the
current locale
%r - time in a.m. and p.m. notation
%R - time in 24 hour notation
%S - second as a decimal number
%t - tab character
%T - current time, equal to %H:%M:%S
%u - weekday as a decimal number [1,7], with 1
representing Monday
%U - week number of the current year as a
decimal number, starting with the first Sunday
as the first day of the first week
%V - The ISO 8601:1988 week number of the
current year as a decimal number, range 01 to
53, where week 1 is the first week that has at
least 4 days in the current year, and with
Monday as the first day of the week.
%W - week number of the current year as a
decimal number, starting with the first Monday
as the first day of the first week
%w - day of the week as a decimal, Sunday
being 0
%x - preferred date representation for the
current locale without the time
%X - preferred time representation for the
current locale without the date
%y - year as a decimal number without a
century (range 00 to 99)
%Y - year as a decimal number including the
century
%Z - time zone or name or abbreviation
%% - a literal `%' character

UNIX-time Seconds to 07/04 2000 23:58:
955144722

Seconds since 1/1 1970...

path fileadmin/stuff/ path relative to the directory from which we
operate.

<tag>-data <frameset>-data: row
could be '150,*'

<tag>-params <frameset>-params

9

TypoScript Reference - doc_core_tsref Data types

Data type: Examples: Comment: Default:

could be 'border="0"
framespacing="0"'

getText

= field : header
get content from the $cObj->data-
array[header]

= parameters : color
get content from the $cObj-
>parameters-array[color]

= register : color
get content from the
$GLOBALS['TSFE']->register[color]

= leveltitle : 1
get the title of the page on the first
level of the rootline
= leveltitle : -2 , slide
get the title of the page on the level
right below the current page AND if
that is not present, walt to the bottom
of the rootline until there's a title
= leveluid : 0
get the id of the root-page of the
website (level zero)

= levelfield : -1 ,
user_myExtField , slide
get the value of the user defined field
"user_myExtField" in the root line
(requires additional configuration in
$TYPO3_CONF_VARS to include
field!)

= global :
HTTP_COOKIE_VARS |
some_cookie
get the env variable
$HTTP_COOKIE_VARS[some_cookie
]

= date : d-m-y
get the current time formatted dd-
mm-yy

= page : title
get the current page-title

= current : 1
get the current value

= level : 1
get the rootline level of the current
page

This returns a value from somewhere in a
PHP-array, as defined by the type. The syntax
is "type : pointer". The type is case-insensitive.

field: [field name from the current $cObj->data-
array in the cObj.]
As default the $cObj->data-array is
$GLOBALS['TSFE']->page (record of the
current page!)
In TMENU: $cObj->data is set to the page-
record for each menu item.
In CONTENT/RECORDS $cObj->data is set to
the actual record
In GIFBUILDER $cObj->data is set to the data
GIFBUILDER is supplied with.

parameters: [field name from the current
$cObj->parameters-array in the cObj.]
See ->parseFunc!

register: [field name from the
$GLOBALS['TSFE']->register]
See cObject "LOAD_REGISTER"

leveltitle, leveluid, levelmedia: [levelTitle, uid
or media in rootLine, 0- , negative = from
behind, " , slide" parameter forces a walk to
the bottom of the rootline until there's a "true"
value to return. Useful with levelmedia.]

levelfield: Like "leveltitle" et al. but where the
second parameter is the rootLine field you
want to fetch. Syntax: [pointer, integer], [field
name], ["slide"]

global: [GLOBAL-var, split with | if you want
to get from an array! DEPRECATED, use GP,
TSFE or getenv]

date: [date-conf]

page: [current page record]

current: 1 (gets 'current' value)

level: 1 (gets the rootline level of the current
page)

10

TypoScript Reference - doc_core_tsref Data types

Data type: Examples: Comment: Default:

= GP : stuff
get input value from query string,
(&stuff=)
= GP : stuff | key
get input value from query string,
(&stuff[key]=)

= getenv : HTTP_REFERER
get the env var HTTP_REFERER

= getIndpEnv :
REMOTE_ADDR
get the client IP

= DB : tt_content:234:header
get the value of the header of record
with uid 234 from table tt_content

= fullRootLine : -1, title
get the title of the page right before
the start of the current website

= LLL:EXT:css_styled_content/
pi1/locallang.x:login.logout
get localized label for logout button

= path:EXT:ie7/js/ie7-standard.js
get path to file relative to siteroot
possibly placed in an extension

= cObj : parentRecordNumber
get the number of the current cObject
record

= debug : rootLine
output the current root-line visually
in HTML

GP: Value from GET or POST method. Use
this instead of global
GPvar: usage of "GPvar" is deprecated. Use
"GP" instead

getenv: Value from environment variables

getIndpEnv: Value from
t3lib_div::getIndpEnv()

DB: Value from database, syntax is [table
name] : [uid] : [field]. Any record from a table
in TCA can be selected here. Only marked-
deleted records does not return a value here.

fullRootLine: syntax is [pointer, integer], [field
name], ["slide"]
This property can be used to retrieve values
from "above" the current page's root. Take the
below page tree and assume that we are on the
page "Here you are!". Using the "levelfield"
property described above, it is possible to go
up only to the page "Site root", because it is
the root of a new (sub-)site. With
"fullRootLine" it is possible to go all the way
up to page tree root. The numbers between
square brackets indicate to which page each
value of pointer would point to:

- Page tree root [-2]
 |- 1. page before [-1]
 |- Site root (root template here!) [0]
 |- Here you are! [1]

A "slide" parameter can be added just as for
the "levelfield" property above.

LLL: Reference to a locallang (php or xml)
label. Reference consists of [fileref]:[labelkey]

path: path to a file, possibly placed in an
extension, returns empty if the file doesn't
exist.

cObj: [internal variable from list:
"parentRecordNumber"]: For CONTENT and
RECORDS cObjects that are returned
by a select query, this returns the row number
(1,2,3,...) of the current cObject record.

debug: Returns HTML formatted content of
PHP variable defined by keyword. Available
keys are "rootLine", "fullRootLine", "data"

Getting array/object elements
You can fetch the value of an array/object by
splitting it with a pipe "|".
Example:
= TSFE:fe_user|user|username

11

TypoScript Reference - doc_core_tsref Data types

Data type: Examples: Comment: Default:

Getting more values
By separating the value of getText with "//"
(double slash) you let getText fetch the first
value. If it appears empty ("" or zero) the next
value is fetched and so on. Example:
= field:header // field:title // field:uid
This gets "title" if "header" is empty. If "title" is
also empty it gets field "uid"

dir returns a list of all pdf, gif and jpg-
files from fileadmin/files/ sorted by
their name reversely and with the
full path (with "fileadmin/files/"
prepended)
fileadmin/files/ | pdf,gif,jpg |
name | r | true

[path relative to the web root of the site] | [list
of valid extensions] | [sorting: name, size, ext,
date] | [reverse: "r"] | [return full path:
boolean
Files matching is returned in a comma-
separated string.
Note:
The value of config-option "lockFilePath" must
equal the first part of the path. Thereby the
path is locked to that folder.

function
name

Function:
user_reverseString

Method in class:
user_stringReversing
->reverseString

Indicates a function or method in a class to
call. See more information at the USER
cObject.
Depending on implementation the class or
function name (but not the method name)
should probably be prefixed with "user_". This
can be changed in the $TYPO3_CONF_VARS
config though. Also the function / method is
normally called with 2 parameters, $conf (TS
config) and $content (some content to be
processed and returned)
Also if you call a method in a class, it is
checked (when using the USER/USER_INT
objects) whether a class with the same name,
but prefixed with "ux_" is present and if so,
this class is instantiated instead. See "Inside
TYPO3" document for more information on
extending the classes in TYPO3!

[tsref:(datatypes)]

Data types: Object types
These are some "data-types" that might be mentioned and valid values are shown here below:

Data type: Comment:

cObject "cObjects" are also called "Content Objects". See the section "Content Objects" later in
this manual.

Examples:
TEXT / IMAGE / MEDIA

frameObj FRAMESET / FRAME

menuObj See the section "Menu Objects" later in this manual.

Examples:
GMENU / TMENU / IMGMENU / JSMENU

GifBuilderObj See the section "GIFBUILDER" later in this manual.

Examples:
TEXT / SHADOW / OUTLINE / EMBOSS / BOX / IMAGE / EFFECT

12

TypoScript Reference - doc_core_tsref Objects and properties

Objects and properties
Introduction

Reference to objects
Whenever you see ->[objectname] in the tables it means that the property is an object "objectname" with
properties from object objectname. You don't need to define the objecttype.

Calculating values (+calc)
Sometimes a data type is set to "something +calc". "+calc" indicates that the value is calculated with
"+-/*". Be aware that the operators have no "weight". The calculation is just done from left to right.

Example:
45 + 34 * 2 = 158 (which is the same as this in ordinary arithmetic: (45+34)*2=158)

"... /stdWrap"
When a data type is set to "type /stdWrap" it means that the value is parsed through the stdWrap
function with the properties of the value as parameters.

Example:

pixels /stdWrap: Here the value should be set to pixels and parsed through stdWrap.

In a real application we could do like this:

.pixels.field = imagewidth

.pixels.intval = 1

This example imports the value from the field "imagewidth" of the current $cObj->data-array. But we
don't trust the result to be an integer so we parse it through the the intval()-function.

optionSplit
optionSplit is a very tricky function. It's primarily used in the menu-objects where you define properties
of a whole bunch of items at once. Here the value of properties would be parsed through this function
and depending on your setup you could e.g. let the last menu-item appear with another color than the
others.

The syntax is like this:

|*| - splits the value in parts first, middle, last.

|| - splits each of the first, middle, last in subparts

1. The priority is last, first, middle.

2. If the middle-value is empty (""), the last part of the first-value is repeated.

3. If the first- and middle value are empty, the first part of the last-value is repeated before the last
value

4. The middle value is rotated.

ex: first1 || first2 |*| middle1 || middle2 || middle3 |*| last1 || last 2

Examples:

This is very complex and you might think that this has gone too far. But it's actually useful.

Now consider a menu with five items:

13

TypoScript Reference - doc_core_tsref Objects and properties

Introduction

Who are we?

Business

Contact

Links

... and a configuration like this (taken from the example-code on the first pages):

temp.topmenu.1.NO {
 backColor = red

}

If you look in this reference (see later) at the linkWrap-property of the GMENU-object, you'll discover
that all properties of .NO are parsed through optionSplit. This means that before the individual
menuitems are generated, the properties are split by this function. Now lets look at some examples:

Subparts ||

Example:

All items take on the same value. Only the first-part is defined and thus it's repeated to all elements

TS: backColor = red

Introduction (red)

Who are we? (red)

Business (red)

Contact (red)

Links (red)

Example:

Here the first-part is split into subparts. The third subpart is repeated because the menu has five items.

TS: backColor = red || yellow || green

Introduction (red) first, subpart 1

Who are we? (yellow) first, subpart 2

Business (green) first, subpart 3

Contact (green) first, subpart 3 (repeated)

Links (green) first, subpart 3 (repeated)

Parts |*|

Example:

Now a middle-value is also defined ("white"). This means that after the first two menu-items the middle-
value is used.

TS: backColor = red || yellow |*| white

14

TypoScript Reference - doc_core_tsref Objects and properties

Introduction (red) first, subpart 1

Who are we? (yellow) first, subpart 2

Business (white) middle

Contact (white) middle

Links (white) middle

Example:

Now a last-value is also defined ("blue || olive"). This means that after the first two menu-items the
middle-value is used.

TS: backColor = red || yellow |*| white |*| blue || olive

Introduction (red) first, subpart 1

Who are we? (yellow) first, subpart 2

Business (white) middle

Contact (blue) last, subpart 1

Links (olive) last, subpart 2

... and if we expand the menu a bit (middle-value is repeated!)

Introduction (red) first, subpart 1

Who are we? (yellow) first, subpart 2

Business (white) middle

.... (white) middle

.... (white) middle

.... (white) middle

.... (white) middle

Contact (blue) last, subpart 1

Links (olive) last, subpart 2

... and if we contract the menu to only four items (the middle-value is discarded as it's priority is the
least)

Introduction (red) first, subpart 1

Who are we? (yellow) first, subpart 2

Contact (blue) last, subpart 1

Links (olive) last, subpart 2

... and if we contract the menu to only 3 items (the last subpart of the first-value is discarded as it's
priority is less than the last-value)

Introduction (red) first, subpart 1

Contact (blue) last, subpart 1

Links (olive) last, subpart 2

15

TypoScript Reference - doc_core_tsref Objects and properties

"1: The priority is last, first, middle"

Now the last two examples showed that the last-value has the highest priority, then the first-value and
then the middle-value.

"2: If the middle-value is empty, the last part of the first-value is repeated"

Example:

The middle-value is left out now. Then subpart 2 of the first value is repeated. Please observe that no
space must exist between the two |*||*|!

TS: backColor = red || yellow |*||*| blue || olive

Introduction (red) first, subpart 1

Who are we? (yellow) first, subpart 2

Business (yellow) first, subpart 2 (repeated)

Contact (blue) last, subpart 1

Links (olive) last, subpart 2

"3: If the first- and middle value are empty, the first part of the last-value is repeated before the
last value"

Example:

The middle-value and first-value are left out now. Then the subpart 1 of the last value is repeated.
Please observe that no space must exist between the two |*||*|!

TS: backColor = |*||*| blue || olive

Introduction (blue) last, subpart 1 (repeated)

Who are we? (blue) last, subpart 1 (repeated)

Business (blue) last, subpart 1 (repeated)

Contact (blue) last, subpart 1

Links (olive) last, subpart 2

"4: The middle value is rotated"

Example:
TS: backColor = red |*| yellow || green |*|

Introduction (red) first

Who are we? (yellow) middle, subpart 1

Business (green) middle, subpart 2

.... (yellow) middle, subpart 1

.... (green) middle, subpart 2

.... (yellow) middle, subpart 1

.... (green) middle, subpart 2

Contact (yellow) middle, subpart 1

16

TypoScript Reference - doc_core_tsref Objects and properties

Links (green) middle, subpart 2

17

TypoScript Reference - doc_core_tsref Conditions

Conditions
Condition reference

General syntax
Each condition is encapsulated by square brackets. For a list of available conditions see below.

"[ELSE]" is available as else operator. It is a condition, which will return TRUE, if the previous
condition returned FALSE.

Each condition block is ended with "[GLOBAL]".

Example:
[browser = msie]
 # TypoScript Code for users of Internet Explorer.
[ELSE]
 # TypoScript Code for users of other browsers.
[GLOBAL]

General notes
Values are normally trimmed before comparison, so blanks are not taken into account.

Note that conditions cannot be used inside of curly brackets.

You may combine several conditions with two operators: && (and), || (or)

Alternatively you may use "AND" and "OR" instead of "&&" and "||". The AND operator has always
higher precedence over OR. If no operator has been specified, it will default to OR.

Examples:

This condition will match if the visitor opens the website with Internet Explorer on Windows (but not
on Mac)

[browser = msie] && [system = win]

This will match with either Opera or Firefox browsers

[browser = opera] || [browser = firefox]

This will match with either Firefox or Internet Explorer. In case of Internet Explorer, the version must
be above 8.

[browser = firefox] || [browser = msie] && [version => 8]

For full explanations about conditions, please refer to "TypoScript Syntax and In-depth Study".

browser

Syntax:
[browser = browser1,browser2,...]

Values and comparison:

Browser: Identification:

Amaya amaya

AOL aol

Avant avant

Camino camino

Google Chrome chrome

18

TypoScript Reference - doc_core_tsref Conditions

Browser: Identification:

Mozilla Firefox firefox

Flock flock

Gecko gecko

Konqueror konqueror

Lynx lynx

NCSA Mosaic mosaic

Microsoft Internet Explorer msie

Navigator navigator

Netscape Communicator netscape

OmniWeb omniweb

Opera opera

Safari safari

SeaMonkey seamonkey

Webkit webkit

?? (if none of the above was
found in the user agent)

unknown

The condition works with the user agent string. The user agent is parsed with a regular expression,
which searches the string for matches with the identifications named above. If there are multiple
matches, the rightmost match is finally used, because it mostly is the most correct one.

An example user agent could look like this:

Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0

This string contains the identifications "Gecko" and "Firefox". The condition

[browser = firefox]

evaluates to true.

Older TYPO3 versions
Until TYPO3 4.2 the user agent was determined differently: Each value was compared with
the ($browsername.$browserversion, e.g. "netscape4.72") using strstr(). So if the value was
"netscape" or just "scape" or "net" all netscape browsers would match. If the value was
"netscape4" all Netscape 4.xx browsers would match. If any value in the list matched the
current browser, the condition returned true.
TYPO3 version 4.2 or older does not detect all the browsers listed above.

Examples:

This will match with Chrome and Opera-browsers:

[browser = chrome, opera]

version

Syntax:
[version = value1, >value2, =value3, <value4, ...]

Comparison:

Values are floating-point numbers with "." as the decimal separator.

The values may be preceded by three operators:

19

TypoScript Reference - doc_core_tsref Conditions

Operator: Function:

 [nothing] The value must be part of the beginning of the version as a string. This means
that if the version is "4.72" and the value is "4" or "4.7" it matches. But "4.73" does
not match.
Example from syntax: "value1"

= The value must match exactly. Version "4.72" matches only with a value of "4.72"

> The version must be greater than the value

< The version must be less than the value

Examples:

This matches with exactly "4.03" browsers

[version= =4.03]
This matches with all 4+ browsers and Netscape 3 browsers

[version= >4][browser= netscape3]

system

Syntax:
[system= system1,system2]

Values and comparison:

System: Identification:

Linux linux

Android android

OpenBSD/NetBSD/FreeBSD unix_bsd

SGI / IRIX unix_sgi

SunOS unix_sun

HP-UX unix_hp

Chrome OS chrome

iOS iOS

Macintosh mac

Windows 7 win7

Windows Vista winVista

Windows XP winXP

Windows 2000 win2k

Windows NT winNT

Windows 98 win98

Windows 95 win95

Windows 3.11 win311

Amiga amiga

Comparison with the operating system, which the website visitor uses. The system is extracted out of
the useragent string.

Values are strings and a match happens if one of these strings is the first part of the system-
identification.

For example if the value is "win9" this will match with "win95" and "win98" systems.

20

TypoScript Reference - doc_core_tsref Conditions

Examples:

This will match with windows and mac -systems only

[system= win,mac]

Older TYPO3 versions and backwards compatibility
TYPO3 version 4.4 or older does not detect all the systems listed above.
For backwards compatibility, some systems are also matched by more generic strings.
It is recommended to use the new identifiers documented above, but the following are valid,
too:

System: Generic identification:

Android linux

Chrome OS linux

iOS mac

Windows 7 winNT

Windows Vista winNT

Windows XP winNT

Windows 2000 winNT

device

Syntax:
[device= device1, device2]

Values and comparison:

Device: Identification:

HandHeld pda

WAP phones wap

Grabbers: grabber

Indexing robots: robot

Values are strings and a match happens if one of these strings equals the type of device

Examples:

This will match WAP-phones and PDA's

[device = wap, pda]

useragent

Syntax:
[useragent = agent]

Values and comparison:

This is a direct match on the useragent string from getenv("HTTP_USER_AGENT")

You have the options of putting a "*" at the beginning and/or end of the value agent thereby matching
with this wildcard!

Examples:

If the HTTP_USER_AGENT is "Mozilla/4.0 (compatible; Lotus-Notes/5.0; Windows-NT)" this will

21

TypoScript Reference - doc_core_tsref Conditions

match with it:

[useragent = Mozilla/4.0 (compatible; Lotus-Notes/5.0; Windows-NT)]

This will also match with it:

[useragent = *Lotus-Notes*]

... but this will also match with a useragent like this: "Lotus-Notes/4.5 (Windows-NT)"

A short list of user-agent strings and a proper match:

HTTP_USER_AGENT: Agent description: Matching condition:

Nokia7110/1.0+(04.77) Nokia 7110 WAP phone [useragent= Nokia7110*]

Lotus-Notes/4.5 (Windows-NT) Lotus-Notes browser [useragent= Lotus-Notes*]

Mozilla/3.0 (compatible; AvantGo 3.2) AvantGo browser [useragent= *AvantGo*]

Mozilla/3.0 (compatible; WebCapture 1.0; Auto; Windows) Adobe Acrobat 4.0 [useragent= *WebCapture*]

WAP-agents:

These are some of the known WAP agents:

HTTP_USER_AGENT: HTTP_USER_AGENT (continued):

ALAV UP/4.0.7
Alcatel-BE3/1.0 UP/4.0.6c
AUR PALM WAPPER
Device V1.12
EricssonR320/R1A
fetchpage.cgi/0.53
Java1.1.8
Java1.2.2
m-crawler/1.0 WAP
Materna-WAPPreview/1.1.3
MC218 2.0 WAP1.1
Mitsu/1.1.A
MOT-CB/0.0.19 UP/4.0.5j
MOT-CB/0.0.21 UP/4.0.5m
Nokia-WAP-Toolkit/1.2
Nokia-WAP-Toolkit/1.3beta
Nokia7110/1.0 ()
Nokia7110/1.0 (04.67)
Nokia7110/1.0 (04.67)
Nokia7110/1.0 (04.69)
Nokia7110/1.0 (04.70)
Nokia7110/1.0 (04.71)
Nokia7110/1.0 (04.73)
Nokia7110/1.0 (04.74)
Nokia7110/1.0 (04.76)
Nokia7110/1.0 (04.77)
Nokia7110/1.0 (04.80)
Nokia7110/1.0 (30.05)
Nokia7110/1.0

PLM's WapBrowser
QWAPPER/1.0
R380 2.0 WAP1.1
SIE-IC35/1.0
SIE-P35/1.0 UP/4.1.2a
SIE-P35/1.0 UP/4.1.2a
UP.Browser/3.01-IG01
UP.Browser/3.01-QC31
UP.Browser/3.02-MC01
UP.Browser/3.02-SY01
UP.Browser/3.1-UPG1
UP.Browser/4.1.2a-XXXX
UPG1 UP/4.0.7
Wapalizer/1.0
Wapalizer/1.1
WapIDE-SDK/2.0; (R320s (Arial))
WAPJAG Virtual WAP
WAPJAG Virtual WAP
WAPman Version 1.1 beta:Build W2000020401
WAPman Version 1.1
Waptor 1.0
WapView 0.00
WapView 0.20371
WapView 0.28
WapView 0.37
WapView 0.46
WapView 0.47
WinWAP 2.2 WML 1.1
wmlb
YourWap/0.91
YourWap/1.16
Zetor

language

Syntax:
[language = lang1, lang2, ...]

22

TypoScript Reference - doc_core_tsref Conditions

Comparison:

The values must be a straight match with the value of getenv("HTTP_ACCEPT_LANGUAGE") from
PHP. Alternatively, if the value is wrapped in "*" (eg. "*en-us*") then it will split all languages found in
the HTTP_ACCEPT_LANGUAGE string and try to match the value with any of those parts of the
string. Such a string normally looks like "de,en-us;q=0.7,en;q=0.3" and "*en-us*" would match with this
string.

IP

Syntax:
[IP = ipaddress1, ipaddress2, ...]

Comparison:

The values are compared with the getenv("REMOTE_ADDR") from PHP.

You may include "*" instead of one of the parts in values. You may also list the first one, two or three
parts and only they will be tested.

23

TypoScript Reference - doc_core_tsref Conditions

Examples:

These examples will match any IP-address starting with "123":

[IP = 123.*.*.*]
or

[IP = 123]
These examples will match any IP-address ending with "123" or being "192.168.1.34":

[IP = *.*.*.123][IP = 192.168.1.34]

hostname

Syntax:
[hostname = hostname1, hostname2, ...]

Comparison:

The values are compared to the fully qualified hostname of getenv("REMOTE_ADDR") retrieved by
PHP.

Value is comma-list of domain names to match with. *-wildcard allowed but cannot be part of a string,
so it must match the full host name (eg. myhost.*.com => correct, myhost.*domain.com => wrong)

hour

Syntax:
[hour = hour1, > hour2, < hour3, ...]

Note: The first "=" sign directly after the word "hour" is always needed and is no operator. After that
follow the operator and then the hour.

Comparison:

Possible values are 0 to 23 (24-hours-format). The values in floating point are compared with the
current hour of the server time.

As you see in the section "Syntax" above, you can separate multiple conditions in one with a comma.
The comma will then connect them with a logical disjunction (OR), that means the whole condition will
be true, when one or more of its operands are true.

Operator: Function:

[none] Requires an exact match with the value.

> The hour must be greater than the value.

< The hour must be less than the value.

<= The hour must be less than or equal to the value.

>= The hour must be greater than or equal to the value.

!= The hour must be not equal to the value.

Examples:

This will match, if it is between 9 and 10 o'clock (according to the server time):

[hour = 9]
This will match, if it is before 7 o'clock:

[hour = < 7]
This will match, if it is before 15 o'clock:

[hour = <= 14]
The following examples will demonstrate the usage of the comma inside the condition:

This will match, if it is between 8 and 9 o'clock (the hour equals 8) or after 16 o'clock (the hour is

24

TypoScript Reference - doc_core_tsref Conditions

bigger than or equal to 16):

[hour = 8, >= 16]
This will match between 16 and 8 o'clock (remember that the comma acts as an OR):

[hour = > 15, < 8]
In contrast a condition matching for 8 until 16 o'clock would be:

[hour = > 7] && [hour = < 16]

minute
See "Hour" above. Uses the same syntax!

Syntax:
[minute = ...]

Comparison:

Minute of hour, possible values are 0-59.

Apart from that this condition uses the same way of comparison as hour.

month
See "Hour" above. Uses the same syntax!

Syntax:
[month = ...]

Comparison:

Month, from January being 1 until December being 12.

Apart from that this condition uses the same way of comparison as hour.

year
See "Hour" above. Uses the same syntax! For further information look at the date() function in the PHP
manual, format string Y.

Syntax:
[year = ...]

Comparison:

Year, as a 4-digit number.

Apart from that this condition uses the same way of comparison as hour.

dayofweek
See "Hour" above. Uses the same syntax!

Syntax:
[dayofweek = ...]

Comparison:

Day of week, starting with Sunday being 0 until Saturday being 6.

Apart from that this condition uses the same way of comparison as hour.

25

TypoScript Reference - doc_core_tsref Conditions

dayofmonth
See "Hour" above. Uses the same syntax!

Syntax:
[dayofmonth = ...]

Comparison:

Day of month, possible values are 1-31.

Apart from that this condition uses the same way of comparison as hour.

dayofyear
See "Hour" above. Uses the same syntax! For further information look at the date() function in the PHP
manual, format string z.

Syntax:
[dayofyear = ...]

Comparison:

Day of year, 0-364 (or 365 in leap years). That this condition begins with 0 for the first day of the year
means that e.g. [dayofyear = 7] will be true on the 6th of January.

Apart from that this condition uses the same way of comparison as hour.

usergroup

Syntax:
[usergroup = group1-uid, group2-uid, ...]

Comparison:

The comparison can only return true if the grouplist is not empty (global var "gr_list").

The values must either exists in the grouplist OR the value must be a "*".

Example:

This matches all logins:

[usergroup = *]

This matches logins from users members of groups with uid's 1 and/or 2:

[usergroup = 1,2]

loginUser

Syntax:
[loginUser = fe_users-uid, fe_users-uid, ...]

Comparison:

Matches on the uid of a logged in frontend user. Works like 'usergroup' above including the * wildcard
to select ANY user.

26

TypoScript Reference - doc_core_tsref Conditions

Example:

This matches any login (use this instead of "[usergroup = *]" to match when a user is logged in!):

[loginUser = *]

Additionally it is possible to check if no FE user is logged in.

Example:

This matches when no user is logged in:

[loginUser =]

page

Syntax:
[page|field = value]

Comparison:

This condition checks values of the current page record. While you can achieve the same with TSFE:
[field] conditions in the frontend, this condition is usable in both frontend and backend.

Example:

This condition matches, if the layout field is set to 1:

[page|layout = 1]

treeLevel

Syntax:
[treeLevel = levelnumber, levelnumber, ...]

Comparison:

This checks if the last element of the rootLine is at a level corresponding to one of the figures in
"treeLevel". Level = 0 is the "root" of a website. Level=1 is the first menu level.

Example:

This changes something with the template, if the page viewed is on level either level 0 (basic) or on
level 2

[treeLevel = 0,2]

PIDinRootline

Syntax:
[PIDinRootline = pages-uid, pages-uid, ...]

Comparison:

This checks if one of the figures in "treeLevel" is a PID (pages-uid) in the rootline.

Example:

This changes something with the template, if the page viewed is or is a subpage to page 34 or page 36

[PIDinRootline = 34,36]

PIDupinRootline

Syntax:
[PIDupinRootline = pages-uid, pages-uid, ...]

27

TypoScript Reference - doc_core_tsref Conditions

Comparison:

Do the same as PIDinRootline, except the current page-uid is excluded from check.

compatVersion

Syntax:
[compatVersion = x.y.z]

Comparison:

Require a minimum compatibility version. This version is not necessary equal with the TYPO3 version,
it is a configurable value that can be changed in the Upgrade Wizard of the Install Tool.

"compatVersion" is especially useful if you want to provide new default settings but keep the
backwards compatibility for old versions of TYPO3.

globalVar

Syntax:
[globalVar = var1 = value1, var2 > value2, var3 < value3, var4 <= value4, var5 >= value5,
var6 != value6, ...]

Comparison:

The values in floating point are compared to the global variables "var1", "var2" ... from above.

You can use multiple conditions in one by separating them with a comma. The comma then acts as a
logical disjunction, that means the whole condition evaluates to true, whenever one or more of its
operands are true.

Operator: Function:

= Requires an exact match.

> The var must be greater than the value.

< The var must be less than the value.

<= The var must be less than or equal to the value.

>= The var mast be greater than or equal to the value.

!= The var must be not equal to the value.

Examples:

This will match with a URL like "...&print=1":

[globalVar = GP:print > 0]

This will match, if the page-id is higher than or equal to 10:

[globalVar = TSFE:id >= 10]

This will match, if the page-id is not equal to 316:

[globalVar = TSFE:id != 316]

This will match the non-existing GET/POST variable "style":

[globalVar = GP:style =]

This will match, if the GET/POST variable "L" equals 8 or the GET/POST variable "M" equals 2 or
both:

[globalVar = GP:L = 8, GP:M = 2]

28

TypoScript Reference - doc_core_tsref Conditions

This will match with the pages having the layout field set to "Layout 1":

[globalVar = TSFE:page|layout = 1]

If the constant {$constant_to_turnSomethingOn} is "1" then this matches:

[globalVar = LIT:1 = {$constant_to_turnSomethingOn}]

globalString

Syntax:
[globalString = var1=value, var2= *value2, var3= *value3*, ...]

Comparison:

This is a direct match on global strings.

You have the options of putting a "*" as a wildcard or using a PCRE style regular expression (must be
wrapped in "/") to the value.

Examples:

If the HTTP_HOST is "www.typo3.com" this will match with:

[globalString = IENV:HTTP_HOST = www.typo3.com]

This will also match with it:

[globalString = IENV:HTTP_HOST = *typo3.com]

... but this will also match with an HTTP_HOST like this: "demo.typo3.com"

IMPORTANT NOTE ON globalVar and globalString:

You can use values from global arrays and objects by dividing the var-name with a "|" (vertical line).

Examples:

The global var $HTTP_POST_VARS['key']['levels'] would be retrieved by "HTTP_POST_VARS|key|
levels"

Also note that it's recommended to program your scripts in compliance with the php.ini-optimized
settings. Please see that file (from your distribution) for details.

Caring about this means that you would get values like HTTP_HOST by getenv() and you would
retrieve GET/POST values with t3lib_div::_GP(). Finally a lot of values from the TSFE object are useful.
In order to get those values for comparison with "globalVar" and "globalString" conditions, you prefix
that variable's name with either "IENV:"/"ENV:" , "GP:", "TSFE:" or "LIT:" respectively. Still the "|"
divider may be used to separate keys in arrays and/or objects. "LIT" means "literal" and the string after
":" is trimmed and returned as the value (without being divided by "|" or anything)

Notice: Using the "IENV:" prefix is highly recommended to get server/environment variables which are
system-independent. Basically this will get the value using t3lib_div::getIndpEnv(). With "ENV:" you get
the raw output from getenv() which is NOT always the same on all systems!

Examples:

This will match with a remote-addr beginning with "192.168."

[globalString = IENV:REMOTE_ADDR = 192.168.*]

This will match with the user whose username is "test":

[globalString = TSFE:fe_user|user|username = test]

29

TypoScript Reference - doc_core_tsref Conditions

userFunc

Syntax:
[userFunc = user_match(checkLocalIP)]

Comparison:

This call the function "user_match" with the first parameter "checkLocalIP". You write that function.
You decide what it checks. Function result is evaluated as true/false.

30

TypoScript Reference - doc_core_tsref Conditions

Example:

Put this function in your localconf.php file:

function user_match($cmd) {
switch($cmd) {

case 'checkLocalIP':
if (strstr(getenv('REMOTE_ADDR'), '192.168')) {

return TRUE;
}

break;
case 'checkSomethingElse':

//
break;

}
}

This condition will return true if the remote address contains "192.168" - which is what your function
finds out.

[userFunc = user_match(checkLocalIP)]

31

TypoScript Reference - doc_core_tsref Functions

Functions
stdWrap

This function is often added as a property to values in TypoScript.

Example with the property "value" of the content-object, "TEXT":

10 = TEXT
10.value = some text
10.case = upper

Here the content of the object "10" is uppercased before it's returned.

stdWrap properties are executed in the order they appear in the table below. If you want to study this
further please refer to typo3/sysext/cms/tslib/class.tslib_content.php, where you will find the function
stdWrap() and the array $stdWrapOrder, which represents the exact order of execution.

Note that the stdWrap property "orderedStdWrap" allows you to execute multiple stdWrap functions in
a freely selectable order.

Content-supplying properties of stdWrap
The properties in this table are parsed in the listed order. The properties "data", "field", "current",
"cObject" (in that order!) are special as they are used to import content from variables or arrays. The
above example could be rewritten to this:

10 = TEXT
10.value = some text
10.case = upper
10.field = header

Now the line "10.value = some text" is obsolete, because the whole value is "imported" from the field
called "header" from the $cObj->data-array.

Property: Data type: Description: Default:

Get data:

setContentToCu
rrent

boolean Sets the current value to the incoming content of the
function.

setCurrent string /stdWrap Sets the "current"-value. This is normally set from some
outside routine, so be careful with this. But it might be
handy to do this

lang Array of language
keys

This is used to define optional language specific values.
If the global language key set by the ->config property
.language is found in this array, then this value is used
instead of the default input value to stdWrap.

Example:
config.language = de
page.10 = TEXT
page.10.value = I am a Berliner!
page.10.lang.de = Ich bin ein Berliner!

Output will be "Ich bin..." instead of "I am..."

data getText

32

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

field Field name Sets the content to the value $cObj->data[field]

Example: Set content to the value of field "title": ".field =
title"
$cObj->data changes. See the description for the data type
"getText"/field!

Note: You can also divide field names by "//". Say, you set
"nav_title // title" as the value, then the content from the
field nav_title will be returned unless it is a blank string, in
which case the title-field's value is returned.

current boolean Sets the content to the "current"-value (see ->split)

cObject cObject Loads content from a content-object

numRows ->numRows Returns the number of rows resulting from the select

filelist dir /stdWrap Reads a directory and returns a list of files.
The value is exploded by "|" into parameters:
1: The path
2: comma-list of allowed extensions (no spaces between); if
empty all extensions goes.
3: sorting: name, size, ext, date, mdate (modification date)
4: reverse: Set to "r" if you want a reversed sorting
5: fullpath_flag: If set, the filelist is returned with complete
paths, and not just the filename

preUserFunc Function name Calling a PHP-function or method in a class, passing the
current content to the function as first parameter and any
properties as second parameter.
See .postUserFunc

Override / Conditions:

override string /stdWrap if "override" returns something else than "" or zero
(trimmed), the content is loaded with this!

preIfEmptyList
Num

(as "listNum"
below)

(as "listNum" below)

ifEmpty string /stdWrap if the content is empty (trimmed) at this point, the content
is loaded with "ifEmpty". Zeros are treated as empty
values!

ifBlank string /stdWrap Same as "ifEmpty" but the check is done using strlen().

33

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

listNum int
+calc
+"last"
+"rand"

Explodes the content with "," (comma) and the content is
set to the item[value].

Special keyword: "last" is set to the last element of the
array!

(Since TYPO3 4.6) Special keyword: "rand" returns a
random item out of a list.

.splitChar (string):
Defines the string used to explode the value. If splitChar is
an integer, the character with that number is used (eg. "10"
to split lines...).
Default: "," (comma)
.stdWrap (stdWrap properties):
stdWrap properties of the listNum...

Examples:
We have a value of "item 1, item 2, item 3, item 4":
This would return "item 3":

.listNum = last – 1

That way the subtitle field to be displayed is chosen
randomly upon every reload:

page.5 = COA_INT
page.5 {
 10 = TEXT
 10 {
 field = subtitle
 stdWrap.listNum = rand
 }
}

trim PHP-function trim(); Removes whitespace around value

stdWrap ->stdWrap Recursive call to stdWrap function

required boolean This flag requires the content to be set to some value after
any content-import and treatment that might have
happened now (data, field, current, listNum, trim). Zero is
NOT regarded as empty! Use "if" instead!
If the content i empty, "" is returned immediately.

if ->if If the if-object returns false, stdWrap returns ""
immediately

fieldRequired Field name value in this field MUST be set

Parse data:

csConv string Convert the charset of the string from the charset given as
value to the current rendering charset of the frontend
(renderCharset).

parseFunc object path
reference /
->parseFunc

Processing instructions for the content.
Notice: If you enter a string as value this will be taken as
a reference to an object path globally in the TypoScript
object tree. This will be the basis configuration for
parseFunc merged with any properties you add here. It
works exactly like references does for content elements.

Example:
parseFunc = < lib.parseFunc_RTE
parseFunc.tags.myTag = TEXT
parseFunc.tags.myTag.value = This will be
inserted when <myTag> is found!

HTMLparser boolean /
->HTMLparser

This object allows you to parse the HTML-content and
make all kinds of advanced filterings on the content.
Value must be set and properties are those of
->HTMLparser.
(See "Core API" for ->HTMLparser options)

34

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

split ->split

replacement ->replacement (Since TYPO3 4.6) Performs an ordered search/replace on
the current content with the possibility of using PCRE
regular expressions. An array with numeric indices defines
the order of actions and thus allows multiple replacements
at once.

prioriCalc boolean Calculation of the value using operators -+*/%^ plus
respects priority to + and - operators and parenthesis
levels ().
. (period) is decimal delimiter.
Returns a doublevalue.
If .prioriCalc is set to "intval" an integer is returned.
There is no error checking and division by zero or other
invalid values may generate strange results. Also you use a
proper syntax because future modifications to the function
used may allow for more operators and features.

Examples:
100%7 = 2
-5*-4 = 20
+6^2 = 36
6 ^(1+1) = 36
-5*-4+6^2-100%7 = 54
-5 * (-4+6) ^ 2 - 100%7 = 98
-5 * ((-4+6) ^ 2) - 100%7 = -22

char int Content is set to the chr(value).
PHP: $content = chr(intval($conf['char']);

intval boolean PHP function intval(); Returns an integer.
PHP: $content = intval($content);

hash string /stdWrap (Since TYPO3 4.6) Returns a hashed value of the current
content. Set to one of the algorithms which are available
in PHP. For a list of supported algorithms see
http://www.php.net/manual/en/function.hash-algos.php.

Example:

page.10 = TEXT
page.10 {
 value = test@example.com
 hash = md5
 wrap = <img
src="http://www.gravatar.com/avatar/|" />
}

round ->round (Since TYPO3 4.6) Round the value with the selected
method to the given number of decimals.

numberFormat ->numberFormat Format a float value to any number format you need (e.g.
useful for prices).

date date-conf The content should be data-type "UNIX-time". Returns the
content formatted as a date.

PHP: $content = date($conf['date'],
$content);

Properties:
.GMT: If set, the PHP function gmdate() will be used
instead of date().

Example where a timestamp is imported:
.value.field = tstamp
.value.date =

35

http://www.php.net/manual/en/function.hash-algos.php

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

strftime strftime-conf Exactly like "date" above. See the PHP-manual (strftime)
for the codes, or datatype "strftime-conf".
This formatting is useful if the locale is set in advance in
the CONFIG-object. See this.

Properties:
.charset: Can be set to the charset of the output string if
you need to convert it to renderCharset. Default is to take
the intelligently guessed charset from t3lib_cs.
.GMT: If set, the PHP function gmstrftime() will be used
instead of strftime().

age boolean or string If enabled with a "1" (number, integer) the content is seen
as a date (UNIX-time) and the difference from present
time and the content-time is returned as one of these eight
variations:
"xx min" or "xx hrs" or "xx days" or "xx yrs" or "xx min"
or "xx hour" or "xx day" or "year"
The limits between which layout is used are 60 minutes,
24 hours and 365 days.

If you set this property with a non-integer, it is used to
format the eight units. The first four values are the plural
values and the last four are singular. This is the default
string:

" min| hrs| days| yrs| min| hour| day|
year"

Set another string if you want to change the units. You
may include the "-signs. They are removed anyway, but
they make sure that a space which you might want
between the number and the unit stays.

Example:
lib.ageFormat = TEXT
lib.ageFormat.data = page:tstamp
lib.ageFormat.age = " Minuten | Stunden |
Tage | Jahre | Minute | Stunde | Tag |
Jahr"

case case Converts case

Uses "renderCharset" for the operation.

bytes boolean Will format the input (an integer) as bytes: bytes, kb, mb

If you add a value for the property "labels" you can alter
the default suffixes. Labels for bytes, kilo, mega and giga
are separated by vertical bar (|) and possibly encapsulated
in "". Eg: " | K| M| G" (which is the default value)
Thus:

bytes.labels = " | K| M| G"

substring [p1], [p2] Returns the substring with [p1] and [p2] sent as the 2nd
and 3rd parameter to the PHP substring function.

Uses "renderCharset" for the operation.

removeBadHT
ML

boolean Removes "bad" HTML code based on a pattern that filters
away HTML that is considered dangerous for XSS bugs.

cropHTML Crops the content to a certain length. In contrast to
stdWrap.crop it respects HTML tags. It does not crop
inside tags and closes open tags. Entities (like ">") are
counted as one char. See stdWrap.crop below for a syntax
description and examples.

Note that stdWrap.crop should not be used if
stdWrap.cropHTML is already used.

36

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

stripHtml boolean Strips all html-tags.

crop Crops the content to a certain length.
Syntax: +/- (chars) = from left / from right | [string] |
[boolean: keep whole words]

Examples:
20 | ... => max 20 characters. If more, the value will be
truncated to first 20 chars and prepended with "..."
-20 | ... => max 20 characters. If more, the value will be
truncated to last 20 chars and appended with "..."
20 | ... | 1 => max 20 characters. If more, the value will be
truncated to last 20 chars and appended with "...". If the
division is in the middle of a word, the remains of that
word is removed.

Uses "renderCharset" for the operation.

rawUrlEncode boolean Passes the content through rawurlencode()-PHP-function.

htmlSpecialCha
rs

boolean Passes the content through htmlspecialchars()-PHP-
function.
Additional property ".preserveEntities" will preserve
entities so only non-entity chars are affected.

doubleBrTag string All double-line-breaks are substituted with this value.

br boolean PHP function nl2br(); converts line breaks to
-tags.

brTag string All ASCII-codes of "10" (CR) are substituted with value.

encapsLines ->encapsLines Lets you split the content by chr(10) and process each line
independently. Used to format content made with the
RTE.

keywords boolean Splits the content by characters "," ";" and chr(10) (return),
trims each value and returns a comma-separated list of the
values.

innerWrap wrap /stdWrap Wraps the content.

innerWrap2 wrap /stdWrap Same as .innerWrap (but watch the order in which they
are executed).

fontTag wrap

addParams ->addParams Lets you add tag-parameters to the content if the content
is a tag!

textStyle ->textStyle Wraps content in font-tags

tableStyle ->tableStyle Wraps content with table-tags

filelink ->filelink Used to make lists of links to files.

preCObject cObject cObject prepended the content

postCObject cObject cObject appended the content

wrapAlign align /stdWrap Wraps content with <div style=text-align:[value];"> | </div>
if align is set

typolink ->typolink Wraps the content with a link-tag

TCAselectItem Array of
properties

Resolves a comma-separated list of values into the TCA
item representation.

.table (string): The Table to look up

.field (string): The field to resolve

.delimiter (string): Delimiter for concatenating multiple
elements.

Notice: Currently this works only with TCA fields of type
"select" which are not database relations.

spaceBefore int /stdWrap Pixels space before. Done with a clear-gif;

37

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

spaceAfter int /stdWrap Pixels space after. Done with a clear-gif;

space space /stdWrap [spaceBefore] | [spaceAfter]

Additional property:
.useDiv = 1
If set, a clear gif is not used but rather a <div> tag with a
style-attribute setting the height. (Affects spaceBefore and
spaceAfter as well).

wrap wrap /+.splitChar .splitChar defines an alternative splitting character (default
is "|" - the vertical line)

noTrimWrap "special" wrap This wraps the content with the values val1 and val2 in the
example below - including surrounding whitespace! -
without trimming the values. Note that this kind of wrap
requires a "|" character to begin and end the wrap.

Example:
| val1 | val2 |

wrap2 wrap /+.splitChar same as .wrap (but watch the order in which they are executed)

dataWrap The content is parsed for sections of {...} and the content
of {...} is of the type getText and substituted with the result
of getText.

Example:
This will produce a tag around the content with an
attribute that contains the number of the current page:

<div id="{tsfe : id}"> | </div>

prepend cObject cObject prepended to content (before)

append cObject cObject appended to content (after)

wrap3 wrap /+.splitChar same as .wrap (but watch the order in which they are executed)

orderedStdWra
p

Array of numeric
keys with
/stdWrap each

(Since TYPO3 4.7) Execute multiple stdWrap statements in
a freely selectable order. The order is determined by the
numeric order of the keys. This allows to use multiple
stdWrap statements without having to remember the
rather complex sorting order in which the stdWrap
functions are executed.

Example:
10 = TEXT
10.value = a
10.orderedStdWrap {
 30.wrap = |.

 10.wrap = is | working
 10.innerWrap = |

 20.wrap = This|solution
 20.stdWrap.wrap = |
}

In this example orderedStdWrap is executed on the value
"a". 10.innerWrap is executed first, followed by 10.wrap.
Then the next key is processed which is 20. Afterwards
30.wrap is executed on what already was created.
This results in "This is a working solution."

outerWrap wrap /stdWrap Wraps the complete content

38

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

insertData boolean If set, then the content string is parsed like .dataWrap
above.

Example:
Displays the page title:

10 = TEXT
10.value = This is the page title:
{page:title}
10.insertData = 1

offsetWrap x,y This wraps the input in a table with columns to the left
and top that offsets the content by the values of x,y. Based
on the cObject OTABLE.

.tableParams / .tdParams /stdWrap
- used to manipulate tableParams/tdParams (default
width=99%) of the offset. Default: See OTABLE.

.stdWrap
- stdWrap properties wrapping the offsetWrap'ed output

postUserFunc function name Calling a PHP-function or method in a class, passing the
current content to the function as first parameter and any
properties as second parameter. Please see the description
of the cObject USER for in-depth information.

Example:
You can paste this example directly into a new template
record.

page = PAGE
page.typeNum=0
includeLibs.something =
media/scripts/example_callfunction.php

page.10 = TEXT
page.10 {
 value = Hello World
 postUserFunc = user_reverseString
 postUserFunc.uppercase = 1
}

page.20 = TEXT
page.20 {
 value = Hello World
 postUserFunc = user_various-
>reverseString
 postUserFunc.uppercase = 1
 postUserFunc.typolink = 11
}

postUserFuncInt function name Calling a PHP-function or method in a class, passing the
current content to the function as first parameter and any
properties as second parameter. The result will be
rendered non-cached, outside the main page-rendering.
Please see the description of the cObject USER_INT and
the cObject PHP_SCRIPT_INT (which you find in the
appendix "PHP include scripts") for in-depth information.
Supplied by Jens Ellerbrock

39

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

prefixComment string Prefixes content with an HTML comment with the second
part of input string (divided by "|") where first part is an
integer telling how many trailing tabs to put before the
comment on a new line.
The content is parsed through insertData.

Example:
prefixComment = 2 | CONTENT ELEMENT, uid:
{field:uid}/{field:CType}

Will indent the comment with 1 tab (and the next line with
2+1 tabs)
(Added in TYPO3 >3.6.0RC1)

editIcons string If not empty, then insert an icon linking to the
typo3/alt_doc.php with some parameters to build and
backend user edit form for certain fields.
The value of this property is a list of fields from a table to
edit. It's assumed that the current record of the cObj is the
record to be edited.
Syntax: optional tablename : comma list of field names[list of
pallette-field names separated by |]

.beforeLastTag (1,0,-1): If set (1), the icon will be inserted
before the last HTML tag in the content. If -1 the icon will
be prepended to the content. If zero (0) the icon is
appended in the end of the content.

.styleAttribute (string): Adds a style-attribute to the icon
image with this value. For instance you can set
"position:absolute" if you want a non-destructive insertion
of the icon. Notice: For general styling all edit icons has
the class "frontEndEditIcons" which can be addressed from
the stylesheet of the site.

.iconTitle (string): The title attribute of the image tag.

.iconImg (HTML): Alternative HTML code instead of the
default icon shown. Can be used to set another icon for
editing (for instance a red dot or otherwise... :-)

Example:
This will insert an edit icon which links to a form where
the header and bodytext fields are displayed and made
available for editing (provided the user has access!).

editIcons = tt_content : header, bodytext

Or this line that puts the header_align and date field into
a "palette" which means they are displayed on a single line
below the header field. This saves some space.

editIcons = header[header_align|date],
bodytext

editPanel boolean /
editPanel

See cObject EDITPANEL.

cache ->cache (Since TYPO3 4.7) Caches rendered content in the caching
framework.

debug boolean Prints content with HTMLSpecialChars() and
<PRE></PRE>: Useful for debugging which value stdWrap
actually ends up with, if you're constructing a website with
TypoScript.
Should be used under construction only.

40

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

debugFunc boolean Prints the content directly to browser with the debug()
function.
Should be used under construction only.
Set to value "2" the content will be printed in a table -
looks nicer.

debugData boolean Prints the current data-array, $cObj->data, directly to
browser. This is where ".field" gets data from.
Should be used under construction only.

[tsref:->stdWrap]

41

TypoScript Reference - doc_core_tsref Functions

imgResource
imgResource contains the properties that are used with the data type imgResource.

Example:

This scales the image toplogo.gif to the width of 200 pixels.

file = toplogo.gif
file.width = 200

Property: Data type: Description: Default:

ext imageExtension
/stdWrap

web

width pixels /stdWrap If both the width and the height are set and one of the numbers is
appended by an "m", the proportions will be preserved and thus
width/height are treated as maximum dimensions for the image. The
image will be scaled to fit into width/height rectangle.

If both the width and the height are set and at least one of the
numbers is appended by a "c", crop-scaling will be enabled. This
means that the proportions will be preserved and the image will be
scaled to fit around a rectangle with width/height dimensions. Then, a
centered portion from inside of the image (size defined by
width/height) will be cut out.
The "c" can have a percentage value (-100 ... +100) after it, which
defines how much the cropping will be moved off the center to the
border.

Notice that you can only use "m" or "c" at the same time!

Examples:
This crops 120x80px from the center of the scaled image:

.width = 120c

.height = 80c

This crops 100x100px; from landscape-images at the left and portrait-
images centered:

.width = 100c-100

.height = 100c

This crops 100x100px; from landscape-images a bit right of the center
and portrait-images a bit upper than centered:

.width = 100c+30

.height = 100c-25

height pixels /stdWrap see ".width"

params Until TYPO3
4.5: string
Since TYPO3
4.6: string
/stdWrap

ImageMagick command-line:
fx. "-rotate 90" or "-negate"

sample boolean If set, -sample is used to scale images instead of -geometry. Sample
does not use antialiasing and is therefore much faster.

42

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

noScale boolean
/stdWrap

If set, the image itself will never be scaled. Only width and height are
calculated according to the other properties, so that the image is
displayed resizedly, but the original file is used. Can be used for
creating PDFs or printing of pages, where the original file could
provide much better quality than a rescaled one.

Example:
// test.jpg could e.g. have 1600 x 1200 pixels
file = test.jpg
file.width = 240m
file.height = 240m
file.noScale = 1

This example results in an image tag like the following. Note that
src="test.jpg" is the original file:

0

alternativeTe
mpPath

string Enter an alternative path to use for temp images. Must be found in
the list in $TYPO3_CONF_VARS['FE']['allowedTempPaths'].

frame int Chooses which frame in an gif-animation or pdf-file.
"" = first frame (zero)

import path /stdWrap value should be set to the path of the file
with stdWrap you get the filename from the data-array

Example:
This returns the first image in the field "image" from the data-array:

.import = uploads/pics/

.import.field = image

.import.listNum = 0

maxW pixels /stdWrap Max width

maxH pixels /stdWrap Max height

minW pixels /stdWrap Min width (overrules maxW/maxH)

minH pixels /stdWrap Min height (overrules maxW/maxH)

stripProfile boolean If set, IM-command will use a stripProfile-command which shrinks the
generated thumbnails. See Install Tool for options and details.
If im_useStripProfileByDefault is set in the install tool, you can
deactivate it by setting stripProfile=0.

Example:
10 = IMAGE
10.file = fileadmin/images/image1.jpg
10.file.stripProfile = 1

Masking:
(Black hides, white shows)

m.mask imgResource The mask by which the image is masked onto "m.bgImg". Both
"m.mask" and "m.bgImg" is scaled to fit the size of the imgResource
image!
NOTE: Both "m.mask" and "m.bgImg" must be valid images.

m.bgImg imgResource NOTE: Both "m.mask" and "m.bgImg" must be valid images.

m.bottomImg imgResource An image masked by "m.bottomImg_mask" onto "m.bgImg" before the
imgResources is masked by "m.mask".
Both "m.bottomImg" and "m.bottomImg_mask" is scaled to fit the
size of the imgResource image!
This is most often used to create an underlay for the imgResource.
NOTE: Both "m.bottomImg" and "m.bottomImg_mask" must be valid
images.

m.bottomImg
_mask

imgResource (optional)
NOTE: Both "m.bottomImg" and "m.bottomImg_mask" must be valid
images.

[tsref:->imgResource]

43

TypoScript Reference - doc_core_tsref Functions

imageLinkWrap
This object wraps the input (an image) with a link ready for calling up the eID "tx_cms_showpic" script
with parameters that define such things as the size of the image, the background color of the new
window and so on.

An md5-hash of the parameters is generated. The hash is also generated in the "tx_cms_showpic"
script and the hashes MUST match in order for the image to be shown. This is a safety feature in order
to prevent users from changing the parameters in the URL themselves.

Since TYPO3 4.5 it is also possible to display the image in a lightbox instead of using showpic.php. See
the property "linkParams" below for a short instruction.

Property: Data type: Description: Default:

file stdWrap Override the path of the image which is displayed

width int (1-1000)
/stdWrap

If you add "m" to either the width or height, the image will be held in
proportions and width/height works as max-dimensions

height int (1-1000)
/stdWrap

see ".width"

effects see
GIFBUILDER /
effects. (from
stdgraphics-
library)
/stdWrap

Example:
gamma=1.3 | sharpen=80 | solarize=70

sample boolean
/stdWrap

If set, -sample is used to scale images instead of -geometry. Sample
does not use antialiasing and is therefore much faster.

alternativeTe
mpPath

path /stdWrap Enter an alternative path to use for temp images. Must be found in
the list in $TYPO3_CONF_VARS['FE']['allowedTempPaths'].

title string /stdWrap page title of the new window (HTML)

bodyTag <tag> /stdWrap Body tag of the new window

wrap wrap /stdWrap Wrap of the image, which is output between the body-tags

target <A>-
data:target
/stdWrap

NOTE: Only if ".JSwindow" is set

JSwindow boolean
/stdWrap

If set to "1", the image will be opened in a new window which is fitted
to the dimensions of the image!
You can also use stdWrap here.

JSwindow.exp
and

x,y /stdWrap x and y is added to the window dimensions.

JSwindow.ne
wWindow

boolean
/stdWrap

Each picture will open in a new window!

JSwindow.alt
Url

string /stdWrap If this returns anything, the URL shown in the JS-window is NOT
tx_cms_showpic but the url given here!

JSwindow.alt
Url_noDefault
Params

boolean If this is set, the image parameters are not appended to the altUrl
automatically. This is useful if you want to create them with a user
function
instead.

typolink ->typolink NOTE: This overrides the imageLinkWrap if it returns anything!!

directImageLi
nk

boolean
/stdWrap

If true, a link to the generated image file will be returned directly
(which means that showpic.php will not be used).

0

44

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

linkParams ->typolink Allows manipulation of the generated typolink, if JSwindow is not
used.

Example:
JSwindow = 0
directImageLink = 1
linkParams.ATagParams.dataWrap =
class="{$styles.content.imgtext.linkWrap.lightboxCss
Class}"
rel="{$styles.content.imgtext.linkWrap.lightboxRelAt
tribute}"

With these options it is easy to use a lightbox of your choice to
display resizable images in the frontend: You only need to integrate
the lightbox by including its JS and CSS files and to activate it for
certain links (e.g. for links with the class "lightbox").

stdWrap ->stdWrap Enable stdWrap for the image

enable boolean
/stdWrap

The image is linked ONLY if this is true!! 0

[tsref:->imageLinkWrap]

Example:
1.imageLinkWrap = 1
1.imageLinkWrap {

enable = 1
bodyTag = <BODY bgColor=black>
wrap = |
width = 800m
height = 600

JSwindow = 1
JSwindow.newWindow = 1
JSwindow.expand = 17,20

}

numRows
This object returns the number of rows.

Property: Data type: Description: Default:

table Table name

select ->select Select query for the operation.

The property "selectFields" is overridden internally with "count(*)".

[tsref:->numRows]

select
This object generates an SQL-select statement needed to select records from the database.

Some records are hidden or timed by start and end-times. This is automatically added to the SQL-
select by looking in the $TCA (enablefields).

Also, if the "pidInList" feature is used, any page in the pid-list that is not visible for the user of the
website IS REMOVED from the pidlist. Thereby no records from hidden, timed or access-protected
pages are selected! Nor records from recyclers.

Note: Be careful if you are using GET/POST data (for example GPvar) in this object! You could
introduce SQL injections!

Always secure input from outside, for example with intval.

45

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

uidInList Until TYPO3
4.5: list of
page_id
Since TYPO3
4.6: list of
page_id
/stdWrap

pidInList list of page_id
/stdWrap

this

recursive Until TYPO3
4.5: int
Since TYPO3
4.6: int
/stdWrap

Recursive levels for the pidInList 0

orderBy SQL-orderBy
/stdWrap

Without "order by"! E.g. "sorting, title"

groupBy SQL-groupBy
/stdWrap

Without "group by"! E.g. "CType"

max Until TYPO3
4.5: int
+calc
+"total"
Since TYPO3
4.6: int
+calc
+"total"
/stdWrap

Max records

Special keyword: "total" is substituted with count(*)

begin Until TYPO3
4.5: int
+calc
+"total"
Since TYPO3
4.6: int
+calc
+"total"
/stdWrap

Begin with record number value

Special keyword: "total" is substituted with count(*)

where Until TYPO3
4.5: SQL-where
Since TYPO3
4.6: SQL-
where /stdWrap

Without "where"!, E.g. " (title LIKE '%SOMETHING%' AND
NOT doktype) "

andWhere SQL-where
/stdWrap

Without "AND"!, E.g. "NOT doktype".

languageField Until TYPO3
4.5: string
Since TYPO3
4.6: string
/stdWrap

If set, this points to the field in the record which holds a
reference to a record in sys_language table. And if set, the
records returned by the select-function will be selected only if
the value of this field matches the $GLOBALS['TSFE']-
>sys_language_uid (which is set by the config.sys_language_uid
option)

selectFields Until TYPO3
4.5: string
Since TYPO3
4.6: string
/stdWrap

List of fields to select, or "count(*)".
If the records need to be localized, please include the relevant
localization-fields
(uid,pid,languageField,transOrigPointerField). Otherwise the
TYPO3 internal localization will not succeed.

*

join
leftjoin
rightjoin

Until TYPO3
4.5: string
Since TYPO3
4.6: string
/stdWrap

Enter tablename for JOIN , LEFT OUTER JOIN and RIGHT
OUTER JOIN respectively.

46

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

markers array of
markers

The markers defined in this section can be used, wrapped in
the usual ###markername### way, in any other property of
select. Each value is properly escaped and quoted to prevent
SQL injection problems. This provides a way to safely use
external data (e.g. database fields, GET/POST parameters) in
a query.

<markername>.value (value)
Sets the value directly.

<markername>.commaSeparatedList (bool)
If set, the value is interpreted as a comma-separated list of
values. Each value in the list is individually escaped and
quoted.

(stdWrap properties ...)
All stdWrap properties can be used for each markername.

Example:
page.60 = CONTENT
page.60 {
 table = tt_content
 select {
 pidInList = 73
 where = header != ###whatever###
 orderBy = ###sortfield###
 markers {
 whatever.data = GP:first
 sortfield.value = sor
 sortfield.wrap = |ting
 }
 }
}

[tsref:->select]

split
This object is used to split the input by a character and then parse the result onto some functions.

For each iteration the split index starting with 0 (zero) is stored in the register key SPLIT_COUNT.

Example:

This is an example of TypoScript-code that imports the content of field "bodytext" from the $cObj-
>data-array (ln 2). The content is split by the linebreak-character (ln 4). The items should all be treated
with a stdWrap (ln 5) which imports the value of the item (ln 6). This value is wrapped in a tablerow
where the first column is a bullet-gif (ln 7). Finally the whole thing is wrapped in the proper table-tags
(ln 9)

1 20 = TEXT
2 20.field = bodytext
3 20.split {
4 token.char = 10
5 cObjNum = 1
6 1.current = 1
7 1.wrap = <TR><TD valign="top"></TD><TD valign="top"> |
</TD></TR>
8 }
9 20.wrap = <TABLE border="0" cellpadding="0" cellspacing="3" width="368"> |
</TABLE>

Property: Data type: Description: Default:

token str /stdWrap string or character (token) used to split the value

max int /stdWrap max number of splits

min int /stdWrap min number of splits.

47

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

returnKey int /stdWrap Instead of parsing the split result, just return this element of
the index immediately.

cObjNum cObjNum
+optionSplit
/stdWrap

This is a pointer the array of this object ("1,2,3,4"), that should
treat the items, resulting from the split.

1,2,3,4 ->CARRAY
/stdWrap

The object that should treat the value.
NOTE: The "current"-value is set to the value of current item,
when the objects are called. See "stdWrap" / current.

Example (stdWrap used):
1.current = 1
1.wrap = |

Example (CARRAY used):
1 {
 10 = TEXT
 10.current = 1
 10.wrap = |
 20 = CLEARGIF
 20.height = 20
}

wrap wrap
+optionSplit
/stdWrap

Defines a wrap for each item.

[tsref:->split]

replacement
(Since TYPO3 4.6) This object performs an ordered search and replace operation on the current
content with the possibility of using PCRE regular expressions. An array with numeric indices defines
the order of actions and thus allows multiple replacements at once.

Property: Data type: Description: Default:

search string /stdWrap Defines the string that shall be replaced.

replace string /stdWrap Defines the string to be used for the replacement.

useRegExp boolean
/stdWrap

Defines that the search and replace strings are considered as
PCRE regular expressions.

Example:
10 {
 search = #(a)CAT#i
 replace = \1cat
 useRegExp = 1
}

0

[tsref:->replacement]

Example:
20 = TEXT
20 {
 value = There_are_a_cat,_a_dog_and_a_tiger_in_da_hood!_Yeah!
 stdWrap.replacement {
 10 {
 search = _
 replace.char = 32
 }
 20 {
 search = in da hood
 replace = around the block
 }
 30 {
 search = #a (Cat|Dog|Tiger)#i
 replace = an animal
 useRegExp = 1
 }

48

TypoScript Reference - doc_core_tsref Functions

 }
}

This returns: "There are an animal, an animal and an animal around the block! Yeah!".

if
This function returns true if ALL of the present conditions are met (they are AND'ed). If a single
condition is false, the value returned is false.

The returned value may still be negated by the ".negate"-property.

Property: Data type: Description: Default:

isTrue str /stdWrap If the content is "true".... (not empty string and not zero)

isFalse str /stdWrap If the content is "false"... (empty or zero)

isPositive int /stdWrap
+ calc

returns false if content is not positive

isGreaterThan value /stdWrap returns false if content is not greater than ".value"

isLessThan value /stdWrap returns false if content is not less than ".value"

equals value /stdWrap returns false if content does not equal ".value"

isInList value /stdWrap returns false if content is not in the comma-separated list ".value".
The list in ".value" may not have spaces between elements!!

value value /stdWrap "value" (the comparison value mentioned above)

negate boolean This negates the result just before it exits. So if anything above returns
true the overall returns ends up returning false!!

directReturn boolean If this property exists the true/false of this value is returned. Could be
used to set true/false by TypoScript constant

[tsref:->if]

Explanation
The "if"-function is a very odd way of returning true or false! Beware!

"if" is normally used to decide whether to render an object or return a value (see the cObjects and
stdWrap)

Here is how it works:

The function returns true or false. Whether it returns true or false depends on the properties of this
function. Say if you set "isTrue = 1" then result is true. If you set "isTrue.field = header" the function
returns true if the field "header" in $cObj->data is set!

If you want to compare values, you must load a base-value in the ".value"-property. Example:

.value = 10

.isGreaterThan = 11

This would return true because the value of ".isGreaterThan" is greater than 10, which is the base-
value.

More complex is this:

.value = 10

.isGreaterThan = 11

.isTrue.field = header

.negate = 1

There are two conditions - isGreaterThan and isTrue. If they are both true, the total is true (AND)
BUT(!) the result if the function in total is false because the ".negate"-flag inverts the result!

Example:

This is a GIFBUILDER object that will write "NEW" on a menu-item if the field "newUntil" has a date

49

TypoScript Reference - doc_core_tsref Functions

less than the current date!

...
 30 = TEXT
 30.text = NEW!
 30.offset = 10,10
 30.if {
 value.data = date: U
 isLessThan.field = newUntil
 negate = 1
 }
…

typolink
Wraps the incoming value with link.

If this is used from parseFunc the $cObj->parameters-array is loaded with the link-parameters
(lowercased)!

Property: Data type: Description: Default:

extTarget target /stdWrap Target used for external links _top

fileTarget target /stdWrap Target used for file links

target target /stdWrap Target used for internal links

no_cache boolean
/stdWrap

Adds a "&no_cache=1"-parameter to the link

useCacheHash boolean If set, the additionalParams list is exploded and calculated
into a hash string appended to the url, like
"&cHash=ae83fd7s87". When the caching mechanism sees this
value, it calculates the same value on the server based on
incoming values in HTTP_GET_VARS, excluding
id,type,no_cache,ftu,cHash,MP values. If the incoming cHash
value matches the calculated value, the page may be cached
based on this.
The $TYPO3_CONF_VARS['SYS']['encryptionKey'] is included
in the hash in order to make it unique for the server and non-
predictable.

additionalParams string /stdWrap This is parameters that are added to the end of the url. This
must be code ready to insert after the last parameter.

Example:
'&print=1'
'&sword_list[]=word1&sword_list[]=word2'

Applications:
This is very useful – for example – when linking to pages
from a search result. The search words are stored in the
register-key SWORD_PARAMS and can be insert directly like
this:

.additionalParams.data =
register:SWORD_PARAMS

NOTE: This is only active for internal links!

addQueryString boolean Add the QUERY_STRING to the start of the link. Notice that
this does not check for any duplicate parameters! This is not
a problem (only the last parameter of the same name will be
applied), but enable "config.uniqueLinkVars" if you still don't
like it.

.method: If set to to GET or POST then then the parsed
query arguments (GET or POST data) will be used. This
settings are useful if you use URL processing extensions like
Real URL, which translate part of the path into query
arguments.
It's also possible to get both, POST and GET data, on setting

50

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

this to
"POST,GET" or "GET,POST". The last method in this
sequence takes
precedence and overwrites the parts that are also present for
the first
method.

.exclude: List of query arguments to exclude from the link
(eg L or cHash).

jumpurl boolean Decides if the link should call the script with the jumpurl
parameter in order to register any clicks in the statistics.
This works the same way as "filelink.jumpurl" does – for more
details see the description there.

Example:

lib.parseFunc_RTE.tags.link {
 typolink.jumpurl = 1
 typolink.jumpurl.secure = 1
 typolink.jumpurl.secure.mimeTypes =
pdf=application/pdf, doc=application/msword,
png=image/png, gif=image/gif, jpg=image/jpg
}

These settings in the TS template will make any link to an
internal file inserted in the RTE be rendered as a secure file
download.

0

wrap wrap /stdWrap Wraps the links.

ATagBeforeWra
p

boolean If set, the link is first wrapped with ".wrap" and then the <A>-
tag.

parameter string /stdWrap This is the main data that is used for creating the link. It can
be the id of a page, the URL of some external page, an e-mail
address or a reference to a file on the server. On top of this
there can be additional information for specifying a target, a
class and a title. Below are a few examples followed by full
explanations.

Examples:

parameter = 51
Most simple. Will create a link page 51.

parameter = 51 _blank specialLink "Very
important information"

A full example. A link to page 51 that will open in a new
window. The link will a class attribute with value "specialLink"
and a title attribute reading "Very important information". So the
result will be the following:

<a href="?id=51" target="_blank"
class="specialLink" title="Very important
information">

parameter = http://typo3.org/ - specialLink
An external link with a class attribute. Note the dash (-) that
replaces the second value (the target). This makes it possible to
define a class (third value) without having to define a class.

parameter = info@typo3.org - - "Send a mail
to main TYPO3 contact"

Create a mailto link with a title attribute (but no target and no
class)

As you can see from the examples, each significant part of
the parameter string is separated by a space. Values that can
themselves contain spaces must be enclosed in double quotes.
Each of these values are described in more detail below.

51

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

Destination
The first value is the destination of the link. If there's a @ it
will be considered to be a mail address and a mailto link will
be created. If the value contains a dot (.) before the first slash
(/) or a double slash (//) or if a scheme (like http) is found
inside it, the link will be considered to be an external one. If
there's a slash but not a dot before it, it is considered to be a
path to a file and link is made to it (even if it doesn't exist as
it must consider that it might be a speaking URL). In all other
cases it is assumed that the value is either a page id and a
page alias and a link is made to that page, if it exists.

In the case of a link to a page, the value can be more
complex than just a number or an alias. There can be three
"sub-values" separated by commas. Here's an example:

typolink.parameter = 51,100,&test=1 - - "RSS
Feed"

The first value is the page id, the second is the type, the third
will override the "additionalParams" property. It's also
possible to specify a section that will override the section
property. If the section mark is an integer, it will be
considered as a pointer to a tt_content record. If not, it's used
as is. If there's only a section mark, the link is made to the
current page.

Examples:

typolink.parameter = 51#345
Create a link to page 51 with an anchor to tt_content element
number 345

typolink.parameter = #top
Create a link to the current page with an anchor called "top".

It's also possible to direct the typolink to use a custom
function (a "link handler") to build the link. This is described
in more details below this table.

Target or popup settings
Targets are normally defined the properties described above
(extTarget, fileTarget and target) but it is possible to override
them by explicitly defining a target in the parameter
property. It's possible to use a dash (-) to skip this value when
one wants to define a third or fourth value, but no target (see
examples above).
Instead of a target, this second value can be used to define
the parameters of a JavaScript popup window into which the
link will be opened (using window.open). The height and
width of the window can be defined, as well as additional
parameters to be passed to the JavaScript function. Also see
property "Jswindow".

Examples:

typolink.parameter = 51 400x300
Open page 51 in a popup window measuring 400 by 300 pixels

typolink.parameter = 51
400x300:resizable=0,location=1

Same as above, but window will not be resizable and will show
the location bar

Class
The third value can be used to define a class name for the

52

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

link tag. This class is inserted in the tag before any other
value from the "ATagParams" property. Beware of conflicting
class attributes. It's possible to use a dash (-) to skip this value
when one wants to define a fourth value, but no class (see
examples above).

Title
The standard way of defining the title attribute of the link
would be to use the "title" property or even the
"ATagParams" property. However it can also be set in this
fourth value, in which case it will override the other settings.
Note that the title should be wrapped in double quotes (") if it
contains blanks.

Note: When used from parseFunc, the value should not be
defined explicitly, but imported using:

typolink.parameter.data = parameters :
allParams

forceAbsoluteUrl boolean Forces links to internal pages to be absolute, thus having a
proper URL scheme and domain prepended.

Additional property:
.scheme: Defines the URL scheme to be used (https or http).
http is the default value.

Example:
typolink {
 parameter = 13
 forceAbsoluteUrl = 1
 forceAbsoluteUrl.scheme = https
}

0

title string /stdWrap Sets the title parameter of the A-tag.

JSwindow_param
s

string Preset values for opening the window. This example lists
almost all possible attributes:
status=1,menubar=1,scrollbars=1,resizable=1,location=1,director
ies=1,toolbar=1

returnLast string If set to "url" then it will return the URL of the link ($this-
>lastTypoLinkUrl)
If set to "target" it will return the target of the link.
So, in these two cases you will not get the value wrapped but
the url or target value returned!

section string /stdWrap If this value is present, it's prepended with a "#" and placed
after any internal url to another page in TYPO3.
This is used create a link, which jumps from one page directly
the section on another page.

ATagParams <A>-params
/stdWrap

Additional parameters

Example:
class="board"

linkAccessRestric
tedPages

boolean If set, typolinks pointing to access restricted pages will still
link to the page even though the page cannot be accessed.

userFunc function name This passes the link-data compiled by the typolink function to
a user-defined function for final manipulation.
The $content variable passed to the user-function (first
parameter) is an array with the keys "TYPE", "TAG", "url",
"targetParams" and "aTagParams".
TYPE is an indication of link-kind: mailto, url, file, page
TAG is the full <A>-tag as generated and ready from the
typolink function.

53

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

The latter three is combined into the 'TAG' value after this
formula:

<a href="' . $finalTagParts['url'] . '"' .
 $finalTagParts['targetParams'] .
 $finalTagParts['aTagParams'] . '>

The userfunction must return an <A>-tag.

[tsref:->typolink]

Using link handlers
A feature (added in TYPO3 4.1) allows you to register a link handler for a keyword you define. For
example, you can link to a page with id 34 with "<link 34>" in a typical bodytext field which converts
<link> tags with "->typolink". But what if you have an extension, "pressrelease", and wanted to link to a
press release item displayed by a plugin on some page you don't remember? With this feature it's
possible to create the logic for this in that extension.

So, in a link field (the "parameter" value for ->typolink) you could enter "pressrelease:123":

Some TypoScript will usually transfer this value to the "parameter" attribute of the ->typolink call.
When "pressrelease:123" enters ->typolink as the "parameter" it will be checked if "pressrelease" is a
keyword with which a link handler is associated and if so, that handler is allowed to create the link.

Registering the handler for keyword "pressrelease" is done like this:

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_content.php']['typolinkLinkHandler']
['pressrelease'] = 'EXT:pressrelease/class.linkHandler.php:&tx_linkHandler';

The class file "pressrelease/class.linkHandler.php" contains the class "tx_linkHandler" which could look
like this:

class tx_linkHandler {
function main($linktxt, $conf, $linkHandlerKeyword, $linkHandlerValue, $link_param,

&$pObj) {
$lconf = array();
$lconf['useCacheHash'] = 1;
$lconf['parameter'] = 34;
$lconf['additionalParams'] =

'&tx_pressrelease[showUid]='.rawurlencode($linkHandlerValue);

return $pObj->typoLink($linktxt, $lconf);
}

}

In this function, the value part after the keyword is set as the value of a GET parameter,
"&tx_pressrelease[showUid]" and the "parameter" value of a new ->typolink call is set to "34" which
assumes that on page ID 34 a plugin is put that will display pressrelease 123 when called with
&tx_pressrelease[showUid]=123. In addition you can see the "userCacheHash" attribute for the typolink
function used in order to produce a cached display.

The link that results from this operation will look like this:

The link would be encoded with RealURL and respect config.linkVars as long as ->typolink is used to

54

TypoScript Reference - doc_core_tsref Functions

generate the final URL.

textStyle
This is used to style text with a bunch of standard options + some site-specific.

Property: Data type: Description: Default:

align.field align Set to field name from the $cObj->data-array

face.field string Set to field name from the $cObj->data-array

[1] = "Times New Roman";
[2] = "Verdana,Arial,Helvetica,Sans serif";
[3] = "Arial,Helvetica,Sans serif";

face.default string /stdWrap [default] = User defined

size.field string Set to field name from the $cObj->data-array

[1] = 1;
[2] = 2;
[3] = 3;
[10] = "+1";
[11] = "-1";

size.default string /stdWrap [default] = User defined

color.field string Set to field name from the $cObj->data-array

See "content.php" for the colors available

color.default string /stdWrap [default] = User defined

color.1
color.2

string [1],[2] = User defined

properties.field int Set to field name from the $cObj->data-array

The property values goes like this:
bit 0:
bit 1: <I>
bit 2: <U>
bit 3: (uppercase)

Thus a value of 5 would result in bold and underlined text

properties.default int /stdWrap [default] = User defined (This value will be used whenever
".field" is false!)

altWrap wrap If this value is set, the wrapping with a font-tag based on
font,size and color is NOT done. Rather the element is
wrapped with this value.
Use it to assign a stylesheet by setting this value to eg.

<div class="text"> | </div>

[tsref:->textStyle]

55

TypoScript Reference - doc_core_tsref Functions

encapsLines
Property: Data type: Description: Default:

encapsTagList list of strings List of tags which qualify as encapsulating tags. Must be
lowercase.

Example:
encapsTagList = div, p

This setting will recognize the red line below as encapsulated
lines:

First line of text
Some <div>text</div>
<p>Some text</p>
<div>Some text</div>
Some text

remapTag.
[tagname]

string Enter a new tag name here if you wish the tagname of any
encapsulation to be unified to a single tag name.

For instance, setting this value to "remapTags.P=DIV" would
convert:

<p>Some text</p>
<div>Some text</div>

to

<div>Some text</div>
<div>Some text</div>

([tagname] is in uppercase.)

addAttributes.
[tagname]

array of strings Attributes to set in the encapsulation tag.

Example:
addAttributes.P {
 style=padding-bottom:0px; margin-top:1px;
margin-bottom:1px;
 align=center
}

([tagname] is in uppercase.)

.setOnly =
exists : This will set the value ONLY if the property does not
already exist
blank : This will set the value ONLY if the property does not
already exist OR is blank ("")

Default is to always override/set the attributes value.

removeWrapping boolean If set, then all existing wrapping will be removed.

This:

First line of text
Some <div>text</div>
<p>Some text</p>
<div>Some text</div>
Some text

becomes this:

First line of text
Some <div>text</div>
Some text
Some text
Some text

56

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

wrapNonWrappe
dLines

wrap Wrapping for non-encapsulated lines

Example:
.wrapNonWrappedLines = <P>|</P>

This:

First line of text
<p>Some text</p>

becomes this:

<P>First line of text</P>
<p>Some text</p>

innerStdWrap_all ->stdWrap Wraps the content inside all lines, whether they are
encapsulated or not.

encapsLinesStdW
rap.[tagname]

->stdWrap Wraps the content inside all encapsulated lines.
([tagname] is in uppercase.)

defaultAlign string /stdWrap If set, this value is set as the default "align" value of the
wrapping tags, both from .encapsTagList,
.bypassEncapsTagList and .nonWrappedTag

nonWrappedTag tagname For all non-wrapped lines, you can set here which tag it
should be wrapped in. Example would be "P". This is an
alternative to .wrapNonWrappedLines and has the advantage
that it's attributes are set by .addAttributes as well as
defaultAlign. Thus you can easier match the wrapping tags
used for non-wrapped and wrapped lines.

[tsref:->encapsLines]

Example:
encapsLines {
 encapsTagList = div,p
 remapTag.DIV = P
 wrapNonWrappedLines = <P>|</P>
 innerStdWrap_all.ifEmpty =
}

This example shows how to handle content rendered by TYPO3 and stylesheets where the <P> tag is
used to encapsulate each line.

Say, you have made this content with the Rich Text Editor:

This is line # 1

[Above is an empty line!]
<DIV align=right>This line is right-aligned</DIV>

After being processed by encapsLines with the above configuration, the content looks like this:

<P>This is line # 1 </P>
<P> </P>
<P>[Above is an empty line!] </P>
<P align="right">This line is right-aligned</P>

Each line is nicely wrapped with <P> tags. The line from the database which was already wrapped (but
in <DIV>-tags) has been converted to <P>, but keeps it's alignment. Overall, notice that the Rich Text
Editor ONLY stored the line which was in fact right-aligned - every other line from the RTE was
stored without any wrapping tags, so that the content in the database remains as human readable as
possible.

Example:
Make sure nonTypoTagStdWrap operates on content outside <typolist> and <typohead> only:
tt_content.text.20.parseFunc.tags.typolist.breakoutTypoTagContent = 1
tt_content.text.20.parseFunc.tags.typohead.breakoutTypoTagContent = 1
... and no
 before typohead.
tt_content.text.20.parseFunc.tags.typohead.stdWrap.wrap >

57

TypoScript Reference - doc_core_tsref Functions

Setting up nonTypoTagStdWrap to wrap the text with P-tags
tt_content.text.20.parseFunc.nonTypoTagStdWrap >
tt_content.text.20.parseFunc.nonTypoTagStdWrap.encapsLines {
 encapsTagList = div,p
 remapTag.DIV = P
 wrapNonWrappedLines = <P style="margin:0 0 0;">|</P>

 # Forcing these attributes onto the encapsulation-tags if any
 addAttributes.P {
 style=margin:0 0 0;
 }
 innerStdWrap_all.ifEmpty =
 innerStdWrap_all.textStyle < tt_content.text.20.textStyle
}
finally removing the old textstyle formatting on the whole bodytext part.
tt_content.text.20.textStyle >
... and
-tag after the content is not needed either...
tt_content.text.20.wrap >

This is an example of how to wrap traditional tt_content bodytext with <P> tags, setting the line-
distances to regular space like that generated by a
 tag, but staying compatible with the RTE
features such as assigning classes and alignment to paragraphs.

tableStyle
This is used to style a table-tag. The input is wrapped by this table-tag

Property: Data type: Description: Default:

align align /stdWrap

border int /stdWrap

cellspacing int /stdWrap

cellpadding int /stdWrap

color.field string Set to field name from the $cObj->data-array

color.default
color.1
color.2

string [default],[1],[2] = User defined

params <TABLE>-params

[tsref:->tableStyle]

Example:
styles.content.tableStyle {
 align.field = text_align
 border.field = table_border
 cellspacing.field = table_cellspacing
 cellpadding = 1

 color.field = table_bgColor
 color.default = {$styles.content.tableStyle.color}
 color.1 = {$styles.content.tableStyle.color1}
 color.2 = {$styles.content.tableStyle.color2}
}

addParams
Property: Data type: Description: Default:

_offset int Use this to define which tag you want to manipulate.
1 is the first tag in the input, 2 is the second, -1 is the last, -2 is
the second last

1

58

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

(array of strings) string /stdWrap This defines the content of each added property to the tag.
If there is a tag-property with this name already (case-
sensitive!) that property will be overridden!
If the returned value is a blank string (but not zero!) then the
existing (if any) property will not be overridden.

[tsref:->addParams]

Example:
page.13 = TEXT
page.13.value = <tr><td valign=top>
page.13.addParams.bgcolor = {$menuCol.bgColor}
page.13.addParams._offset = -1

Result example:

<tr><td valign="top" bgcolor="white">

(This example adds the 'bgColor' property to the value of the TEXT cObject, if the content is not "".
(zero counts as a value here!))

filelink
Input is a filename in the path "path".

icon, size and file are rendered in the listed order.

Property: Data type: Description: Default:

path path
/stdWrap

Example:
path = "uploads/media/"

icon boolean
/stdWrap

Set, if an icon should be shown.

The filename of the icon used is the one of the filetype of the file
given in "path" (see above) plus extension (by default gif). E.g. for
CSS files the icon file "css.gif" will be used by default.
If for a certain filetype no icon file is found in icon.path, the file
"default" plus extension (e.g. "default.gif") will be used.

Since TYPO3 4.7 the following sub-properties are available:
path: Path to the icon set (default:
typo3/sysext/cms/tslib/media/fileicons/)
ext: File extension of icons (default: gif)
widthAttribute: Width of the icons in pixels (default: 18)
heightAttribute: Height of the icons in pixels (default: 16)
These sub-properties all have stdWrap available.

icon_image_ext_l
ist

list of image
extensions
/stdWrap

This is a comma separated list of those file extensions that should
render as thumbnails instead of icons.

icon_thumbSize string
/stdWrap

Defines the size of the thumbnail in pixels.

"icon" needs to be set for the option to take effect and the file
extension of the image file must be part of "icon_image_ext_list".

You can set one or two values, see the examples. If you set two
values, the first value will define the max width and the second
one the max height. The aspect ratio of the original image will be
preserved.

Examples:
icon_thumbSize = 150
icon_thumbSize = 40x40

iconCObject cObject Enter a cObject to use alternatively for the icons, e.g. IMAGE type.
If this is set, it'll substitute the use of the thumbs-script for display
of thumbnails.

59

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

icon_link boolean If the icon should be linked also

labelStdWrap ->stdWrap stdWrap options for the label (by default the label is the filename)
before being wrapped with the A-tags.
Use this to eg. import another label from a database field or such.

wrap wrap
/stdWrap

Wraps the links.

ATagBeforeWra
p

boolean If set, the link is first wrapped with ".wrap" and then the <A>-tag.

file ->stdWrap stdWrap of the label (by default the label is the filename) after
having been wrapped with A-tag!

size boolean
/stdWrap

Set if size should be shown

jumpurl boolean Decides if the link should call the script with the jumpurl
parameter in order to register any clicks in the stat.
This has the advantage that any clicks on the file will register in
the stat.
The disadvantage is, that users cant right-click and select "Save
Target As" in the browser.

Extra properties:
 .secure = [boolean]
If set, then the file pointed to by jumpurl is NOT redirected to, but
rather it's read from the file and returned with a correct header.
This option adds a hash and locationData to the URL and there
MUST be access to the record in order to download the file. If the
file position on the server is furthermore secured by a .htaccess file
preventing ANY access, you've got secure download here!

 .secure.mimeTypes = list of mimetypes
Syntax: [ext] = [mimetype]

 .parameter = [string/stdWrap]
By default the jumpurl link will use the current pid and typeNum.
If you need alternative values (e.g. for logging) you can specify
them here.
For options see typolink.parameter.

Example:
jumpurl.secure = 1
jumpurl.secure.mimeTypes = pdf=application/pdf,
doc=application/msword

target target
/stdWrap

stdWrap ->stdWrap

ATagParams <A>-
params
/stdWrap

Additional parameters

Example:
class="board"

removePrepende
dNumbers

boolean if set, any 2-digit prepended numbers ("eg _23") in the filename is
removed.

altText
titleText

string
/stdWrap

For icons (image made with "iconCObject" must have their own
properties)

If no alttext is specified, it will use an empty alttext

emptyTitleHandl
ing

string
/stdWrap

Value can be "keepEmpty" to preserve an empty title attribute, or
"useAlt" to use the alt attribute instead.

useAlt

60

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

longdescURL string
/stdWrap

For icons (image made with "iconCObject" must have their own
properties)

"longdesc" attribute (URL pointing to document with extensive
details about image).

[tsref:->filelink]

Example:
 1.filelink {
 path = uploads/media/
 icon = 1
 icon.wrap = <td> | </td>
 size = 1
 size.wrap = <td> | </td>
 file.fontTag = {$styles.content.uploads.wrap}
 file.wrap = <td> | </td>
 jumpurl = 1
 target = _blank
 stdWrap = <tr> | </tr>
 }

round
(Since TYPO3 4.6) With this property you can round the value up, down or to a certain number of
decimals. For each roundType the according PHP function will be used.

The value will be converted to a float value before applying the selected round method.

Property: Data type: Description: Default:

roundType string
/stdWrap

Round method which should be used.

Possible keywords:
- ceil: Round the value up to the next integer.
- floor: Round the value down to the previous integer.
- round: Round the value to the specified number of decimals.

round

decimals integer
/stdWrap

Number of decimals the rounded value will have. Only used with the
roundType "round". Defaults to 0, so that your input will in that case
be rounded up or down to the next integer.

0

[tsref:->round]

Examples:
lib.number = TEXT
lib.number {
 value = 3.14159
 round.roundType = round
 round.decimals = 2
}

This returns 3.14.

numberFormat
With this property you can format a float value and display it as you want, for example as a price. It is
a wrapper for the number_format() function of PHP.

You can define how many decimals you want and which separators you want for decimals and
thousands.

Since the properties are finally used by the PHP function number_format(), you need to make sure that
they are valid parameters for that function. Consult the PHP manual, if unsure.

Property: Data type: Description: Default:

decimals integer Number of decimals the formatted number will have. Defaults to 0, 0

61

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

/stdWrap so that your input will in that case be rounded up or down to the
next integer.

dec_point string
/stdWrap

Character that divides the decimals from the rest of the number.
Defaults to ".".

.

thousands_sep string
/stdWrap

Character that divides the thousands of the number. Defaults to ",";
set an empty value to have no thousands separator.

,

[tsref:->numberFormat]

Examples:
lib.myPrice = TEXT
lib.myPrice {
 value = 0.8
 numberFormat {
 decimals = 2
 dec_point.cObject = TEXT
 dec_point.cObject {
 value = .
 lang.de = ,
 }
 }
 noTrimWrap = || €|
}
Will basically result in "0.80 €", but for German in "0,80 €".

lib.carViews = CONTENT
lib.carViews {
 table = tx_mycarext_car
 select.pidInList = 42
 renderObj = TEXT
 renderObj {
 field = views
 # By default use 3 decimals or
 # use the number given by the Get/Post variable precisionLevel, if set.
 numberFormat.decimals = 3
 numberFormat.decimals.override.data = GP:precisionLevel
 numberFormat.dec_point = ,
 numberFormat.thousands_sep = .
 }
}
Could result in something like "9.586,007".

parseFunc
This object is used to parse some content for stuff like special typo tags, the "makeLinks"-things and so
on...

Example:

This example takes the content of the field "bodytext" and parses it through the makelinks-functions
and substitutes all <LINK> and <TYPOLIST>-tags with something else.

tt_content.text.default {
 20 = TEXT
 20.field = bodytext
 20.wrap = |

 20.brTag =

 20.parseFunc {
 makelinks = 1
 makelinks.http.keep = path
 makelinks.http.extTarget = _blank
 makelinks.mailto.keep = path
 tags {
 link = TEXT
 link {
 current = 1
 typolink.extTarget = _blank
 typolink.target={$cLinkTagTarget}
 typolink.wrap = |
 typolink.parameter.data = parameters : allParams

62

TypoScript Reference - doc_core_tsref Functions

 }

 typolist < tt_content.bullets.default.20
 typolist.trim = 1
 typolist.field >
 typolist.current = 1
 }
 }
}

Property: Data type: Description: Default:

externalBlocks list of
tagnames/
+properties

This allows you to pre-split the content passed to parseFunc so that
only content outside the blocks with the given tags is parsed.
Extra properties:
.[tagname] {
 callRecursive = [boolean]; If set, the content of the block is
directed into parseFunc again. Otherwise the content is just passed
through with no other processing than stdWrap (see below)
 callRecursive.dontWrapSelf = [boolean]; If set, the tags of the
block is not wrapped around the content returned from parseFunc.
 callRecursive.alternativeWrap = Alternative wrapping instead of
the original tags.
 callRecursive.tagStdWrap = ->stdWrap processing of the block-
tags.
 stdWrap = ->stdWrap processing of the whole block (regardless of
whether callRecursive was set.)
 stripNLprev = [boolean]; Strips off last linebreak of the previous
outside block
 stripNLnext = [boolean]; Strips off first linebreak of the next
outside block
 stripNL = [boolean]: Does both of the above.

 HTMLtableCells = [boolean]; If set, then the content is expected
to be a table and every table-cell is traversed.
 # Below, default is all cells and 1,2,3... overrides for specific cols.
 HTMLtableCells.[default/1/2/3/...] {
 callRecursive = [boolean]; The content is parsed through current
parseFunc
 stdWrap = ->stdWrap processing of the content in the cell
 tagStdWrap = -> The <TD> tag is processed by ->stdWrap
 }
 HTMLtableCells.addChr10BetweenParagraphs = [boolean]; If
set, then all </P><P> appearances will have a chr(10) inserted between
them
}

Example:
This example is used to split regular bodytext content so that tables
and blockquotes in the bodytext are processed correctly. The
blockquotes are passed into parseFunc again (recursively) and further
their top/bottom margins are set to 0 (so no apparent line breaks are
seen)
The tables are also displayed with a number of properties of the cells
overridden.

tt_content.text.20.parseFunc.externalBlocks {
 blockquote.callRecursive=1
 blockquote.callRecursive.tagStdWrap.HTMLparser =
1
 blockquote.callRecursive.tagStdWrap.HTMLparser {
 tags.blockquote.fixAttrib.style.list = margin-
bottom:0;margin-top:0;
 tags.blockquote.fixAttrib.style.always=1
 }
 blockquote.stripNLprev=1
 blockquote.stripNLnext=1

 table.stripNL=1
 table.stdWrap.HTMLparser = 1
 table.stdWrap.HTMLparser {
 tags.table.overrideAttribs = border=0

63

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description: Default:

cellpadding=2 cellspacing=1 style="margin-top:
10px; margin-bottom: 10px;"
 tags.tr.allowedAttribs=0
 tags.td.overrideAttribs = valign="top"
bgcolor="#eeeeee" style="font-family: Verdana,
Geneva, Arial, Helvetica, sans-serif; font-size:
10px;"
 }
}

constants boolean The top-level defined constants will be substituted in the text. The
constant-name is wrapped in "###".

Example:
constants.EMAIL = email@email.com

(NOTE: This is top-level TypoScript!)
All cases of the string ###EMAIL### will be substituted in the text.
The constants are defined as a top-level object.

short array of strings Like constants above, but local.

Example:
This substitutes all occurrences of "T3" with "TYPO3 CMS" and
"T3web" with a link to typo3.com.

short {
 T3 = TYPO3 CMS
 T3web = typo3
}

plainTextStdW
rap

->stdWrap This is stdWrap properties for all non-tag content.

userFunc function name This passes the non-tag content to a function of your own choice.
Similar to e.g. .postUserFunc in stdWrap.
Remember the function name must possibly be prepended "user_"

nonTypoTagSt
dWrap

->stdWrap Like .plainTextStdWrap. Difference:
.plainTextStdWrap works an ALL non-tag pieces in the text.
.nonTypoTagStdWrap is post processing of all text (including tags)
between special TypoTags (unless .breakoutTypoTagContent is not
set for the TypoTag)

nonTypoTagUs
erFunc

function name Like .userFunc. Differences is (like nonTypoTagStdWrap) that this is
post processing of all content pieces around TypoTags while
.userFunc processes all non-tag content. (Notice:
.breakoutTypoTagContent must be set for the TypoTag if it's
excluded from nonTypoTagContent)

sword wrap Marks up any words from the GET-method send array sword_list[] in
the text. The word MUST be at least two characters long!
NOTE: works only with $GLOBALS['TSFE']->no_cache==1

<font
color="red
">|

makelinks boolean /
->makelinks

Convert webadresses prefixed with "http://" and mail-adresses
prefixed with "mailto:" to links.

tags ->tags Here you can define custom tags that will parse the content to
something.

allowTags list of strings List of tags, which are allowed to exist in code!
Highest priority: If a tag is found in allowTags, denyTags is ignored!!

denyTags list of strings List of tags, which may NOT exist in code! (use "*" for all.)
Lowest priority: If a tag is NOT found in allowTags, denyTags is
checked. If denyTags is not "*" and the tag is not found in the list,
the tag may exist!

Example:
This allows , <I>, <A> and -tags to exist

.allowTags = b,i,a,img

.denyTags = *

if ->if if "if" returns false the input value is not parsed, but returned
directly.

64

mailto:email@email.com

TypoScript Reference - doc_core_tsref Functions

[tsref:->parseFunc]

makelinks
makelinks substitutes all appearances of

http://www.webaddress.rld

mailto:name@email.rld

... to a real linktag.

Property: Data type: Description: Default:

http.extTarget target The target of the link _top

http.wrap wrap
/stdWrap

wrap around the link

http.ATagBefore
Wrap

boolean If set, the link is first wrapped with http.wrap and then the <A>-tag.

http.keep list:
"scheme","p
ath","query"

As default the link-text will be the full domain-name of the link.

Examples:
http://www.webaddress.rld/test/doc.php?id=3
"": www.webaddress.rld
"scheme": http://www.webaddress.rld
"scheme,path":
http://www.webaddress.rld/test/doc.php
"scheme,path,query":
http://www.webaddress.rld/test/doc.php?id=3

http.ATagParams <A>-params
/stdWrap

Additional parameters

Example:
class="board"

mailto.wrap wrap
/stdWrap

wrap around the link

mailto.ATagBefor
eWrap

boolean If set, the link is first wrapped with mailto.wrap and then the <A>-
tag.

mailto.ATagPara
ms

<A>-params
/stdWrap

Additional parameters

Example:
class="board"

[tsref:->makelinks]

65

TypoScript Reference - doc_core_tsref Functions

tags
Used to create custom tags and define how they should be parsed. This is used in conjunction with
parseFunc.

Property: Data type: Description: Default:

Array... cObject
+stripNL
+
breakoutTyp
oTagContent

Every entry in the Array... corresponds to a tag, that will be parsed.
The elements MUST be in lowercase.
Every entry must be set to a content-object.
"current" is set to the content of the tag, eg <TAG>content</TAG>:
here "current" is set to "content".
Parameters:
Parameters of the tag is set in $cObj->parameters (key is lowercased):
<TAG COLOR="red">content</TAG>
=> $cObj->parameters[color] = red
Special added properties to the content-object:
$cObj->parameters[allParams]: this is automatically set to the whole
parameter-string of the tag, eg ' color="red"'
[cObject].stripNL: is a boolean option, which tells parseFunc that
NewLines before and after content of the tag should be stripped.
[cObject].breakoutTypoTagContent: is a boolean option, which tells
parseFunc that this block of content is breaking up the nonTypoTag
content and that the content after this must be re-wrapped.

Examples:
tags.bold = TEXT
tags.bold {
 current = 1
 wrap = |
}
tags.bold.stripNL = 1

[tsref:->tags]

Example:

This example creates 4 custom tags. The <LINK>-, <TYPOLIST>-, <GRAFIX>- and <PIC>-tags

<LINK> is made into a typolink and provides an easy way of creating links in text

<TYPOLIST> is used to create bullet-lists

<GRAFIX> will create a gif-file 90x10 pixels where the text is the content of the tag.

<PIC> lets us place an image in the text. The content of the tag should be the image-reference in
"fileadmin/"

 tags {
 link = TEXT
 link {
 current = 1
 typolink.extTarget = _blank
 typolink.target={$cLinkTagTarget}
 typolink.wrap = |
 typolink.parameter.data = parameters : allParams
 }

 typolist < tt_content.bullets.default.20
 typolist.trim = 1
 typolist.field >
 typolist.current = 1

 grafix = IMAGE
 grafix {
 file = GIFBUILDER
 file {
 XY = 90,10
 100 = TEXT
 100.text.current = 1
 100.offset = 5,10

66

TypoScript Reference - doc_core_tsref Functions

 100.nicetext = 1
 }
 }
 pic = IMAGE
 pic.file.import = fileadmin/
 pic.file.import.current = 1
 }

HTMLparser
Property: Data type: Description:

allowTags list of tags Default allowed tags

tags.[tagname] boolean/-
>HTMLparser_tags

Either set this property to 0 or 1 to allow or deny the tag. If you enter
->HTMLparser_tags properties, those will automatically overrule this
option, thus it's not needed then.
[tagname] in lowercase.

localNesting list of tags, must be
among preserved
tags

List of tags (among the already set tags), which will be forced to have
the nesting-flag set to true

globalNesting (ibid) List of tags (among the already set tags), which will be forced to have
the nesting-flag set to "global"

rmTagIfNoAttrib (ibid) List of tags (among the already set tags), which will be forced to have
the rmTagIfNoAttrib set to true

noAttrib (ibid) List of tags (among the already set tags), which will be forced to have
the allowedAttribs value set to zero (which means, all attributes will
be removed.

removeTags (ibid) List of tags (among the already set tags), which will be configured so
they are surely removed.

keepNonMatchedTags boolean / "protect" If set (true=1), then all tags are kept regardless of tags present as keys
in $tags-array.
If "protect", then the preserved tags have their <> converted to <
and >
Default is to REMOVE all tags, which are not specifically assigned to
be allowed! So you might probably want to set this value!

htmlSpecialChars -1 / 0 / 1 / 2 This regards all content which is NOT tags:
"0" means "disabled" - nothing is done
"1" means the content outside tags is htmlspecialchar()'ed (PHP-
function which converts &"<> to &...;)
"2" is the same as "1" but entities like "&" or "ê" are
untouched.
"-1" does the opposite of "1" - converts < to <, > to >, " to "
etc.

xhtml_cleaning boolean Cleans up the content for XHTML compliance. Still slightly
experimental and supports only some clean up operations (like
conversion tags and attributes to lower case).

[page:->HTMLparser; tsref:->HTMLparser]

HTMLparser_tags
Property: Data type: Description:

overrideAttribs string If set, this string is preset as the attributes of the tag.

allowedAttribs '0' (zero) = no attributes allowed, '[commalist of attributes]' = only
allowed attributes. If blank/not set, all attributes are allowed.

fixAttrib.[attribute].set string Force the attribute value to this value.

fixAttrib.[attribute].unset boolean If set, the attribute is unset.

fixAttrib.[attribute].default string If no attribute exists by this name, this value is set as default value
(if this value is not blank)

67

TypoScript Reference - doc_core_tsref Functions

Property: Data type: Description:

fixAttrib.[attribute].always boolean If set, the attribute is always processed. Normally an attribute is
processed only if it exists

fixAttrib.[attribute].trim
fixAttrib.[attribute].intval
fixAttrib.[attribute].upper
fixAttrib.[attribute].lower

boolean If any of these keys are set, the value is passed through the
respective PHP-functions.

fixAttrib.[attribute].range [low],[high] Setting integer range.

fixAttrib.[attribute].list list of
values,
trimmed

Attribute value must be in this list. If not, the value is set to the
first element.

fixAttrib.
[attribute].removeIfFalse

boolean/"bl
ank" string

If set, then the attribute is removed if it is "false". If this value is set
to "blank" then the value must be a blank string (that means a
"zero" value will not be removed)

fixAttrib.
[attribute].removeIfEquals

string If the attribute value matches the value set here, then it is removed.

fixAttrib.
[attribute].casesensitiveComp

boolean If set, the comparison in .removeIfEquals and .list will be case-
sensitive. At this point, it's insensitive.

fixAttrib.
[attribute].prefixLocalAnchors

integer If the first char is a "#" character (anchor of fx. <a> tags) this will
prefix either a relative or absolute path.
If the value is "1" you will get the absolute path
(t3lib_div::getIndpEnv('TYPO3_REQUEST_URL'))
If the value is "2" you will get the relative path (stripping of
t3lib_div::getIndpEnv('TYPO3_SITE_URL'))

Example:

...fixAttrib.href.prefixLocalAnchors = 1

fixAttrib.
[attribute].prefixRelPathWith

string If the value of the attribute seems to be a relative URL (no scheme
like "http" and no "/" as first char) then that value of this property
will be prefixed the attribute.

Example:

...fixAttrib.src.prefixRelPathWith =
http://192.168.230.3/typo3/32/dummy/

fixAttrib.[attribute].userFunc function
reference

User function for processing of the attribute.

Example:

...fixAttrib.href.userFunc = tx_realurl->test_urlProc

protect boolean If set, the tag <> is converted to < and >

remap string If set, the tagname is remapped to this tagname

rmTagIfNoAttrib boolean If set, then the tag is removed if no attributes happend to be there.

nesting If set true, then this tag must have starting and ending tags in the
correct order. Any tags not in this order will be discarded. Thus
'<I></I>' will be converted to '<I></I>'.
Is the value "global" then true nesting in relation to other tags
marked for "global" nesting control is preserved. This means that if
 and <I> are set for global nesting then this string
'<I></I>' is converted to ''

[page:->HTMLparser_tags; tsref:->HTMLparser_tags]

cache
(Since TYPO3 4.7) Stores the rendered content into the caching framework and reads it from there.
This allows you to reuse this content without prior rendering. The presence of "cache.key" will trigger
this feature. It is evaluated twice:

• Content is read from cache directly after the stdWrapPreProcess hook and before

68

TypoScript Reference - doc_core_tsref Functions

"setContentToCurrent". If there is a cache entry for the given cache key, stdWrap processing
will stop and the cached content will be returned. If no cache content is found for this key, the
stdWrap processing continues as usual.

• Writing to cache happens at the end of rendering, directly before the stdWrapPostProcess hook
is called and before the "debug*" functions. The rendered content will be stored in the cache, if
cache.key was set. The configuration options cache.tags and cache.lifetime allow to control the
caching.

Note: This feature relies on the caching framework, which needs to be enabled for this feature to work.
Otherwise content will not be cached, but rendered on every call.

Property: Data type: Description: Default:

key string
/stdWrap

The cache identifier that is used to store the rendered content into
the cache and to read it from there.

Note: Make sure to use a valid cache identifier. Also take care to
choose a cache key that is accurate enough to distinguish different
versions of the rendered content while being generic enough to stay
efficient.

lifetime mixed
/stdWrap

Lifetime of the content in cache.
Allows you to determine the lifetime of the cached object
independently of the lifetime of the cached version of the page on
which it is used.

Possible values are any positive integer and the keywords "unlimited"
and "default":
integer: Lifetime in seconds.
"unlimited": Cached content will not expire unless actively purged
by id or by tag or if the complete cache is flushed.
"default": The default cache lifetime as configured in
config.cache_period is used.

default

tags string
/stdWrap

Can hold a comma-separated list of tags. These tags will be attached
to the cached content into the cache_hash storage (not into
cache_pages) and can be used to purge the cached content.

[tsref:->cache]

Examples:
5 = TEXT
5 {
 cache.key = mycurrenttimestamp
 cache.tags = tag_a,tag_b,tag_c
 cache.lifetime = 3600
 data = date : U
 strftime = %H:%M:%S
}

In the above example the current time will be cached with the key "mycurrenttimestamp". This key is
fixed and does not take the current page id into account. So if you add this to your TypoScript, the
cObject will be cached and reused on all pages (showing you the same timestamp).

5 = TEXT
5 {
 cache.key = mycurrenttimestamp_{page:id}_{TSFE:sys_language_uid}
 cache.key.insertData = 1
}

Here a dynamic key is used. It takes the page id and the language uid into account making the object
page and language specific.

69

TypoScript Reference - doc_core_tsref Setup

Setup
Top-level objects

Property: Data type: Description: Default:

types readonly Types (internal)
type=99 reserved for plaintext display

resources readonly Resources in list (internal)

sitetitle readonly SiteTitle (internal)

config ->CONFIG Global configuration.
These values are stored with cached pages which means they are
also accessible when retrieving a cached page.

constants ->CONSTANTS Site-specific constants, eg. a general email-adresse. These
constants may be substituted in the text throughout the pages. The
substitution is done by parseFunc. (Option: constants=1)

FEData ->FE_DATA Here you can configure how data submitted from the front-end
should be processed, which script and so on.

includeLibs Array of strings With this you can include php-files with function libraries for use
in your includescript in TYPO3.
Please see the PAGE-object, which has the same property.

Other reserved
TLO's:

plugin
tt_*
temp
styles
lib
_GIFBUILDER

These top-level object names are reserved. That means you can
risk static_templates to use them:
"plugin" is used for rendering of special content like boards, e-
commerce solutions, guestbooks and so on. Normally set from
static_templates. Please see separate description below!
"tt_*", eg tt_content (from "content (default)") is used to render
content from tables.
"temp" and "styles" are used for conde-libraries you can copy
during parse-time, but they are not saved with the template in
cache. "temp" / "styles" are unset before the template is cached!
Therefore use these names to store temporary data.
"lib" can be used for a "library" of code, you can reference in
TypoScript (unlike "styles" which is unset)

... ->PAGE Start a new page.

Example:
page = PAGE
page.typeNum = 1

Guidelines:
Good, general PAGE object names to use are such as:
page for the main page with content
frameset, frameset2 for framesets.
top, left, menu, right, bottom, border for top and menu frames etc.
These are just recommendations. Especially the name 'page' for the
content bearing page is very common.

... (whatever) If a top-level object is not a PAGE-object it could be used as a
temporary repository for setup. In this case you should use the
"temp" or "styles" objects.
"tt_..." is normally used to define the setup of content-records. Eg.
"tt_content" would be used for the tt_content-table as default. See
the "CONTENT"-cObject

[tsref:(TLO)]

70

TypoScript Reference - doc_core_tsref Setup

The "plugin" TLO
This is used for extensions in TYPO3 set up as frontend plugins. Typically you can set configuration
properties of the plugin here. Say you have an extension with the key "myext" and it has a frontend
plugin named "tx_myext_pi1" then you would find the TypoScript configuration at the position
"plugin.tx_myext_pi1" in the object tree!

Most plugins are USER or USER_INT objects which means that they have at least 1 or 2 reserved
properties. Furthermore this table outlines some other default properties. Generally system properties
are prefixed with an underscore:

Property: Data type: Description: Default:

userFunc Property setting up the USER / USER_INT object of the
plugin

includeLibs Property setting up the USER / USER_INT object of the
plugin

_CSS_DEFAULT_STY
LE

string Use this to have some default CSS styles inserted in the
header section of the document. Most likely this will
provide a default acceptable display from the plugin, but
should ideally be cleared and moved to an external
stylesheet.
This value is for all plugins read by the pagegen script
when making the header of the document.

_DEFAULT_PI_VARS.
[piVar-key]

string Allows you to set default values of the piVars array
which most plugins are using (and should use) for data
exchange with themselves.
This works only if the plugin calls $this-
>pi_setPiVarDefaults().

_LOCAL_LANG.[lang-
key].[label-key]

string Can be used to override the default locallang labels for
the plugin.

[tsref:plugin]

71

TypoScript Reference - doc_core_tsref Setup

"CONFIG"
In typo3/sysext/cms/tslib/ this is known as $GLOBALS['TSFE']->config['config'], thus the property
"debug" below is accessible as $GLOBALS['TSFE']->config['config']['debug'].

Property: Data type: Description: Default:

defaultGetVars array Allows to set default values for GET parameters. Default
value is taken only if the GET parameter isn't defined. Array
notation is done with dots, e.g.:
test[var1] will be written as text.var1

Example:
config.defaultgetVars {
 test.var1.var2.p3 = 15
 L = 3
}

linkVars list HTTP_GET_VARS, which should be passed on with links in
TYPO3. This is compiled into a string stored in
$GLOBALS['TSFE']->linkVars

The values are rawurlencoded in PHP.

You can specify a range of valid values by appending a ()
after each value. If this range does not match, the variable
won't be appended to links. This is very important to prevent
that the cache system gets flooded with forged values.

The range may contain one of these values:
• [a]-[b] - A range of allowed integer values
• int - Only integer values are allowed
• [a]|[b]|[c] - A list of allowed strings (whitespaces will be

removed)
• /[regex]/ - Match against a regular expression (PCRE

style)

Example:
config.linkVars = L, print

This will add "&L=[L-value]&print=[print-value]" to all links in
TYPO3.

config.linkVars = L(1-3), print
Same as above, but "&L=[L-value]" will only be added if the
current value is 1, 2 or 3.

Note: Do not include the "type" parameter in the linkVars
list, as this can result in unexpected behavior.

uniqueLinkVars boolean It might happen that TYPO3 generates links with the same
parameter twice or more. This is no problem because only
the last parameter is used, thus the problem is just a cosmetic
one.

1

MP_defaults string Allows you to set a list of page id numbers which will always
have a certain "&MP=..." parameter added.

Syntax:
[id],[id],... : [MP-var] | [id],[id],... : [MP-var] | ...

Example:
config.MP_defaults = 36,37,48 : 2-207

This will by default add "&MP=2-207" to all links pointing to
pages 36,37 and 48

72

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

MP_mapRootPoints list of
PIDs/strin
g

Defines a list of ID numbers from which the MP-vars are
automatically calculated for the branch.
The result is used just like MP_defaults are used to find MP-
vars if none has been specified prior to the call to
t3lib_tstemplate::linkData().
You can specify "root" as a special keyword in the list of IDs
and that will create a map-tree for the whole site (but this
may be VERY processing intensive if there are many pages!).
The order of IDs specified may have a significance; Any ID in
a branch which is processed already (by a previous ID root
point) will not be processed again.

MP_disableTypolinkC
losestMPvalue

boolean If set, the typolink function will not try to find the closest MP
value for the id.

renderCharset string Charset used for the internal rendering of the page content. It
is highly recommended that this value is the same as the
charset of the content coming from the main data source (eg.
the database). Thus you don't need to do any other
conversion.
All strings from locallang files and locale strings are (and
should be) converted to "renderCharset" during rendering.

If you need another output charset than the render charset,
see "metaCharset" below.

Until TYPO3 4.7 you can set $TYPO3_CONF_VARS['BE']
['forceCharset']. If you do, its value is used for
"renderCharset" by default. It is highly recommended to use
$TYPO3_CONF_VARS['BE']['forceCharset'] = "utf-8" for
multilingual websites in TYPO3. If you set this, you don't
have to worry about renderCharset and metaCharset - the
same charset is used in the whole system.

Note: In TYPO3 4.7 $TYPO3_CONF_VARS['BE']
['forceCharset'] has been removed. Since this version TYPO3
internally always uses UTF-8 by default.

Until TYPO3
4.7: The value
of
$TYPO3_CON
F_VARS['BE']
['forceCharset']
if set,
otherwise
"iso-8859-1"
Since TYPO3
4.7: "utf-8"

metaCharset string Charset used for the output document. For example in the
meta tag:

<meta charset=... />

It is used for a) HTML meta tag, b) HTTP header (unless
disabled with .disableCharsetHeader) and c) xhtml prologues
(if available).

If renderCharset and metaCharset are different, the output
content is automatically converted to metaCharset before
output and likewise are values posted back to the page
converted from metaCharset to renderCharset for internal
processing. This conversion takes time of course so there is
another good reason to use the same charset for both.

value of
".renderCharse
t"

disableCharsetHeader boolean By default a header "content-type:text/html; charset..." is sent.
This option will disable that.

73

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

sendCacheHeaders boolean If set, TYPO3 will output cache-control headers to the client
based mainly on whether the page was cached internally. This
feature allows client browsers and/or reverse proxies to take
load off TYPO3 websites.

The conditions for allowing client caching are:
• page was cached
• No *_INT or *_EXT objects were on the page (eg.

USER_INT)
• No frontend user is logged in
• No backend user is logged in

If these conditions are met, the headers sent are:
• Last-Modified [SYS_LASTCHANGED of page id]
• Expires [expire time of page cache]
• Etag [md5 of content]
• Cache-Control: max-age: [seconds til expiretime]
• Pragma: public

In case caching is not allowed, these headers are sent to
avoid client caching:

• Cache-Control: private

Notice that enabling the browser caches means you have to
consider how log files are written. Because when a page is
cached on the client it will not invoke a request to the
webserver, thus not writing the request to the log. There
should be ways to circumvent these problems but they are
outside the domain of TYPO3 in any case.

Tip: Enabling cache-control headers might confuse editors
seeing old content served from the browser cache. "Shift-
Reload" will bypass both browser- and reverse-proxy caches
and even make TYPO3 regenerate the page. Teach them that
trick!

Thanks to Ole Tange, www.forbrug.dk for co-authoring this
feature.

sendCacheHeaders_on
lyWhenLoginDeniedIn
Branch

boolean If this is set, then cache-control headers allowing client
caching is sent only if user-logins are disabled for the branch.
This feature makes it easier to manage client caching on sites
where you have a mixture of static pages and dynamic
sections with user logins.

The background problem is this: In TYPO3 the same URL
can show different content depending on whether a user is
logged in or not. If a user is logged in, cache-headers will
never allow client caching. But if the same URL was visited
without a login prior to the login (allowing caching) the user
will still see the page from cache when logged in (and so
thinks he is not logged in anyway)! The only general way to
prevent this is to have a different URL for pages when users
are logged in (which the extension "realurl" can accomplish).

Another way to solve the problem is using this option in
combination with disabling and enabling logins in various
sections of the site. In the page records ("Advanced" page
types) you can disable frontend user logins for branches of
the page tree. Since many sites only needs the login in a
certain branch of the page tree, disabling it in all other
branches makes it much easier to use cache-headers in
combination with logins; Cache-headers should simply be sent
when logins are not allowed and never be send when logins
are allowed! Then there will never be problems with logins
and same-URLs.

74

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

additionalHeaders strings
divided by
"|"

This property can be used to define additional HTTP
headers. Separate each header with a vertical line "|".

Examples:
Content-type: text/vnd.wap.wml
(this will send a content-header for a WAP-site)

Content-type: image/gif | Expires: Mon, 25 Jul 2011 05:00:00
GMT
(this will send a content-header for a GIF-file and an Expires
header)

Location: www.typo3.com
(This redirects the page to www.typo3.com)

By default TYPO3 sends a "Content-Type" header with the
defined encoding, unless this is disabled using
config.disableCharsetHeader (see above). It then sends cache
headers, if configured (see above). Then come the additional
headers, plus finally a "Content-Length" header, if enabled
(see below).

enableContentLength
Header

boolean If set, a header "content-length: [bytes of content]" is sent.

If a PHP_SCRIPT_EXT object is detected on the page or if
the Backend user is logged in, this is disabled. The reason is
that the content length header cannot include the length of
these objects and the content-length will cut of the length of
the document in some browsers.

doctype string If set, then a document type declaration (and an XML
prologue) will be generated. The value can either be a
complete doctype or one of the following keywords:

"xhtml_trans" for the XHTML 1.0 Transitional doctype.
"xhtml_frames" for the XHTML 1.0 Frameset doctype.
"xhtml_strict" for the XHTML 1.0 Strict doctype.
"xhtml_basic" for the XHTML basic doctype.
"xhtml_11" for the XHTML 1.1 doctype.
"xhtml+rdfa_10" for the XHTML+RDFa 1.0 doctype.
"xhtml_2" for the XHTML 2 doctype.
"html5" for the HTML5 doctype.
"none" for NO doctype at all.

Note: In TYPO3 4.4 the keyword for HTML5 was "html_5".
This spelling was deprecated since TYPO3 4.5 and has been
removed in TYPO3 4.7.

Note that the keywords also change the way TYPO3
generates some of the XHTML tags to ensure valid XML. If
you set doctype to a string, then you must also set
config.xhtmlDoctype (see below).

See "config.htmlTag_setParams" and
"config.htmlTag_langKey" for more details on the effect on
the html tag.

Default is the HTML 4 Transitional doctype:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

75

http://www.typo3.com/

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

doctypeSwitch boolean /
string

If set, the order of <?xml...> and <!DOCTYPE...> will be
reversed. This is needed for MSIE to be standards compliant
with XHTML.

Background:
By default TYPO3 outputs the XML/DOCTYPE in
compliance with the standards of XHTML. However a
browser like MSIE will still run in "quirks-mode" unless the <?
xml> and <DOCTYPE> tags are ordered opposite. But this
breaks CSS validation...
With this option designers can decide for themselves what
they want then.

If you want to check the compatibility-mode of your
webbrowser you can do so with a simple JavaScript that can
be inserted on a TYPO3 page like this:

page.headerData.1 = TEXT
page.headerData.1.value =
<script>alert(document.compatMode);</script>

If your browser has detected the DOCTYPE correctly it will
report "CSS1Compat"
If you are not running in compliance mode you will get some
other message. MSIE will report "BackCompat" for instance -
this means it runs in quirks-mode, supporting all the old
"browser-bugs".

xhtmlDoctype string Sets the document type for the XHTML version of the
generated page.

If config.doctype is set to a string then config.xhtmlDoctype
must be set to one of these keywords:

"xhtml_trans" for XHTML 1.0 Transitional doctype.
"xhtml_frames" for XHTML 1.0 Frameset doctype.
"xhtml_strict" for XHTML 1.0 Strict doctype.
"xhtml_basic" for XHTML basic doctype.
"xhtml_11" for XHTML 1.1 doctype.
"xhtml_2" for XHTML 2 doctype.

This is an example to use MathML 2.0 in an XHTML 1.1
document:

config.doctype (
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML
2.0//EN"
"http://www.w3.org/Math/DTD/mathml2/xhtml-
math11-f.dtd">
)
config.xhtmlDoctype = xhtml_11

Default:
same as config.doctype if set to a keyword

76

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

xmlprologue string If empty (not set) then the default XML 1.0 prologue is set,
when the doctype is set to a known keyword (eg xhtml_11):

<?xml version="1.0"
encoding="[config.renderCharset]">

If set to one of the know keywords then a standard prologue
will be set:
"xml_10" XML 1.0 prologue (see above)
"xml_11" XML 1.1 prologue

If "none" then the default XML prologue is not set.
Any other string is used as the XML prologue itself.

htmlTag_setParams string Sets the attributes for the <html> tag on the page. If you set
"config.doctype" to a keyword enabling XHTML then some
attributes are already set. This property allows you to
override any preset attributes with your own content if
needed.

Special: If you set it to "none" then no attributes will be set at
any event.

Example:
config.htmlTag_setParams =
xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en-US"

htmlTag_stdWrap ->stdWrap (Since TYPO3 4.7) Modify the whole <html> tag with stdWrap
functionality. This can be used to extend or override this tag.

namespaces array of
strings

This property enables you to add xml namespaces (xmlns) to
the <html> tag. This is especially useful if you want to add
RDFa or microformats to your html.

Example:
config.namespaces.dc =
http://purl.org/dc/elements/1.1/
config.namespaces.foaf =
http://xmlns.com/foaf/0.1/

This configuration will result in an <html> tag like

<html
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

htmlTag_langKey string Allows you to set the language value for the attributes
"xml:lang" and "lang" in the <html> tag (when using
"config.doctype = xhtml*").

The values must follow the format specified in IETF RFC
3066

Example:
config.htmlTag_langKey = en-US

en

htmlTag_dir string Sets text direction for whole document (useful for display of
Arabic, Hebrew pages).

Basically the value becomes the attribute value of "dir" for the
<html> tag.

Values:
rtl = Right-To-Left (for Arabic / Hebrew)
ltr = Left-To-Right (Default for other languages)

Example:
config.htmlTag_dir = rtl

77

http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3066.txt

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

disableImgBorderAttr boolean Returns the 'border' attribute for an tag only if the
doctype is not xhtml_strict, xhtml_11 or xhtml_2 or if the
config parameter 'disableImgBorderAttr' is not set

ATagParams <A>-
params

Additional parameters to all links in TYPO3 (excluding
menu-links)

Example:
To blur links, insert:

onFocus="blurLink(this)"

setJS_openPic boolean If set, the openPic JavaScript function is forced to be included

setJS_mouseOver boolean If set, the over() and out() JavaScript functions are forced to
be included

removeDefaultJS boolean /
string

If set, the default JavaScript in the header will be removed.
The default JavaScript is the blurLink function and browser
detection variables.

Special case: if the value is "external" then the default
JavaScript is written to a temporary file and included from
that file. See "inlineStyle2TempFile" below.

Depends on the compatibility mode (see Tools>Install>Update
wizard):
compatibility mode < 4.0: 0
compatibility mode >= 4.0: 1

Examples:
config.removeDefaultJS = external
config.removeDefaultJS = 1

removeDefaultCss boolean (Since TYPO3 4.6) Remove CSS generated by
_CSS_DEFAULT_STYLE configuration of extensions.

minifyJS boolean If set, inline or externalized (see removeDefaultJS above)
JavaScript will be minified. Minification will remove all excess
space and will cause faster page loading. Together with
removeDefaultJS = external it will significantly lower web site
traffic.

The default value depends on the compatibility mode (see
Tools>Install>Update wizard):
compatibility mode < 4.0: 0
compatibility mode >= 4.0: 1

Example:
config.minifyJS = 1

Note: JavaScript in external files in the FE will only be
minified, if a compression handler is registered using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['jsCompressHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['jsCompressHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_jsCompressHandler.php
:tx_myext_jsCompressHandler->minifyJs';

Note: This property is deprecated and will be removed with
TYPO3 6.0! Use config.compressJs instead.

78

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

compressJs boolean (Since TYPO3 4.6) Enabling this option together with
$TYPO3_CONF_VARS['FE']['compressionLevel'] in the Install
Tool delivers Frontend JavaScript files using GZIP
compression.

This can significantly reduce file sizes of linked JavaScript
files and thus decrease loading times.

Please note that this requires .htaccess to be adjusted, as
otherwise the files will not be readable by the user agent.
Please see the description of $TYPO3_CONF_VARS['FE']
['compressionLevel'] in the Install Tool.

Example:
config.compressJs = 1

Note: TYPO3 comes with a built-in compression handler, but
you can also register your own one using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['jsCompressHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['jsCompressHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_jsCompressHandler.php
:tx_myext_jsCompressHandler->compressJs';

minifyCSS boolean Setting this option will activate CSS minification.

Example:
config.minifyCSS = 1

Note: CSS in external files in the FE will only be minified, if a
compression handler is registered using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['cssCompressHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['cssCompressHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_cssCompressHandler.ph
p:tx_myext_cssCompressHandler->minifyCss';

Note: This property is deprecated and will be removed with
TYPO3 6.0! Use config.compressCss instead.

79

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

compressCss boolean (Since TYPO3 4.6) If set, CSS files will be minified and
compressed.

Minification will remove all excess space. The more
significant compression step (using gzip compression) requires
$TYPO3_CONF_VARS['FE']['compressionLevel'] to be enabled
in the Install Tool. For this to work you also need to activate
the gzip-related compressionLevel options in .htaccess, as
otherwise the compressed files will not be readable by the
user agent.

Example:
config.compressCss = 1

Note: TYPO3 comes with a built-in compression handler, but
you can also register your own one using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['cssCompressHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['cssCompressHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_cssCompressHandler.ph
p:tx_myext_cssCompressHandler->compressCss';

concatenateJsAndCss boolean Setting config.concatenateJsAndCss bundles JS and CSS files
in the FE.

Example:
config.concatenateJsAndCss = 1

Note: There are no default concatenation handlers, which
could do the concatenation. A custom concatenation handler
must be provided and registered using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['concatenateHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['concatenateHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_concatenateHandler.ph
p:tx_myext_concatenateHandler-
>concatenateFiles';

Note: This property is deprecated and will be removed with
TYPO3 6.0! Use config.concatenateJs and
config.concatenateCss instead.

0

concatenateJs boolean (Since TYPO3 4.6) Setting config.concatenateJs merges
JavaScript files referenced in the Frontend together.

Example:
config.concatenateJs = 1

Note: TYPO3 comes with a built-in concatenation handler,
but you can also register your own one using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['jsConcatenateHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['jsConcatenateHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_jsConcatenateHandler.
php:tx_myext_jsConcatenateHandler-
>concatenateJs';

80

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

concatenateCss boolean (Since TYPO3 4.6) Setting config.concatenateCss merges
Stylesheet files referenced in the Frontend together.

Example:
config.concatenateCss = 1

Note: TYPO3 comes with a built-in concatenation handler,
but you can also register your own one using
$GLOBALS['TYPO3_CONF_VARS']['FE']
['cssConcatenateHandler'].

Example:
$GLOBALS['TYPO3_CONF_VARS']['FE']
['cssConcatenateHandler'] =
t3lib_extMgm::extPath($_EXTKEY) .
'Classes/class.tx_myext_cssConcatenateHandler
.php:tx_myext_cssConcatenateHandler-
>concatenateCss';

inlineStyle2TempFile boolean If set, the inline styles TYPO3 controls in the core are written
to a file, typo3temp/stylesheet_[hashstring].css, and the header
will only contain the link to the stylesheet.
The file hash is based solely on the content of the styles.

Depends on the compatibility mode (see Tools>Install>Update
wizard):
compatibility mode < 4.0: 0
compatibility mode >= 4.0: 1

Example:
config.inlineStyle2TempFile = 1

meaningfulTempFileP
refix

integer If > 0 TYPO3 will try to create a meaningful prefix of the
given length for the temporary image files.
This works with GIFBUILDER files (using content from the
GIFBUILDER TEXT objects as a base for the prefix), menus
(using the title of the menu item) and scaled images (using the
original filename base).

ftu boolean If set, the "&ftu=...." GET-fallback identification is inserted.
"&ftu=[hash]" is always inserted in the links on the first page a
user hits. If it turns out in the next hit that the user has
cookies enabled, this variable is not set anymore as the
cookies does the job. If no cookies is accepted the "ftu"
remains set for all links on the site and thereby we can still
track the user.

You should not set this feature if grabber-spiders like
Teleport are going to grab your site!
You should not set this feature if you want search-
engines to index your site (in conjunction with the
simulateStaticDocuments feature!)

You can also ignore this feature if you're certain, website
users will use cookies.
 "ftu" means fe_typo_user ("fe" is "frontend").

false

mainScript string This lets you specify an alternative "mainScript" which is the
document that TYPO3 expects to be the default doc. This is
used in form-tags and other places where TYPO3 needs to
refer directly to the main-script of the application

index.php

81

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

pageGenScript resource Alternative page generation script for applications using
index_ts.php for initialization, caching, stating and so on.
This script is included in the global scope of index_ts.php-
script and thus you may include libraries here. Always use
include_once for libraries.
Remember not to output anything from such an included
script. All content must be set into $TSFE->content. Take
a look at typo3/sysext/cms/tslib/pagegen.php

NOTE: This option is ignored if

$TYPO3_CONF_VARS['FE']['noPHPscriptInclude']
= 1;

is set in localconf.php.

typo3/sysext/c
ms/tslib/pageg
en.php

debug boolean If set any debug-information in the TypoScript code is
output. Currently this applies only to the menu-objects

message_page_is_bein
g_generated

string Alternative HTML message that appears if a page is being
generated.
Normally when a page is being generated a temporary copy is
stored in the cache-table with an expire-time of 30 seconds.

It is possible to use some keywords that are replaced with the
corresponding values. Possible keywords are: ###TITLE###,
###REQUEST_URI###

message_preview string Alternative message in HTML that appears when the preview
function is active!

message_preview_wor
kspace

string Alternative message in HTML that appears when the preview
function is active in a draft workspace. You can use sprintf()
placeholders for Workspace title (first) and number (second).

Examples:
config.message_preview_workspace = <div
class="previewbox">Displaying workspace named
"%s" (number %s)!</div>
config.message_preview_workspace = <div
class="previewbox">Displaying workspace
number %2$s named "%1$s"!</div>

disablePreviewNotific
ation

boolean Disables the "preview" notification box completely. 0

locale_all string PHP: setlocale("LC_ALL", [value]);
value-examples: deutsch, de_DE, danish, portuguese, spanish,
french, norwegian, italian. See www.php.net for other value.
Also on linux, look at /usr/share/locale/

TSFE->localeCharset is intelligently set to the assumed
charset of the locale strings. This is used in stdWrap.strftime
to convert locale strings to the renderCharset of the frontend.

Example:
This will render dates in danish made with stdWrap/strftime:

locale_all = danish
locale_all = da_DK

sword_standAlone boolean Used by the parseFunc-substitution of search Words (sword):
If set, the words MUST be surrounded by whitespace in order
to be marked up.

sword_noMixedCase boolean Used by the parseFunc-substitution of search Words (sword):
If set, the words MUST be the exact same case as the search
word was.

intTarget target Default internal target. Used by typolink if no target is set

extTarget target Default external target. Used by typolink if no extTarget is set _top

fileTarget target Default file link target. Used by typolink if no fileTarget is set.

82

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

spamProtectEmailAdd
resses

"ascii" /
-10 to 10

If set, then all email addresses in typolinks will be encrypted
so spam
bots cannot detect them.

If you set this value to a number, then the encryption is
simply an
offset of character values. If you set this value to "-2" then all
characters will have their ASCII value offset by "-2". To make
this
possible, a little JavaScript code is added to every generated
web page!
(It is recommended to set the value in the range from -5 to 1
since setting it to >= 2 means a "z" is converted to "|" which is
a special character in TYPO3 tables syntax – and that might
confuse columns in tables. Now hardcoded range)

Alternatively you can set this value to the keyword "ascii".
This way every
character of the "mailto:" address will be translated to a
Unicode HTML
notation. Have a look at the example to see how this works.

Example:
mailto:a@b.c will be converted to
mailto:a@b.c
The big advantage of this method is that it doesn't need any
JavaScript!

spamProtectEmailAdd
resses_atSubst

string Substitute label for the at-sign (@). (at)

spamProtectEmailAdd
resses_lastDotSubst

string Substitute label for the last dot in the email address.
Example: (dot)

Default: . (<=
just a simple
dot)

forceTypeValue int Force the &type value of all TYPO3 generated links to a
specific value (except if overruled by local forceTypeValue
values).
Useful if you run a template with special content at - say
&type=95 - but still wants to keep your targets neutral. Then
you set your targets to blank and this value to the type value
you wish.

frameReloadIfNotInFr
ameset

boolean If set, then the current page will check if the page object
name (e.g. "page" or "frameset") exists as "parent.[name]" (e.g.
"parent.page") and if not the page will be reloaded in top
frame. This secures that links from search engines to pages
inside a frameset will load the frameset.
Works only with type-values different from zero.

jumpurl_enable boolean jumpUrl is a concept where external links are redirected from
the index_ts.php script, which first logs the URL. This feature
is only interesting if "config.sys_stat" is used.

0

jumpurl_mailto_disabl
e

boolean Disables the use of jumpUrl when linking to email-adresses. 0

compensateFieldWidt
h

double this floating point value will be used by the FORMS cObject
to compensate the length of the form fields text and input.
This feature is useful, if the page-option "smallFormFields" is
set. In that case Netscape renders form fields much longer
than IE. If you want the two browsers to display the same size
form fields, use a value of approx "0.6" for netscape-browsers.

Example:
[browser = netscape]
 config.compensateFieldWidth = 0.6
[global]

This option may be overridden in the FORMS-cObject.

83

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

includeLibrary resource This includes a PHP file.

incT3Lib_htmlmail boolean Include t3lib/class.t3lib_htmlmail.php

lockFilePath string This is used to lock paths to be "inside" this path.
Used by "filelist" in stdWrap

fileadmin/

noScaleUp boolean Normally images are scaled to the size specified via
TypoScript. This also forces small images to be scaled to a
larger size. This is not always a good thing.
If this property is set, images are not allowed to be scaled up
in size. This parameter clears the $this->mayScaleUp var of
the class t3lib_stdgraphics (often "gifbuilder").

USERNAME_substTo
ken

string The is the token used on the page, which should be
substituted with the current username IF a front-end user is
logged in! If no login, the substitution will not happen.

<!--
###USERNAM
E###-->

USERUID_substToken string The is the token used on the page, which should be
substituted with the current users UID IF a front-end user is
logged in! If no login, the substitution will not happen.
This value has no default value and only if you specify a
value for this token will a substitution process take place.

cache_period int,
seconds

The number of second a page may remain in cache.
This value is overridden by the value set in the page-record
(field="cache_timeout") if this value is greater than zero.

86400 (=24H)

cache array (Since TYPO3 4.6) Determine the maximum cache lifetime of
a page.

The maximum cache lifetime of a page can not only be
determined by the start and stop times of content elements on
the page itself, but also by arbitrary records on any other
page. However, the page has to be configured so that TYPO3
knows the start and stop times of which records to include.
Otherwise, the cache entry will be used although a start/stop
date already passed by.

To include records of type <tablename> on page <pid> into
the cache lifetime calculation of page <page-id>, add the
following TypoScript:
config.cache.<page-id> = <tablename>:<pid>

Multiple record sources can be added as comma-separated
list, see the examples.

You can use the keyword "all" instead of a <page-id> to
consider records for the cache lifetime of all pages.

Examples:

config.cache.10 = fe_users:2
This includes the fe_users records on page 2 in the cache
lifetime calculation for page 10.

config.cache.10 = fe_users:2,tt_news:11
This includes records from multiple sources, namely the
fe_users records on page 2 and the tt_news records on page
11.

config.cache.all = fe_users:2
Consider the fe_user records on page 2 for the cache lifetime
of all pages.

cache_clearAtMidnigh
t

boolean With this setting the cache always expires at midnight of the
day, the page is scheduled to expire.

false

no_cache boolean If this is set to true, the page will not be cached. If set to
false, it's ignored. Other parameters may have set it to true of
other reasons.

-

84

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

disableAllHeaderCode boolean If this is set, none of the features of the PAGE-object is
processed and the content of the page will be the result of the
cObject array (1,2,3,4...) of the PAGE-object. This means that
the result of the cObject should include everything from the
<HTML> to the </HTML> tag!
Use this feature in templates supplying other content-types
than HTML. That could be an image or a WAP-page!

false

disablePageExternalUr
l

boolean If set, pages with doktype "External Url" will not trigger
jumpUrl in TSFE. This may help you to have external urls
open inside you framesets.

stat boolean Enable stat logging at all. true

stat_typeNumList int/list List of pagetypes that should be registered in the statistics
table, sys_stat.
If no types are listed, all types are logged.
Default is "0,1" which normally logs all hits on framesets and
hits on content keeping pages. Of course this depends on the
template design.

0,1

stat_excludeBEuserHit
s

boolean If set a page hit is not logged if a user is logged in into
TYPO3.

false

stat_excludeIPList list of
strings

If the REMOTE_ADDR is in the list of IP-addresses, it's also
not logged.
Can use wildcard, e.g. "192.168.1.*"

stat_mysql boolean Enable logging to the MySQL table sys_stat. false

stat_apache boolean Enable logging to the log file "stat_apache_logfile" false

stat_apache_logfile filename This defines the name of the log file where TYPO3 writes an
Apache-style logfile to. The location of the directory is
defined by $TYPO3_CONF_VARS['FE']['logfile_dir'] which
must exist and be writable. It can be relative (to PATH_site)
or absolute, but in any case it must be within the regular
allowed paths of TYPO3 (meaning for absolute paths that it
must be within the "lockRootPath" set up in
$TYPO3_CONF_VARS).

It is also possible to use date markers in the filename as they
are provided by the PHP function strftime(). This will enable a
natural rotation of the log files.

Example:
config.stat_apache_logfile = typo3_%Y%m%d.log

This will create daily log files (e.g. typo3_20060321.log).

stat_apache_pagename
s

string The "pagename" simulated for apache.
Default: "[path][title]--[uid].html"
Codes:
[title] = inserts title, no special characters and shortened to 30
chars.
[uid] = the id
[alias] = any alias
[type] = the type (typeNum)
[path] = the path of the page
[request_uri] = inserts the REQUEST_URI server value (useful
with RealUrl for example)

stat_apache_notExten
ded

boolean If true the log file is NOT written in Apache extended format

stat_apache_noHost boolean If true the HTTP_HOST is - if available - NOT inserted
instead of the IP-address

85

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

stat_apache_niceTitle boolean /
string

If set, the URL will be transliterated from the renderCharset
to ASCII (e.g ä => ae, à => a, α "alpha" => a), which
yields nice and readable page titles in the log. All non-ASCII
characters that cannot be converted will be changed to
underscores.

If set to "utf-8", the page title will be converted to UTF-8
which results
in even more readable titles, if your log analyzing software
supports it.

stat_apache_noRoot boolean If set, the root part (level 0) of the path will be removed from
the path. This makes a shorter name in case you have only a
redundant part like "home" or "my site".

stat_titleLen int 1-100 The length of the page names in the path written to log
file/database

20

stat_pageLen int 1-100 The length of the page name (at the end of the path) written
to the log file/database.

30

stat_IP_anonymize boolean (Since TYPO3 4.7) Set to 1 to activate anonymized logging.
Setting this to 1 will log an empty hostname and will enable
anonymization of IP addresses.

0

stat_IP_anonymize_m
ask_ipv4

int (Since TYPO3 4.7) Prefix-mask 0..32 to use for anonymisation
of IP addresses (IPv4). Only used, if stat_IP_anonymize is set
to 1.
Recommendation for Germany:

config.stat_IP_anonymize_ipv4 = 24

24

stat_IP_anonymize_m
ask_ipv6

int (Since TYPO3 4.7) Prefix-mask 0..128 to use for
anonymisation of IP addresses (IPv6). Only used, if
stat_IP_anonymize is set to 1.
Recommendation for Germany:

config.stat_IP_anonymize_ipv6 = 64

64

stat_logUser boolean (Since TYPO3 4.7) Configure whether to log the username of
the Frontend user, if the user is logged in in the FE currently.
Setting this to 0 allows to anonymize the username.

1

86

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

simulateStaticDocume
nts

boolean /
string

If set TYPO3 makes all links in another way than usual. This
can be used with Apache compiled with mod_rewrite and
configured in httpd.conf for use of this in the ".htaccess"-
files.
Include this in the .htaccess file

RewriteEngine On
RewriteRule ^[^/]*\.html$ index.php

This means that any "*.html"-documents should be handled
by index.php.
Now if is done, TYPO3 will interpret the url of the html-
document like this:

[title].[id].[type].html
Title is optional and only useful for the entries in the apache
log-files. You may omit both [title] and [type] but if title is
present, type must also be there!.

Example:
TYPO3 will interpret this as page with uid=23 and type=1 :

Startpage.23.1.html

TYPO3 will interpret this as the page with alias = "start" and
the type is zero (default):

start.html

Alternative option (PATH_INFO):
Instead of using the rewrite-module in apache (eg. if you're
running Windows!) you can use the PATH_INFO variable
from PHP.
It's very simple. Just set simulateStaticDocuments to
"PATH_INFO" and you're up and running!

Also: See below, .absRefPrefix

Example (put in Setup-field of your template):
config.simulateStaticDocuments = PATH_INFO

default is
defined by a
configuration
option in
localconf.php.
It's
$TYPO3_CON
F_VARS['FE']
['simulateStatic
Documents'] =
1;
This affects all
sites in the
database.
You can also
set this value
to the string
"PATH_INFO"

simulateStaticDocume
nts_addTitle

int If not zero, TYPO3 generates urls with the title in, limited to
the first [simulateStaticDocuments_addTitle] number of chars.

Example:
Startpage.23.1.html

instead of the default, "23.1.html", without the title.

simulateStaticDocume
nts_noTypeIfNoTitle

boolean If set, then the type-value will not be set in the simulated
filename if the type value is zero anyways. However the
filename must be without a title.

Example:
"Startpage.23.0.html" would still be "Startpage.23.0.html"
"23.0.html" would be "23.html" (that is without the zero)
"23.1.html" would still be "23.1.html"

simulateStaticDocume
nts_replacementChar

string Word separator for URLs generated by
simulateStaticDocuments. If set to
hyphen, this option allows search engines to index keywords
in URLs. Before TYPO3 4.0 this character was hard-coded to
underscore.

Depends on the compatibility mode (see Tools>Install>Update
wizard):
compatibility mode < 4.0: underscore "_"
compatibility mode >= 4.0: hyphen "-"

87

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

simulateStaticDocume
nts_dontRedirectPathI
nfoError

boolean Regarding PATH_INFO mode:
When a page is requested by "PATH_INFO" method it must
be configured in order to work properly. If PATH_INFO is
not configured, the index_ts.php script sends a location
header to the correct page. However if you better like an
error message outputted, just set this option.

simulateStaticDocume
nts_pEnc

string Allows you to also encode additional parameters into the
simulated filename.

Example:
You have a news-plugin. The main page has the url
"Page_1.228.0.html" but when one clicks on a news item the
url will be "Page_1.228.0.html?
&tx_mininews_pi1[showUid]=2&cHash=b8d239c224" instead.
Now, this URL will not be indexed by external search-engines
because of the query-string (everything after the "?" mark).
This property avoids this problem by encoding the
parameters. These are the options:

Value set to "base64":
This will transform the filename used to this value:
"Page_1.228+B6JnR4X21pbmluZXdzX3BpMVtzaG93VWlkXT0
yJmNIYXNoPWI4ZDIzOWMyMjQ_.0.html". The query string
has simply been base64-encoded (and some more...) and
added to the HTML-filename (so now external search-engines
will find this!). The really great thing about this that the
filename is self-reliant because the filename contains the
parameters. The downside to it is the very very long filename.

Value set to "md5":
This will transform the filename used to this value:
"Page_1.228+M57867201f4a.0.html". Now, what a lovely, short
filename! Now all the parameters has been hashed into a 10-
char string inserted into the filename. At the same time an
entry has been added to a cache table in the database so
when a request for this filename reaches the frontend, then
the REAL parameter string is found in the database! The
really great thing about this is that the filename is very short
(opposite to the base64-method). The downside to this is that
IF you clear the database cache table at any time, the URL
here does NOT work until a page with the link has been
generated again (re-inserting the parameter list into the
database).

NOTICE: From TYPO3 3.6.0 the encoding will work only on
parameters that are manually entered in the list set by
.simulateStaticDocuments_pEnc_onlyP (see right below) or
those parameters that various plugins might allow in addition.
This is to limit the run-away risk when many parameters gets
combined.

simulateStaticDocume
nts_pEnc_onlyP

string A list of variables that may be a part of the md5/base64
encoded part of a simulate_static_document virtual filename
(see property in the row above).

Example:
simulateStaticDocuments_pEnc_onlyP =
tx_maillisttofaq_pi1[pointer], L, print

-> this will allow the "pointer" parameter for the extension
"maillisttofaq" to be included (in addition to whatever vars the
extension sets itself) and further the parameter "L" (could be
language selection) and "print" (could be print-version).

88

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

content_from_pid_allo
wOutsideDomain

boolean Using the "Show content from this page instead" feature
allows you to insert content from the current domain only.
Setting this option will allow content included from anywhere
in the page tree!

absRefPrefix string If this value is set, then all relative links in TypoScript are
prepended with this string. Used to convert relative paths to
absolute paths.

Note: This values is automatically set to the dirname of the
index.php script in case simulateStaticDocuments is set to
"PATH_INFO".
If you're working on a server where you have both internal
and external access, you might do yourself a favor and set the
absRefPrefix to the url and path of you site, e.g.
http://www.typo3.com/. If you do not, you risk to render
pages to cache from the internal network and thereby prefix
image-references and links with a non-accessible path from
outside.

pageRendererTemplat
eFile

string Sets the template for page renderer class
(t3lib_PageRenderer).

Example:
pageRendererTemplateFile =
fileadmin/test_pagerender.html

noPageTitle integer If you only want to have the site name (from the template
record) in your <title> tag, set this to 1. If the value is 2 then
the <title> tag is not printed at all.
Please take note that this tag is required for (X)HTML
compliant output, so you should only disable this tag if you
generate it manually already.

0

pageTitleFirst boolean TYPO3 by default prints a title tag in the format "website:
page title".
If pageTitleFirst is set (and if the page title is printed), then
the page title will be printed IN FRONT OF the template title.
So it will look like "page title: website".

0

pageTitleSeparator string (Since TYPO3 4.7) The signs which should be printed in the
title tag between the website name and the page title.

:

titleTagFunction function
name

Passes the default <title> tag content to this function. No
TypoScript parameters are passed though.

moveJsFromHeaderTo
Footer

boolean If set, all JavaScript (includes and inline) will be moved to the
bottom of the HTML document, which is after the content
and before the closing body tag.

headerComment string The content is added before the "TYPO3 Content
Management Framework" comment in the <head> section of
the page. Use this to insert a note like that "Programmed by
My-Agency".

89

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

language string Language key. See stdWrap.lang for more information.
Select between:
English (default) = [empty]
Danish = dk
German = de
Norwegian = no
Italian = it
etc...

Value must correspond with the key used for backend system
language if there is one. See inside config_default.php or look
at the translation page on TYPO3.org for the official 2-byte
key for a given language. Notice that selecting the official key
is important if you want labels in the correct language from
"locallang" files.
If the language you need is not yet a system language in
TYPO3 you can use an artificial string of your choice and
provide values for it via the TypoScript template where the
property "_LOCAL_LANG" for most plugins will provide a
way to override/add values for labels. The keys to use must
be looked up in the locallang-file used by the plugin of
course.

language_alt string If "config.language" (above) is used, this can be set to another
language key which will be used for labels if a label was not
found for the main language. For instance a brazil portuguese
website might specify "pt" as alternative language which
means the portuguese label will be shown if none was
available in the main language, brazil portuguese. This
feature makes sense if one language is incompletely translated
and close to another language.

sys_language_uid int This value points to the uid of a record from the
"sys_language" table and if set, this means that various parts
of the frontend display code will select records which are
assigned to this language. See ->SELECT

Internally, the value is depending on whether an Alternative
Page Language record can be found with that language. If
not, the value will default to zero (default language) except if
"sys_language_mode" is set to a value like "content_fallback".

90

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

sys_language_mode string Setting various modes of handling localization.
The syntax is "[keyword] ; [value]".

Possible keywords are:

[default] - The system will look for a translation of the page
(from "Alternative Page Language" table) and if it is not
found it will fall back to the default language and display
that.

content_fallback - [Recommended] The system will always
operate with the selected language even if the page is not
translated with a page overlay record. This will keep menus
etc. translated. However, the content on the page can still fall
back to another language, defined by the value of this
keyword, e.g. "content_fallback ; 1,0" to fall back to the
content of sys_language_uid 1 and if that is not present either,
to default (0)

strict - The system will report an error if the requested
translation does not exist. Basically this means that all pages
with gray background in the Web>Info / Localization
overview module will fail (they would otherwise fall back to
default language in one or another way)

ignore - The system will stay with the selected language even
if the page is not translated and there's no content available
in this language, so you can handle that situation on your
own then.

sys_language_overlay boolean /
keyword

If set, records from certain tables selected by the CONTENT
cObject using the "languageField" setting will select the
default language (0) instead of any language set by
sys_language_uid / sys_language_mode. In addition the
system will look for a translation of the selected record and
overlay configured fields.
The requirements for this is that the table is configured with
"languageField" and "transOrigPointerField" in the [ctrl]
section of $TCA. Also, exclusion of certain fields can be done
with the "l10n_mode" directive in the field-configuration of
$TCA.

For backend administration this requires that you configure
the "Web>Page" module to display content elements
accordingly; That each default element is shown and next to
it any translation found. This configuration can be done with
Page TSconfig for a section of the website using the object
path "mod.web_layout.defLangBinding = 1".

Keyword:
hideNonTranslated : If this keyword is used a record that
has no translation will not be shown. The default is that
records with no translation will show up in the default
language.

91

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

sys_language_softMer
geIfNotBlank

string Setting additional "mergeIfNotBlank" fields from TypoScript.

Background:
In TCA you can configure "l10n_mode" - localization mode -
for each field. Two of the options affect how the frontend
displays content; The values "exclude" and "mergeIfNotBlank"
(see "TYPO3 Core API" document for details). The first
("exclude") simply means that the field when found in a
translation of a record will not be overlaid the default records
field value. The second ("mergeIfNotBlank") means that it will
be overlaid only if it has a non-blank value.
Since it might be practical to set up fields for
"mergeIfNotBlank" on a per-site basis this options allows you
to override additional fields from tables.

Syntax:
 [table]:[field], [table]:[field], [table]:[field], ...

Example:
config.sys_language_softMergeIfNotBlank =
tt_content:image , tt_content:header

This setting means that the header and image field of content
elements will be used from the translation only if they had a
non-blank value. For the image field this might be very
practical because it means that the image(s) from the default
translation will be used unless other images are inserted!

sys_language_softExcl
ude

string Setting additional "exclude" flags for l10n_mode in TCA for
frontend rendering. Works exactly like
sys_language_softMergeIfNotBlank (see that for details - same
Syntax!).

Fields set in this property will override if the same field is set
for "sys_language_softMergeIfNotBlank".

typolinkCheckRootlin
e

boolean If set, then every "typolink" is checked whether it's linking to
a page within the current rootline of the site.
If not, then TYPO3 searches for the first found domain
record (without redirect) in that rootline from out to in.
If found (another domain), then that domain is prepended the
link, the external target is used instead and thus the link
jumps to the page in the correct domain.

92

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

typolinkEnableLinksA
crossDomains

boolean This option enables to create links across domains using
current domain's linking scheme.

If this option is not set, then all cross-domain links will be
generated as
"http://domain.tld/index.php?id=12345" (where 12345 is page
id). If this option is set and current site uses, for example,
simulateStatic, then links will be generated as
"http://domain.tld/PageTitle.12345.html" (includes RTE links
too). Setting this option requires that domains, where pages
are linked, have the same configuration for:
- linking scheme (i.e. all use simulateStatic or RealURL or
CoolURI but not any mixture)
- all domains have identical localization settings
(config.sys_language_XXX directives)
- all domains have the same set of languages defined

This option implies "config.typolinkCheckRootline=1", which
will be activated automatically. Setting value of "config.
typolinkCheckRootline" inside TS template will have no
effect.

Disclaimer: it must be understood that while link is generated
to another domain, it is still generated in the context of
current domain. No side effects are known at the time of
writing of this documentation but they may exist. If any side
effects are found, this documentation will be updated to
include them.

0

typolinkLinkAccessRe
strictedPages

integer
(page id) /
keyword
"NONE"

If set, typolinks pointing to access restricted pages will still
link to the page even though the page cannot be accessed. If
the value of this setting is an integer it will be interpreted as a
page id to which the link will be directed.
If the value is "NONE" the original link to the page will be
kept although it will generate a page-not-found situation
(which can of course be picked up properly by the page-not-
found handler and present a nice login form).

See "showAccessRestrictedPages" for menu objects as well
(similar feature for menus)

Example:
config.typolinkLinkAccessRestrictedPages = 29
config.typolinkLinkAccessRestrictedPages_addP
arams =
&return_url=###RETURN_URL###&pageId=###PAGE_I
D###

Will create a link to page with id 29 and add GET
parameters where the return URL and original page id is a
part of it.

typolinkLinkAccessRe
strictedPages_addPara
ms

string See "typolinkLinkAccessRestrictedPages" above

notification_email_url
mode

string This option allows you to handle URL's in plain text emails
so long URLS of more than 76 chars are not broken. This
option can be either empty or "76" or "all".
If the string is blank, all links in plaintext emails are
untouched.
If it's set to 76 then all links longer then 76 characters are
stored in the database and a hash is sent in the GET-var ?
RDCT=[md5/20] to the index.php script which finds the
proper link in the database and issues a location header
(redirection).
If the value is "all" then ALL "http://" links in the message are
converted.

93

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

notification_email_enc
oding

string This sets the encoding of plaintext emails (notification
messages). The default encoding is "quoted-printable". But
setting this to eg. "base64" will encode the content with
base64 encoding.

Values possible:
base64
quoted-printable
8bit

notification_email_cha
rset

string Alternative charset for the notification mails. Until TYPO3
4.7: ISO-8859-
1
Since TYPO3
4.7: utf-8

admPanel boolean If set, the admin panel appears in the bottom of pages.

NOTE: In addition the panel must be enabled for the user as
well, using the TSconfig for the user! See the TSconfig
reference about additional admin panel properties.

beLoginLinkIPList [IP-
number]

If set and REMOTE_ADDR matches one of the listed IP-
numbers (Wild-card, *, allowed) then a link to the typo3/
login scrip with redirect pointing back to the page is shown.

NOTE: beLoginLinkIPList_login and/or
beLoginLinkIPList_logout (see below) must be defined if the
link should show up!

beLoginLinkIPList_lo
gin

HTML HTML code wrapped with the login link, see
'beLoginLinkIPList'

Example:
<hr />LOGIN

beLoginLinkIPList_lo
gout

HTML HTML code wrapped with the logout link, see above

index_enable boolean Enables cached pages to be indexed.

index_externals boolean If set, external media linked to on the pages is indexed as
well.

index_descrLgd int This indicates how many chars to preserve as description for
an indexed page. This may be used in the search result
display.

200

index_metatags boolean This allows to turn on or off the indexing of metatags. It is
turned on by default.

true

94

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

xhtml_cleaning string Tries to clean up the output to make it XHTML compliant
and a bit more. THIS IS NOT COMPLETE YET, but a "pilot"
to see if it makes sense anyways. For now this is what is done:

What it does at this point:
- All tags (img,br,hr) is ended with "/>" - others?
- Lowercase for elements and attributes
- All attributes in quotes
- Add "alt" attribute to img-tags if it's not there already.

What it does NOT do (yet) according to XHTML specs.:
- Wellformedness: Nesting is NOT checked
- name/id attribute issue is not observed at this point.
- Certain nesting of elements not allowed. Most interesting,
<PRE> cannot contain img, big,small,sub,sup ...
- Wrapping scripts and style element contents in CDATA - or
alternatively they should have entities converted.
- Setting charsets may put some special requirements on both
XML declaration/ meta-http-equiv. (C.9)
- UTF-8 encoding is in fact expected by XML!!
- stylesheet element and attribute names are NOT converted
to lowercase
- ampersands (and entities in general I think) MUST be
converted to an entity reference! (&s;). This may mean
further conversion of non-tag content before output to page.
May be related to the charset issue as a whole.
- Minimized values not allowed: Must do this:
selected="selected"

Please see the class t3lib_parsehtml for details.
You can enable this function by the following values:

all = the content is always processed before it may be stored
in cache.
cached = only if the page is put into the cache,
output = only the output code just before it's echoed out.

prefixLocalAnchors string
keyword

If set to one of the keywords, the content will have all local
anchors in links prefixed with the path of the script. Basically
this means that will be transformed to . This procedure is
necessary if the <base> tag is set in the script (eg. if "realurl"
extension is used to produce Speaking URLs).

Keywords are the same as for "xhtml_cleaning", see above.

disablePrefixComment boolean If set, the stdWrap property "prefixComment" will be
disabled, thus preventing any revealing and space-consuming
comments in the HTML source code.

baseURL string This writes the <base> tag in the header of the document. Set
this to the value that is expected to be the URL and append a
"/" to the end of the string.

Example:
config.baseURL = http://typo3.org/sub_dir/

tx_[extension key with
no underscores]_[*]

- Configuration space for extensions. This can be used – for
example – by plugins that need some TypoScript
configuration, but that don't actually display anything in the
frontend (i.e. don't receive their configuration as an argument
from the frontend rendering process).

Example:
config.tx_realurl_enable = 1

[tsref:config/->CONFIG]

95

TypoScript Reference - doc_core_tsref Setup

"CONSTANTS"
Property: Data type: Description: Default:

Array... string Constants.

Examples:
.EMAIL = email@email.com
Now if parseFunc anywhere is configured with constants=1
then all cases of the string ###EMAIL### will be substituted
in the text.
see ->parseFunc

[tsref:constants]

"PAGE"
Pages are referenced by two main values. The "id" and "type".

The "id" points to the uid of the page (or the alias). Thus the page is found.

The "type" is used to define how the page should be rendered. This is primarily used with framesets.
Here the frameset normally has the type=0 (or not set) and the documents in the frameset would be
defined with another type, e.g. type=1 for the content-page.

You should explore the framesets of the TYPO3-sites around. Also look in the standard-templates for
framesets.

It's a good habit to use type=1 for the main-page of a website with frames. With no-frames sites type is
normally zero.

Another good habit is to use "page" as the top-level object name for the content-page on a website.

Most of this codes is executed in the PHP-script typo3/sysext/cms/tslib/class.tslib_pagegen.php.

Property: Data type: Description: Default:

typeNum int This decides the the typeId of the page. The value defaults
to 0 for the first found PAGE object, but it MUST be set
and be unique as soon you use more than one such object
(watch this if you use frames on your page)!

0

1,2,3,4... cObject

wrap wrap Wraps the content of the the cObject array

stdWrap ->stdWrap Wraps the content of the the cObject array with stdWrap
options

bodyTagCObject cObject This is default bodytag overridden by ".bodyTag" if that is
set.

bodyTag <tag> Body tag on the page

Example:
<body bgcolor="{$bgCol}">

<body
bgcolor="#FFF
FFF">

headTag <tag> Head-tag if alternatives are wanted <head>

bodyTagMargins int margins in the body tag.

Property:
.useCSS = 1 (boolean) - will set a "BODY {margin: ...}" line in
the in-document style declaration - for XHTML compliance.

Example:
value 4
adds leftmargin="4" topmargin="4" marginwidth="4"
marginheight="4" to the bodyTag.

bodyTagAdd string This content is added to the end of the bodyTag.

bgImg imgResource Background image on the page. This is automatically added

96

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

to the body-tag.

frameSet ->FRAMESET if any properties is set to this property, the page is made
into a frameset.

meta ->META

shortcutIcon resource Favicon of the page. Create a reference to an icon here!
Browsers that support favicons display them in the browser's
address bar, next to the site's name in lists of bookmarks,
and next to the page's title in the tab.

Note:
This must be a valid ".ico"-file (iconfile)

headerData ->CARRAY Inserts content in the header-section. Could be JavaScripts,
meta-tags, other stylesheet references.
By default, gets inserted after all the style definitions.

footerData ->CARRAY Same as headerData above, except that this block gets
included at the bottom of the page (just before the closing
body tag).

config ->CONFIG configuration for the page. Any entries override the same
entries in the toplevel-object "config".

includeLibs array of strings With this you may include php-files. This does the same as
"includeLibrary" in ->CONFIG but this can include more
than one file. These files are included after the file of
includeLibrary.

NOTE:
The toplevel object "includeLibs" and the scripts defined
with this property is added to each other. Script-keys (that is
the "array of strings"-value, like below "tx_myext") from this
property of the page overrides any scripts-keys from the
toplevel "includeLibs" property!
The script-filenames are of the datatype "resource".

Example:
includeLibs.tx_myext = lib_filename.php

JavaScript:

javascriptLibs array of strings This allows to include the JavaScript libraries that are
shipped with the TYPO3 Core.

javascriptLibs {
 # include prototype
 Prototype = 1

 # include Scriptaculous
 Scriptaculous = 1
 # adds modules dragdrop and controls to
Scriptaculous
 Scriptaculous.modules = dragdrop,controls

 # include ExtCore
 ExtCore = 1
 # include ExtCore debug file
(uncompressed)
 ExtCore.debug = 1

 # includes ExtJS
 ExtJs = 1
 # include ext-all.css
 ExtJs.css = 1
 # include default theme
 ExtJs.theme = 1
 # load specific adapter (jquery|
prototype|yui)
 ExtJs.adapter = …

97

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

 # initialize QuickTips
 ExtJs.quickTips = 1
 # includes ExtJS debug file
(uncompressed)
 ExtJs.debug = 1

 # include SVG library
 SVG = 1
 # include SVG debug file
 SVG.debug = 1
 #force rendering with flash
 SVG.forceFlash = 1
}

Note: If both ExtCore and ExtJS are requested, the only
superset ExtJS will be loaded. This will also affect any
options set. They will only come from ExtJS.
Note: In TYPO3 4.5.2 and older you should either request
ExtJS or ExtCore, but not both together. Requesting both at
the same time will lead to errors.

inlineLanguageL
abel

array of strings ExtJS specific, adds language labels to the page.

Example:
inlineLanguageLabel {
 label1 = 123
 label2 = 456
}

will produce following source:

TYPO3.lang =
{"label1":"123","label2":"456"};

inlineSettings array of strings ExtJS specific, adds settings to the page.

Example:
page.inlineSettings {
 setting1 = Hello
 setting2 = GoOnTop
}

will produce following source:

TYPO3.settings = {"TS":
{"setting1":"Hello","setting2":"GoOnTop"}};

extOnReady ->CARRAY ExtJS specific, adds inline JavaScript, wrapped in
Ext.onReady.

Example:
page.extOnReady {
 10 = TEXT
 10.value = Ext.Msg.alert("TypoScript
Message","Hello World!");
}

will produce following source:

Ext.onReady(function()
{Ext.Msg.alert("TypoScript Message","Hello
World!"); });

includeJSlibs.
[array]

resource Adds JS library files to head of page.

The file definition must be a valid "resource" data type,
otherwise nothing is inserted. This means that remote files
cannot be referenced (i.e. using "http://..."), except by using
the ".external" property.

Each file has optional properties:
.allWrap - wraps the complete tag, useful for conditional
comments.

98

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

.disableCompression - (Since TYPO3 4.6) If
config.compressJs is enabled, this disables the compression
of this file.
.excludeFromConcatenation - (Since TYPO3 4.6) If
config.concatenateJs is enabled, this prevents the file from
being concatenated.
.external - If set, there is no file existence check. Useful for
inclusion of external files.
.forceOnTop - boolean flag. If set, this file will be added on
top of all other files.
.if - (Since TYPO3 4.7) Allows to define conditions, which
must evaluate to TRUE for the file to be included. If they do
not evaluate to TRUE, the file will not be included.
Extensive usage might cause huge numbers of temporary
files to be created. See ->if for details.

Example:
includeJSlibs.twitter =
http://twitter.com/javascripts/blogger.js
includeJSlibs.twitter.external = 1

includeJSFooterli
bs.[array]

resource Same as includeJSlibs above, except that this block gets
included at the bottom of the page (just before the closing
body tag).

includeJS.[array] resource Inserts one or more (Java)Scripts in <script> tags.

The file definition must be a valid "resource" data type,
otherwise nothing is inserted. This means that remote files
cannot be referenced (i.e. using "http://..."), except by using
the ".external" property.

Each file has optional properties:
.allWrap - wraps the complete tag, useful for conditional
comments.
.disableCompression - (Since TYPO3 4.6) If
config.compressJs is enabled, this disables the compression
of this file.
.excludeFromConcatenation - (Since TYPO3 4.6) If
config.concatenateJs is enabled, this prevents the file from
being concatenated.
.external - If set, there is no file existence check. Useful for
inclusion of external files.
.forceOnTop - boolean flag. If set, this file will be added on
top of all other files.
.if - (Since TYPO3 4.7) Allows to define conditions, which
must evaluate to TRUE for the file to be included. If they do
not evaluate to TRUE, the file will not be included.
Extensive usage might cause huge numbers of temporary
files to be created. See ->if for details.
.type - setting the MIME type of the script (default:
text/javascript).

Example:
includeJS {
 file1 = fileadmin/helloworld.js
 file1.type = application/x-javascript
 # Include a second file, but only if
myConstant is set in the TS constants field.
 file2 =
javascript_uploaded_to_template*.js
 file2.if.isTrue = {$myConstant}
}

includeJSFooter.
[array]

resource Same as includeJS above, except that this block gets
included at the bottom of the page (just before the closing
body tag).

jsInline ->CARRAY Use cObjects for creating inline JavaScript

99

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

Example:
page.jsInline {

10 = TEXT
10.dataWrap = var pageId = {TSFE:id};

}

Note:
with config.removeDefaultJS = external, the inlineJS is
moved to external file.
with config.minifyJS = 1, the jsInline will be minified as well.

jsFooterInline ->CARRAY Same jsInline above, except that the JavaScript gets inserted
at the bottom of the page (just before the closing body tag).

inlineJS ->CARRAY Inserts inline JavaScript in the header-section. Don't use
script-tags as they are added by TYPO3.

Example:
page.inlineJS.10 = TEXT
page.inlineJS.10.value = function a(val)
{ alert(val); }

with config.removeDefaultJS = external the inlineJS is
moved to external file.
with config.minifyJS = 1 the inlineJS will be minified as well.

Note: This option was deprecated and has been removed in
TYPO3 4.3. Use jsInline instead.

CSS Stylesheets:

stylesheet resource Inserts a stylesheet in the <HEAD>-section of the page;
<link rel="stylesheet" href="[resource]">

includeCSS.
[array]

resource Inserts a stylesheet (just like the .stylesheet property) by
allows to setting up more than a single stylesheet, because
you can enter files in an array.

The file definition must be a valid "resource" data type,
otherwise nothing is inserted.

Each file has optional properties:
.allWrap - wraps the complete tag, useful for conditional
comments.
.alternate - If set (boolean) then the rel-attribute will be
"alternate stylesheet".
.disableCompression - (Since TYPO3 4.6) If
config.compressCss is enabled, this disables the compression
of this file.
.excludeFromConcatenation - (Since TYPO3 4.6) If
config.concatenateCss is enabled, this prevents the file from
being concatenated.
.external - If set, there is no file existence check. Useful for
inclusion of external files.
.if – (Since TYPO3 4.7) Allows to define conditions, which
must evaluate to TRUE for the file to be included. If they do
not evaluate to TRUE, the file will not be included.
Extensive usage might cause huge numbers of temporary
files to be created. See ->if for details.
.import - If set (boolean) then the @import way of including
a stylesheet is used instead of <link>
.media - setting the media attribute of the <style> tag.
.title - setting the title of the <style> tag.

Example:
includeCSS {
 file1 = fileadmin/mystylesheet1.css
 file2 =

100

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

stylesheet_uploaded_to_template*.css
 file2.title = High contrast
 file2.media = print
 ie6Style = fileadmin/css/style3.css
 ie6Style.allWrap = <!--[if lte IE 7]>|<!
[endif]-->
 cooliris = http://www.cooliris.com/shared/
 resources/css/global.css
 cooliris.external = 1
}

cssInline ->CARRAY Use cObjects for creating inline CSS

Example:
cssInline {
 10 = TEXT
 10.value = h1 {margin:15px;}

 20 = TEXT
 20.value = h1 span {color: blue;}
}

CSS_inlineStyle string This value is just passed on as inline css (in-document css
encapsulated in <style>-tags)

Other:

insertClassesFro
mRTE

boolean If set, the classes for the Rich Text Editor configured in
Page TSconfig is inserted in as the first thing in the Style-
section right after the setting of the stylesheet.

.add_mainStyleOverrideDefs = [* / list of tags] - will add
all the "RTE.default. mainStyleOverride_add" - tags
configured as well.

Might be deprecated soon. Most likely the RTE should be
configured by the stylesheet instead. Stay tuned...

noLinkUnderline boolean Disables link-underlining. Uses in-document stylesheet.

Deprecated. Use stylesheet instead.

hover HTML-color The color of a link when the mouse moves over it! (only
MSIE). Uses in-document stylesheet.

Deprecated. Use stylesheet instead.

hoverStyle string Additional style information to the hover-color.

Example:
page.hoverStyle = font: bold; text-
decoration: none;

Deprecated. Use stylesheet instead.

smallFormFields boolean Renders formfields like textarea, input and select-boxes
small with "verdana size 1" font.
Uses in-document stylesheet.

Tip:
Use this together with the config-option
"compensateFieldWidth" set to "0.6" for netscape-browsers
in order to render the small form fields in the same width!

Deprecated. Use stylesheet instead.

adminPanelStyles boolean Will include CSS styles for the Admin Panel.

[tsref:(page)]

101

http://www.cooliris.com/shared/

TypoScript Reference - doc_core_tsref Setup

"FE_DATA"
Property: Data type: Description: Default:

array of tableNames ->FE_TABLE

[tsref:FEData]

"FE_TABLE"
Property: Data type: Description: Default:

default.[field] string This property is in charge of which default-values is used
for the table:

Example:
This defines the default values used for new records. These
values will be overridden with any value submitted instead
(as long as the submitted fields are allowed due to
"allowNew")

default {
 subject = This is the default subject
value!
 hidden = 1
 parent = 0
}

allowNew.[field] string This property is in charge of which fields that may be
written from the frontend.

Example:
This defines that subject is a field, that may be submitted
from the frontend. If a value is not submitted, subject is
filled with the default value (see above).
The field "hidden" on the other hand cannot be changed
from the frontend. "hidden" will gain the value from the
default definition (see above). If fields are set to "0" (zero)
it's the same as if they were not defined in this array.

allowNew {
 subject = 1
 hidden = 0
}

allowEdit.[field] string Same as above ("allowNew") but this controls which fields
that may be written in case of an update of a record (and
not a new submission)
Please pay attention to the property below! ("overrideEdit")

overrideEdit.
[field]

string This works like default-values above but is values inserted
after the submitted values have been processed. This means
that opposite to default-values overwritten by the submitted
values, these values override the submitted values.

Example:
In this case overrideEdit secures that if a user updates his
record (if he "own" it) the "hidden"-field will be set no
matter what.

overrideEdit {
 hidden = 1
}

userIdColumn string (field) This is a string that points to the column of a record where
the user-id of the current fe_user should be inserted. This
fe_user-uid is inserted/updated both by "new" and "edit"

autoInsertPID boolean Works with new records: Insert automatically the PID of
the page, where the submitted data is sent to. Any "pid"
supplied from the submitted data will override. This is for
convenience.

102

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

processScript resource Include-script to be used for processing of incoming data
to the table. The script is included from a function in the
class tslib_fetce
This is the really important option, because whether or not
you are going to utilize the "cleaning"/"authorization"
features of the properties above depend on how you write
your script to process data and put it in the database.
A very good example is to look at
"media/scripts/guest_submit.inc", included from
static_template "plugin.tt_guest" (Used for the default
guestbook feature)

separator string Separator character used when the submitted data is an
array from eg. a multiple selector box.

chr(10)
(linebreak)

doublePostCheck string (field name) Specifies a field name (integer) into which an integer-hash
compiled of the submitted data is inserted. If the field is
set, then submissions are checked whether another record
with this value already exists. If so, the record is NOT
inserted, because it's expected to be a "double post"
(posting the same data more than once)

[tsref:FEData.(tablename)/->FE_TABLE]

"FRAMESET"
Property: Data type: Description: Default:

1,2,3,4... frameObj Configuration of frames and nested framesets.

cols <frameset>-data:cols Cols

rows <frameset>-data:rows Rows

params <frameset>-params Example:
border="0" framespacing="0" frameborder="NO"

[tsref:(page).frameSet/->FRAMESET]

"FRAME"
Property: Data type: Description: Default:

obj pointer to top-level
object-name

top-level object-name of a PAGE / FRAMESET

Example:
"left", "page", "frameset"

options url-parameters Example:
print=1&othervar=anotherthing
would add '&print=1&othervar=anotherthing' to the ".src"-
content (if not ".src" is set manually!!)

params <frame>-params Example:
scrolling="AUTO" noresize frameborder="NO"

name <frame>-data:name Manually set name of frame

NOTE: Is set automatically and should not be overridden
under normal conditions!

value of
".obj"

src <frame>-data:src
/stdWrap

Instead of using the "obj" destination, you can define a
specific src for your frame with this setting. This overrides
the default behavior of using the "obj" parameter!

typolink to
id=[currentId
]&type=[obj-
>typeNum]

[tsref:(page).frameSet.(number)/->FRAMESET.(number)]

103

TypoScript Reference - doc_core_tsref Setup

Example of a simple frameset with a topframe and content-frame:
frameset = PAGE
frameset.typeNum = 0

page = PAGE
page.typeNum = 1

top = PAGE
top.typeNum = 3

frameset.frameSet.rows = 150,*
frameset.frameSet.params = border="0" framespacing="0" frameborder="NO"
frameset.frameSet {
 1 = FRAME
 1.obj = top
 1.params = scrolling="NO" noresize frameborder="NO" marginwidth="0" marginheight="0"
 2 = FRAME
 2.obj = page
 2.params = scrolling="AUTO" noresize frameborder="NO"
}

"META"
Property: Data type: Description: Default:

Array... string /stdWrap Allows you to define meta tags.

Use the scheme meta.key = value.
The "key" can be the name of any meta tag, e.g. "description" or
"keywords". If the key is "refresh" (case insensitive), then the "http-
equiv" attribute is used in the meta tag instead of the "name"
attribute.
If the "value" is empty (after trimming), the meta tag is not
generated.

Examples:
meta.description = This is the description of the
content in this document.
meta.keywords = These are the keywords.
meta.refresh = [seconds]; [url, leave blank for
same page]

For each key the following sub-property is available:
httpEquivalent: (Since TYPO3 4.7) If set to 1, the http-equiv
attribute is used in the meta tag instead of the "name" attribute.
Default: 0.

Example:
meta.X-UA-Compatible = IE=edge,chrome=1
meta.X-UA-Compatible.httpEquivalent = 1

This results in <meta http-equiv="X-UA-Compatible"
content="IE=edge,chrome=1">.

[tsref:->META]

"CARRAY"
Property: Data type: Description: Default:

1,2,3,4... cObject This is a numerical "array" of content-objects (cObjects).
The order by which you specific the objects is not important
as the array will be sorted before it's parsed!

Occasional properties:

104

TypoScript Reference - doc_core_tsref Setup

Property: Data type: Description: Default:

(stdWrap
properties...)

NOTE: This applies ONLY if "CARRAY /stdWrap" is set to
be data type
If you specify any non-integer properties to a CARRAY,
stdWrap will be invoked with all properties of the CARRAY.

Example:
This will return 'This will be rendered before
"10"testing'
10 = TEXT
10.value = testing
5 = TEXT
5.value = This will be rendered before "10"
wrap = |

(TDParams) <TD>-params NOTE: This applies ONLY if "CARRAY +TDParams" is set
to be data type
This property is used only in some cases where CARRAY is
used. Please look out for a note about that in the various
cases.

[tsref:->CARRAY]

105

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Content Objects (cObject)
PHP information
The content objects (cObjects) are primarily controlled by the PHP-script
"typo3/sysext/cms/tslib/class.tslib_content.php". The PHP-class is named "tslib_cObj" and often this is
also the variable-name of the objects ($cObj)

The $cObj in PHP has an array, $this->data, which holds records of various kind. See data type
"getText".

This record is normally "loaded" with the record from a table depending on the situation. Say if you
are creating a menu it's often loaded with the page-record of the actual menuitem or if it's about
content-rendering it'll be the content-record.

REUSING cOBJECTS
When dealing with "cObjects", you're allowed to use a special syntax in order to reuse cObjects without
actually creating a copy. This has the advantage of minimizing the size of the cached template. But on
the other hand it doesn't give you the flexibility of overriding values.

This example will show you how it works:

#
Temporary objects are defined:
#
lib.stdheader = COA
lib.stdheader {
 stdWrap.wrapAlign.field = header_position
 stdWrap.typolink.parameter.field = header_link
 stdWrap.fieldRequired = header

 1 = TEXT
 1.current = 1
 1.fontTag = {$content.wrap.header1}

 stdWrap.space = {$content.headerSpace}
}

#
CType: header
#
tt_content.header = COA
tt_content.header {
 10 < lib.stdheader
 10.stdWrap.space >

 20 = TEXT
 20.field = subheader
 20.fontTag = {$content.wrap.subheader1}
}

#
CType: bullet
#
tt_content.bullets = COA
tt_content.bullets {
 10 = < lib.stdheader
 20 < styles.content.bulletlist_gr
}

First lib.stdheader is defined. This is (and must be) a cObject! (In this case it is COA.)

Now lib.stdheader is copied to tt_content.header.10 with the "<" operator. This means that an actual copy
of lib.stdheader is created at parsetime.

But this is not the case with tt_content.bullets.10. Here lib.stdheader is just pointed to and lib.stdheader

106

TypoScript Reference - doc_core_tsref Content Objects (cObject)

will be used as the cObject at runtime.

The reason why lib.stdheader was copied in the first case is the fact that it's needed to unset
".stdWrap.space" inside the cObject ("10.stdWrap.space >"). This could NOT be done in the second case
where only a pointer is created.

NOTE:

If lib.stdheader was temp.stdheader instead, the pointer would not work! This is due to the fact that the
runtime-reference would find nothing in "temp." as this is unset before the template is stored in cache!

This goes for "temp." and "styles." (see the toplevel object definition elsewhere).

Overriding values anyway:

Although you cannot override values TypoScript-style (using the operators and all) the properties of
the object which has the reference will be merged with the configuration of the reference.

Example:
page.10 = TEXT
page.10.value = kasper
page.10.case = upper

page.20 = < page.10
page.20.case = lower
page.20.value >
page.20.field = pages

The result is this config:

Notice that .value was not cleared (the red line), because it's simply two arrays which are joined:

So hence the red line in the above example is useless.

107

TypoScript Reference - doc_core_tsref Content Objects (cObject)

HTML
The content object "HTML" can be used to output static text or html. stdWrap is available for the
cObject itself and for the property "value". See the examples.

Note: This content object is deprecated since TYPO3 4.6 and will be removed in TYPO3 6.0. Use the
content object "TEXT" instead!

Property: Data type: Description: Default:

value HTML
/stdWrap

Raw HTML-code.

stdWrap ->stdWrap (Executed after the stdWrap for the property ".value".)

[tsref:(cObject).HTML]

Example:
10 = HTML
10.value = This is a text in uppercase
10.value.case = upper

Example:
10 = HTML
10.value.field = bodytext
10.value.br = 1

Example:
10 = HTML
10.stdWrap.field = title
10.stdWrap.wrap = |

TEXT
The content object "TEXT" can be used to output static text or html. So it is very similar to the
cObject "HTML". Note that the stdWrap properties are not available under the property "stdWrap" (as
they are for the other cObjects), but on the very rootlevel of the object. This is non-standard! Check
the examples.

Property: Data type: Description: Default:

value value
/stdWrap

Text, which you want to output.

(stdWrap properties...) ->stdWrap

[tsref:(cObject).TEXT]

Example:
10 = TEXT
10.value = This is a text in uppercase
10.case = upper

Example:
10 = TEXT
10.field = bodytext
10.br = 1

Example:
10 = TEXT
10.field = title
10.wrap = |

108

TypoScript Reference - doc_core_tsref Content Objects (cObject)

COBJ_ARRAY (COA, COA_INT)
This is a cObject, in which you can place several other cObjects using numbers to enumerate them.

It has the alias COA standing for "content object array". You can also call it "COA" instead of
COBJ_ARRAY.

You can also create this object as a COA_INT in which case it works exactly like the USER_INT object
does: It's rendered non-cached! The COA_INT provides a way to utilize this feature not only with
USER cObjects but with any cObject.

Property: Data type: Description: Default:

1,2,3,4... cObject

if ->if if "if" returns false the COA is NOT rendered

wrap wrap /stdWrap

stdWrap ->stdWrap

includeLibs list of
resource
/stdWrap

(This property is used only if the object is COA_INT!, See
introduction.)
This is a comma-separated list of resources that are included as
PHP-scripts (with include_once() function) if this script is included.
This is possible to do because any include-files will be known
before the scripts are included. That's not the case with the
regular PHP_SCRIPT cObject.

[tsref:(cObject).COA/(cObject).COA_INT/(cObject).COBJ_ARRAY]

Example:
temp.menutable = COBJ_ARRAY
temp.menutable {
 10 = TEXT
 10.value = <table border="0" cellpadding="0" cellspacing="0">

 20 = HMENU
 20.entryLevel = 0
 20.1 = GMENU
 20.1.NO {
 wrap = <tr><td> | </td></tr>
 XY = {$menuXY}
 backColor = {$bgCol}
 20 = TEXT
 20 {
 text.field = title
 fontFile = media/fonts/hatten.ttf
 fontSize = 23
 fontColor = {$menuCol}
 offset = |*| 5,18 || 25,18
 }
 }

 30 = TEXT
 30.value = </table>
}

FILE
This object returns the content of the file specified in the property "file".

It is defined as PHP function fileResource() in /typo3/sysext/cms/tslib/class.tslib_content.php.

109

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

file resource
/stdWrap

The file whose content should be returned.
If the resource is jpg, jpeg, gif or png the image is inserted
as an image-tag. All other formats are read and inserted into
the HTML-code.
The maximum filesize of documents to be read is set to 1024
kb internally!

linkWrap linkWrap
/stdWrap

(Executed before ".wrap" and ".stdWrap".)

wrap wrap
/stdWrap

(Executed after ".linkWrap" and before ".stdWrap".)

stdWrap ->stdWrap (Executed after ".linkWrap" and ".wrap".)

altText
titleText

string
/stdWrap

For output only!

If no alttext is specified, it will use an empty alttext.

emptyTitleHandling string
/stdWrap

Value can be "keepEmpty" to preserve an empty title
attribute, or "useAlt" to use the alt attribute instead.

useAlt

longdescURL string
/stdWrap

For output only!

"longdesc" attribute (URL pointing to document with
extensive details about image).

[tsref:(cObject).FILE]

Example:

In this example a page is defined, but the content between the body-tags comes directly from the file
"gs.html":

page.10 = FILE
page.10.file = fileadmin/gs/gs.html

IMAGE
Returns an image tag with the image file defined in the property "file" and processed according to the
properties set.

Defined as PHP function cImage() in /typo3/sysext/cms/tslib/class.tslib_content.php.

The array $GLOBALS['TSFE']->lastImageInfo is set with the info-array of the returning image (if any)
and contains width, height and so on.

Property: Data type: Description: Default:

file imgResource

params -params
/stdWrap

border integer Value of the "border" attribute of the image tag. 0

altText
titleText

(alttext)

string
/stdWrap

If no alt text is specified, an empty alt text will be used.

("alttext" is the old spelling of this attribute. It was deprecated
since TYPO3 4.3 and was used only if "altText" did not specify a
value or properties. In TYPO3 4.6 "alttext" has been removed.)

emptyTitleHandling string
/stdWrap

Value can be "keepEmpty" to preserve an empty title attribute, or
"useAlt" to use the alt attribute instead.

useAlt

longdescURL string
/stdWrap

"longdesc" attribute (URL pointing to document with extensive
details about image).

linkWrap linkWrap
/stdWrap

(before ".wrap")

110

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

imageLinkWrap boolean/
-
>imageLinkWr
ap

NOTE: ONLY active if linkWrap is NOT set and file is NOT
GIFBUILDER (as it works with the original imagefile)

if ->if if "if" returns false the image is not shown!

wrap wrap
/stdWrap

stdWrap ->stdWrap

[tsref:(cObject).IMAGE]

Example:
 10 = IMAGE
 10.file = toplogo*.gif
 10.params = hspace=5
 10.wrap = |

IMG_RESOURCE
Returns only the image-reference, possibly wrapped with stdWrap. May be used for putting
background images in tables or table-rows or to import an image in your own include-scripts.

The array $GLOBALS['TSFE']->lastImgResourceInfo is set with the info-array of the resulting image
resource (if any) and contains width, height and so on.

Property: Data type: Description: Default:

file imgResource

stdWrap ->stdWrap

[tsref:(cObject).IMG_RESOURCE]

CLEARGIF
Inserts a transparent gif-file.

Property: Data type: Description: Default:

height -
data:height
/stdWrap

Height of the image. 1

width -
data:width
/stdWrap

Width of the image. 1

wrap wrap /stdWrap |

stdWrap ->stdWrap (Executed after ".wrap".)

[tsref:(cObject).CLEARGIF]

Example:
 20 = CLEARGIF
 20.height = 20

CONTENT
This object is designed to generate content by making it possible to finely select records and rendering
them.

The register-key SYS_LASTCHANGED is updated with the tstamp-field of the records selected which
has a higher value than the current.

111

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

select ->select The SQL-statement is set here!

table TableName
/stdWrap

The table, the content should come from.
In standard configuration this will be "tt_content".
Note: Allowed tables are "pages" or tables prefixed with one
of these: "pages_", "tt_", "tx_", "ttx_", "fe_", "user_" or "static_".

renderObj cObject < [tablename]

slide integer
/stdWrap

If set and no content element is found by the select command,
then the rootLine will be traversed back until some content is
found.

Possible values are "-1" (slide back up to the siteroot), "1" (only
the current level) and "2" (up from one level back).

Use -1 in combination with collect.

.collect (integer /stdWrap): If set, all content elements found
on current and parent pages will be collected. Otherwise, the
sliding would stop after the first hit. Set this value to the
amount of levels to collect on, or use "-1" to collect up to the
siteroot.
.collectFuzzy (boolean /stdWrap): Only useful in collect
mode. If no content elements have been found for the
specified depth in collect mode, traverse further until at least
one match has occurred.
.collectReverse (boolean /stdWrap): Change order of
elements in collect mode. If set, elements of the current page
will be at the bottom.

wrap wrap /stdWrap Wrap the whole content-story...

stdWrap ->stdWrap (Executed after ".wrap".)

[tsref:(cObject).CONTENT]

112

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Example (of the CONTENT-obj):
 1 = CONTENT
 1.table = tt_content
 1.select {
 pidInList = this
 orderBy = sorting
 }

Example (of record-renderObj's):
// Configuration for records with the typeField-value (often "CType") set to "header"
tt_content.header.default {
 10 = TEXT
 10.field = header

}

// Configuration for records with the typeField-value (often "CType") set to "bullets"
// If field "layout" is set to "1" or "2" a special configuration is used, else default
tt_content.bullets.subTypeField = layout
tt_content.bullets.default {

}
tt_content.bullets.1 {

}
tt_content.bullets.2 {

}

// This is what happens if the typeField-value does not match any of the above
tt_content.default.default {

}

RECORDS
This object is meant for displaying lists of records from a variety of tables. Contrary to the CONTENT
object, it does not allow for very fine selections of records (it has no "select" property)

The register-key SYS_LASTCHANGED is updated with the tstamp-field of the records selected which
has a higher value than the current.

NOTE: Records with parent ids (pid's) for non-accessible pages (that is hidden, timed or access-
protected pages) are normally not selected. Pages may be of any type, except recycler. Disable the
check with the "dontCheckPid"-option.

Property: Data type: Description: Default:

source records-list
/stdWrap

List of record-id's, optionally with prepended table-names.

Example:
source = tt_content_34, 45, tt_links_56

tables list of tables
/stdWrap

List of accepted tables. If any items in the ".source"-list are
not prepended with a table name, the first table in this list is
assumed to be the table for such records.
Also table names configured in .conf are allowed.

Example:
tables = tt_content, tt_address, tt_links
conf.tx_myexttable = TEXT
conf.tx_myexttable.value = Hello world

This adds the tables tt_content, tt_address, tt_links and
tx_myexttable.

113

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

conf.
[tablename]

cObject Config-array which renders records from table tablename If this is NOT
defined, the
rendering of the
records is done
with the toplevel-
object [tablename]
- just like the
cObject,
CONTENT!

dontCheckPid boolean
/stdWrap

Normally a record cannot be selected, if its parent page (pid)
is not accessible for the website user. This option disables
that check.

wrap wrap /stdWrap

stdWrap ->stdWrap (Executed after ".wrap".)

[tsref:(cObject).RECORDS]

Example:
 20 = RECORDS
 20.source.field = records
 20.tables = tt_address
 20.conf.tt_address < tt_address.default

HMENU
Generates hierarchical menus.

Property: Data type: Description: Default:

(1 / 2 / 3 /...) menuObj Required!
Defines which menuObj that should render the menu
items on the various levels.
1 is the first level, 2 is the second level, 3 is the third
level, 4 is

Example:
temp.sidemenu = HMENU
temp.sidemenu.1 = GMENU

(no menu)

cache_period int The number of seconds a menu may remain in cache. If
this value is not set, the first available value of the
following will be used:
 1) cache_timeout of the current page
 2) config.cache_period defined globally
 3) 86400 (= 1 day)

entryLevel int /stdWrap Defines at which level in the rootLine the menu should
start.
Default is "0" which gives us a menu of the very first
pages on the site.
If the value is < 0, entryLevel is chosen from "behind" in
the rootLine. Thus "-1" is a menu with items from the
outermost level, "-2" is the level before the outermost...

0

special "directory" / "list" /
"updated" / "browse" /
"rootline" / "keywords" /
"language"

See section "The .special property" and the according tables
below.

special.value list of page-uid's /stdWrap See above

minItems Until TYPO3 4.6: int
Since TYPO3 4.7: int
/stdWrap

The minimum items in the menu. If the number of pages
does not reach this level, a dummy-page with the title
"..." and uid=[currentpage_id] is inserted.

Notice: Affects all sub menus as well. To set the value
for each menu level individually, set the properties in
the menu objects (see "Common properties" table).

114

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

maxItems Until TYPO3 4.6: int
Since TYPO3 4.7: int
/stdWrap

The maximum items in the menu. More items will be
ignored.

Notice: Affects all sub menus as well. (See "minItems"
for notice)

begin Until TYPO3 4.6: int
+calc
Since TYPO3 4.7: int
/stdWrap +calc

The first item in the menu.

Example:
This results in a menu, where the first two items are
skipped starting with item number 3:

begin = 3

Notice: Affects all sub menus as well. (See "minItems"
for notice)

excludeUidList list of integers /stdWrap This is a list of page uid's to exclude when the select
statement is done. Comma-separated. You may add
"current" to the list to exclude the current page.

Example:
The pages with these uid-number will NOT be within
the menu!! Additionally the current page is always
excluded too.

excludeUidList = 34,2,current

excludeDoktypes list of integers Enter the list of page document types (doktype) to
exclude from menus. By default pages that are "not in
menu" (5) are excluded and those marked for backend
user access only (6).

5,6

includeNotInMen
u

boolean If set, pages with the checkbox "Not in menu" checked
will be included in menus.

alwaysActivePIDl
ist

list of integers /stdWrap This is a list of page UID numbers that will always be
regarded as active menu items and thereby
automatically opened regardless of the rootline.

protectLvar boolean / keyword If set, then for each page in the menu it will be checked
if an Alternative Page Language record for the language
defined in "config.sys_language_uid" (typically defined
via &L) exists for the page. If that is not the case and the
pages "Localization settings" have the "Hide page if no
translation for current language exists" flag set, then the
menu item will link to a non accessible page that will
yield an error page to the user. Setting this option will
prevent that situation by simply adding "&L=0" for such
pages, meaning that they will switch to the default
language rather than keeping the current language.
The check is only carried out if a translation is
requested ("config.sys_language_uid" is not zero).

Keyword: "all"
When set to "all" the same check is carried out but it will
not look if "Hide page if no translation for current
language exists" is set - it always reverts to default
language if no translation is found.

For these options to make sense, they should only be
used when "config.sys_language_mode" is not set to
"content_fallback".

addQueryString string see typolink.addQueryString

Notice: This works only for special=language.

if ->if If "if" returns false, the menu is not generated

wrap wrap /stdWrap

stdWrap ->stdWrap (Executed after ".wrap".)

115

TypoScript Reference - doc_core_tsref Content Objects (cObject)

[tsref:(cObject).HMENU]

Example:
temp.sidemenu = HMENU
temp.sidemenu.entryLevel = 1
temp.sidemenu.1 = TMENU
temp.sidemenu.1 {
 target = page
 NO.afterImg = media/bullets/dots2.gif |*||*| _
 NO.afterImgTagParams = hspace="4"
 NO.linkWrap = {$fontTag}
 NO.ATagBeforeWrap = 1

 ACT < .NO
 ACT = 1
 ACT.linkWrap = {$fontTag}
}

The .special property
This property makes it possible to create menus that are not strictly reflecting the current page-
structure, but rather creating menus with links to pages like "next/previous", "last modified", "pages in
a certain page" and so on.

Note: .entryLevel generally is not supported together with the .special property! The only exception is
special.keywords.

Also be aware that this property selects pages for the first level in the menu. Submenus by
menuObjects 2+ will be created as usual.

special.directory

A HMENU of type special = directory lets you create a menu listing the subpages of one or more
parent pages. The parent pages are defined in the property ".value". It is usually used for sitemaps.

Mount pages are supported.

Property: Data type: Description: Default:

value list of page
ids /stdWrap

This will generate a menu of all pages with pid = 35 and
pid = 56.

20 = HMENU
20.special = directory
20.special.value = 35, 56

current page
id

[tsref:(cObject).HMENU.special.directory]

special.list

A HMENU of type special = list lets you create a menu that lists the pages you define in the property
".value".

Mount pages are supported.

Property: Data type: Description: Default:

value list of page
ids /stdWrap

This will generate a menu with the two pages (uid=35 and
uid=56) listed:

20 = HMENU
20.special = list
20.special.value = 35, 56

If .value is not set, the default uid is 0, so that only your
homepage will be listed.

0

[tsref:(cObject).HMENU.special.list]

special.updated

An HMENU with the property special = updated will create a menu of the most recently updated
pages.

116

TypoScript Reference - doc_core_tsref Content Objects (cObject)

A note on ordering: The sorting menu is by default done in reverse order (desc) with the field
specified by "mode", but setting "alternativeSortingField" for the menu object (e.g. TMENU or GMENU,
see later) will override that.

Mount pages are supported.

Property: Data type: Description: Default:

value list of page
ids /stdWrap

This will generate a menu of the most recently updated
pages from the branches in the tree starting with the
uid's (uid=35 and uid=56) listed.

20 = HMENU
20.special = updated
20.special.value = 35, 56

mode string The field in the database which should be used to get the
information about the last update from.

The following values are possible:
- SYS_LASTCHANGED: Is updated to the youngest
tstamp of the records on the page when a page is
generated.
- crdate: Uses the "crdate"-field of the pagerecord.
- tstamp: Uses the "tstamp"-field of the pagerecord,
which is set automatically when the record is changed.
- manual or lastUpdated: Use the field "lastUpdated",
which can be set manually in the page-record.
- starttime: Uses the starttime field.

Fields with empty values are generally not selected.

SYS_LASTC
HANGED

depth int Defines the tree depth.
The allowed range is 1-20.
A depth of 1 means only the start id, depth of 2 means
start-id + first level.
Notice: "depth" is relative to "beginAtLevel".

20

beginAtLevel int Determines starting level for the page trees generated
based on .value and .depth.

0 is default and includes the start id.
1 starts with the first row of subpages,
2 starts with the second row of subpages.

Notice: "depth" is relative to this property.

0

maxAge int (seconds)
+calc

Pages with update-dates older than the current time
minus this number of seconds will not be shown in the
menu no matter what. Default is "not used". You may use
+-*/ for calculations.

limit int Maximal number of items in the menu. Default is 10,
max is 100.

10

excludeNoSearchPages boolean If set, pages marked "No search" are not included. 0

[tsref:(cObject).HMENU.special.updated]

Example for special = updated:

The following example will generate a menu of the most recently updated pages from the branches in
the tree starting with the uid's (uid=35 and uid=56) listed. Furthermore the field "tstamp" is used
(default is SYS_LASTCHANGED) and the tree depth is 2 levels. Also a maximum of 8 pages will be
shown and they must have been updated within the last three days (3600*24*3):

20 = HMENU
20.special = updated
20.special.value = 35, 56
20.special {
 mode = tstamp
 depth = 2
 maxAge = 3600*24*3
 limit = 8

117

TypoScript Reference - doc_core_tsref Content Objects (cObject)

}

special.rootline

The path of pages from the current page to the root page of the page tree is called "rootline".

A rootline menu is a menu which shows you these pages one by one in their hierarchical order.

An HMENU with the property special = rootline creates a rootline menu (also known as "breadcrumb
trail") that could look like this:

Page level 1 > Page level 2 > Page level 3 > Current page

Such a click path facilitates the user's orientation on the website and makes navigation to a certain
page level easier.

Mount pages are supported.

Property: Data type: Description: Default:

range string
/stdWrap

[begin-level] | [end-level] (same way as you reference
the .entryLevel for an HMENU). The following
example will start at level 1 and not show the page the
user is currently on:

temp.breadcrumbs = HMENU
temp.breadcrumbs.special = rootline
temp.breadcrumbs.special.range = 1|-2

reverseOrder boolean If set to true, the order of the rootline menu elements
will be reversed.

false

targets.[level number] string For framesets. You can set a default target and a
target for each level by using the level number as sub-
property.

Example:
Here the links to pages on level 3 will have
target="page", while all other levels will have
target="_top" as defined for the TMENU property
.target.

page.2 = HMENU
page.2.special = rootline
page.2.special.range = 1|-2
page.2.special.targets.3 = page
page.2.1 = TMENU
page.2.1.target = _top
page.2.1.wrap = <HR> | <HR>
page.2.1.NO {
 linkWrap = | >
}

[tsref:(cObject).HMENU.special.rootline]

Example for special = rootline:

The following example will generate an accessible rootline menu: It will be wrapped as an unordered
list. The first page in the menu is the page on level 1, that is one level below the root page of the
website. The last page in the menu is the current page.

After each link there is an image, which could contain a small arrow.

The current page is not linked, but wrapped in em tags. It does not have the image appended.

20 = HMENU
20.wrap = |
20.special = rootline
20.special.range = 1|-1

20 {
 1 = TMENU
 1.noBlur = 1

118

TypoScript Reference - doc_core_tsref Content Objects (cObject)

 1.NO.wrapItemAndSub = |
 1.NO.ATagTitle.field = description // subtitle // title
 1.NO.afterImg = fileadmin/arrow.jpg

 1.CUR = 1
 1.CUR < .1.NO
 1.CUR.doNotLinkIt = 1
 1.CUR.wrapItemAndSub = |
 1.CUR.afterImg >
}

special.browse

Warning: Mount pages are not supported!

This menu contains pages which give your user the possibility to browse to the previous page, to the
next page, to a page with the table of contents and so on. The menu is built of items given by a list
from the property ".items".

Property: Data type: Description: Default:

value int
/stdWrap

Default is the current page id. Seldom you might want to
override this value with another page-uid which will then
act as the base point for the menu and the predefined
items.

current
page id

items list of item
names
separated by
"|"

Each element in the list (separated by "|") is either a
reserved item name (see list) with a predefined function, or
a user-defined name which you can assign a link to any
page. Note that the current page cannot be the root-page
of a site.

Reserved item names:
next / prev: Links to the next page / the previous page.
Next and previous pages are from the same "pid" as the
current page id (or "value") - that is the next item in a
menu with the current page. Also referred to as current
level.
If ".prevnextToSection" is set then next/prev will link to
the first page of the next section / to the last page of the
previous section, too.
nextsection / prevsection: Links to the next section / the
previous section. A section is defined as the subpages of a
page on the same level as the parent (pid) page of the
current page. Will not work if the parent page of the
current page is the root page of the site.
nextsection_last / prevsection_last: Where
nextsection/prevsection links to the first page in a section,
these link to the last pages. If there is only one page in the
section that will be both first and last. Will not work if the
parent page of the current page is the root
page of the site.
first / last: First / last page on the current
level. If there is only one page on the
current level that page will be both first
and last.
up: Links to the parent (pid) page of the
current page (up 1 level). Will always be
available.
index: Links to the parent of the parent
page of the current page (up 2 levels). May
not be available, if that page is out of the
rootline.

Examples:

If id=20 is the current page then:
21= prev and first, 19 = next, 18 = last, 17 =
up, 1=index, 10 = nextsection, 11 =
nextsection_last

119

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

prevsection and prevsection_last is not present because
id=3 has no subpages!

TypoScript (only "browse"-part, needs also
TMENU/GMENU):

xxx = HMENU
xxx.special = browse
xxx.special {
 items = index|up|next|prev
 items.prevnextToSection = 1
 index.target = _blank
 index.fields.title = INDEX
 index.uid = 8
}

items.prevnextToSection boolean If set, the "prev" and "next" navigation will jump to the
next section when it reaches the end of pages in the
current section. That way "prev" and "next" will also link
to the first page of the next section / to the last page of
the previous section.

[itemname].target string Optional/alternative target of the item.

[itemname].uid int (uid of page) - optional/alternative page-uid to link to.

[itemname].fields.[field
name]

string Override field "field name" in pagerecord.

Example:
This gives the link to the previous page the linktext "«
zurück".

prev.fields.title = « zurück

[tsref:(cObject).HMENU.special.browse]

special.keywords

Makes a menu of pages, which contain one or more keywords also found on the current page.

Ordering is by default done in reverse order (desc) with the field specified by "mode", but setting
"alternativeSortingField" for the menu object (e.g. for a GMENU, see later) will override that.

Mount pages are supported.

Property: Data type: Description: Default:

value int
/stdWrap

Page for which keywords to find similar pages

Example:
20 = HMENU
20.special = keywords
20.special {
 value.data = TSFE:id
 entryLevel = 1
 mode = manual
}
20.1 = TMENU
20.1.NO {
 ...
}

mode string Which field in the pages-table to use for sorting.

Possible values are:
- SYS_LASTCHANGED: Is updated to the youngest
tstamp of the records on the page when a page is
generated.
- manual or lastUpdated: Use the field "lastUpdated",
which can be set manually in the page-record.
- tstamp: Uses the "tstamp"-field of the pagerecord,
which is set automatically when the record is changed.
- crdate: Uses the "crdate"-field of the pagerecord.

SYS_LASTC
HANGED

120

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

- starttime: Uses the starttime field.

entryLevel int Where in the rootline the search begins.
See property entryLevel in the section "HMENU" above.

depth int (same as in section "special.updated") 20

limit int (same as in section "special.updated") 10

excludeNoSearchPages boolean (same as in section "special.updated")

begin boolean (same as in section "special.updated")

setKeywords string
/stdWrap

Lets you define the keywords manually by defining them
as a comma-separated list. If this property is defined, it
overrides the default, which is the keywords of the
current page.

keywordsField string Defines the field in the pages-table in which to search for
the keywords. Default is the field name "keyword". No
check is done to see if the field you enter here exists, so
enter an existing field, OK?!

keywords

keywordsField.sourceField string Defines the field from the current page from which to
take the keywords being matched. The default is
"keyword". (Notice that ".keywordsField" is only setting
the page-record field to search in !)

keywords

[tsref:(cObject).HMENU.special.keywords]

special.language

Creates a language selector menu. Typically this is made as a menu with flags for each language a
page is translated to and when the user clicks any element the same page id is hit but with a change to
the "&L" parameter in the URL.

The "language" type will create menu items based on the current page record but with the language
record for each language overlaid if available. The items all link to the current page id and only "&L" is
changed.

Note on item states:

When "TSFE->sys_language_uid" matches the sys_language uid for an element the state is set to
"ACT", otherwise "NO". However, if a page is not available due to the pages "Localization settings"
(which can disable translations) or if no Alternative Page Language record was found (can be disabled
with ".normalWhenNoLanguage", see below) the state is set to "USERDEF1" for non-active items and
"USERDEF2" for active items. So in total there are four states to create designs for. It is recommended
to disable the link on menu items rendered with "USERDEF1" and "USERDEF2" in this case since they
are disabled exactly because a page in that language does not exist and might even issue an error if
tried accessed (depending on site configuration).

Property: Data type: Description: Default:

value comma list of
sys_language
uids
/stdWrap

The number of elements in this list determines the
number of menu items.

normalWhenNoLanguage boolean If set to 1 the button for a language will ve rendered
as a non-disabled button even if no translation is
found for the language.

[tsref:(cObject).HMENU.special.language]

Example:

Creates a language menu with flags (notice that some lines break):

lib.langMenu = HMENU
lib.langMenu.special = language

121

TypoScript Reference - doc_core_tsref Content Objects (cObject)

lib.langMenu.special.value = 0,1,2
lib.langMenu.1 = GMENU
lib.langMenu.1.NO {
 XY = [5.w]+4, [5.h]+4
 backColor = white
 5 = IMAGE
 5.file = typo3/sysext/cms/tslib/media/flags/flag_uk.gif ||
typo3/sysext/cms/tslib/media/flags/flag_fr.gif ||
typo3/sysext/cms/tslib/media/flags/flag_es.gif
 5.offset = 2,2
}

lib.langMenu.1.ACT < lib.langMenu.1.NO
lib.langMenu.1.ACT = 1
lib.langMenu.1.ACT.backColor = black

lib.langMenu.1.USERDEF1 < lib.langMenu.1.NO
lib.langMenu.1.USERDEF1 = 1
lib.langMenu.1.USERDEF1.5.file = typo3/sysext/cms/tslib/media/flags/flag_uk_d.gif ||
typo3/sysext/cms/tslib/media/flags/flag_fr_d.gif ||
typo3/sysext/cms/tslib/media/flags/flag_es_d.gif
lib.langMenu.1.USERDEF1.noLink = 1

special.userdefined

Lets you write your own little PHP-script that generates the array of menu items.

Property: Data type: Description: Default:

file resource Filename of the php-file to include. (Just like cObject
PHP_SCRIPT)

[any other key] Your own variables to your script. They are all accessible
in the array $conf in your script.

[tsref:(cObject).HMENU.special.userdefined]

Note: The special type "userdefined" has been removed in TYPO3 4.6. Use the special type
"userfunction" instead.

How-to:

You must populate an array called $menuItemsArray with page-records of the menu items you want to
be in the menu.

It works like this:

$menuItemsArray[] = pageRow1;
$menuItemsArray[] = pageRow2;
$menuItemsArray[] = pageRow3;
...

A "pageRow" is a record from the table "pages" with all fields selected (SELECT * FROM...)

If you create fake page rows, make sure to add at least "title" and "uid" field values.

Notice:

If you work with mount-points you can set the MP param which should be set for the page by setting
the internal field "_MP_PARAM" in the page-record (xxx-xxx).

Overriding URLs:

You can also use the internal field "_OVERRIDE_HREF" to set a custom href-value (eg.
"http://www.typo3.org") which will in any case be used rather than a link to the page that the page
otherwise might represent. If you use "_OVERRIDE_HREF" then "_OVERRIDE_TARGET" can be used
to override the target value as well (See example below).

Other reserved keys:

"_ADD_GETVARS" can be used to add get parameters to the URL, eg. "&L=xxx".

"_SAFE" can be used to protect the element to make sure it is not filtered out for any reason.

122

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Creating submenus:

You can create submenus for the next level easily by just adding an array of menu items in the internal
field "_SUB_MENU" (See example below).

Presetting element state

If you would like to preset an element to be recognized as a SPC, IFSUB, ACT, CUR or USR mode
item, you can do so by specifying one of these values in the key "ITEM_STATE" of the page record.
This setting will override the natural state-evaluation.

special.userfunction

Calls a user function/method in class which should (similar to how "userdefined" worked above) return
an array with page records for the menu.

Property: Data type: Description: Default:

userFunc string Name of the function

[tsref:(cObject).HMENU.special.userfunction]

Example: Creating hierarchical menus of custom links

By default the HMENU object is designed to create menus from pages in TYPO3. Such pages are
represented by their page-record contents. Usually the "title" field is used for the title and the "uid"
field is used to create a link to that page in the menu.

However the HMENU and sub-menu objects are so powerful that it would be very useful to use these
objects for creating menus of links which does not relate to pages in TYPO3 by their ids. This could be
a menu reflecting a menu structure of a plugin where each link might link to the same page id in
TYPO3 but where the difference would be in some parameter value.

First, this listing creates a menu in three levels where the first two are graphical items:

 0: # ************************
 1: # MENU LEFT
 2: # ************************
 3: lib.leftmenu.20 = HMENU
 4: lib.leftmenu.20.special = userfunction
 5: lib.leftmenu.20.special.userFunc = user_3dsplm_pi2->makeMenuArray
 6: lib.leftmenu.20.1 = GMENU
 7: lib.leftmenu.20.1.NO {
 8: wrap = <tr><td>|</td></tr><tr><td class="bckgdgrey1" height="1"></td></tr>
 9: XY = 163,19
 10: backColor = white
 11: 10 = TEXT
 12: 10.text.field = title
 13: 10.text.case = upper
 14: 10.fontColor = red
 15: 10.fontFile = fileadmin/fonts/ARIALNB.TTF
 16: 10.niceText = 1
 17: 10.offset = 14,12
 18: 10.fontSize = 10
 19: }
 20: lib.leftmenu.20.2 = GMENU
 21: lib.leftmenu.20.2.wrap = | <tr><td class="bckgdwhite" height="4"></td></tr><tr><td
class="bckgdgrey1" height="1"></td></tr>
 22: lib.leftmenu.20.2.NO {
 23: wrap = <tr><td class="bckgdwhite" height="4"></td></tr><tr><td>|</td></tr>
 24: XY = 163,16
 25: backColor = white
 26: 10 = TEXT
 27: 10.text.field = title
 28: 10.text.case = upper
 29: 10.fontColor = #666666
 30: 10.fontFile = fileadmin/fonts/ARIALNB.TTF
 31: 10.niceText = 1
 32: 10.offset = 14,12
 33: 10.fontSize = 11
 34: }
 35: lib.leftmenu.20.2.RO < lib.leftmenu.20.2.NO
 36: lib.leftmenu.20.2.RO = 1

123

TypoScript Reference - doc_core_tsref Content Objects (cObject)

 37: lib.leftmenu.20.2.RO.backColor = #eeeeee
 38: lib.leftmenu.20.2.ACT < lib.leftmenu.20.2.NO
 39: lib.leftmenu.20.2.ACT = 1
 40: lib.leftmenu.20.2.ACT.10.fontColor = red
 41: lib.leftmenu.20.3 = TMENU
 42: lib.leftmenu.20.3.NO {
 43: allWrap = <tr><td>|</td></tr>
 44: linkWrap (
 45: <table border="0" cellpadding="0" cellspacing="0" style="margin: 2px; 0px; 2px;
0px;">
 46: <tr>
 47: <td></td>
 48: <td><img src="fileadmin/arrow_gray.gif" height="9" width="9" hspace="3"
/></td>
 49: <td>|</td>
 50: </tr>
 51: </table>
 52:)
 53: }

The menu looks like this on a web page:

The TypoScript code above generates this menu, but the items do not link straight to pages as usual.
This is because the whole menu is generated from this array, which was returned from the function
"menuMenuArray" called in TypoScript line 4+5

 1: function makeMenuArray($content, $conf) {
 2: return array(
 3: array(
 4: 'title' => 'Contact',
 5: '_OVERRIDE_HREF' => 'index.php?id=10',
 6: '_SUB_MENU' => array(
 7: array(
 8: 'title' => 'Offices',
 9: '_OVERRIDE_HREF' => 'index.php?id=11',
 10: '_OVERRIDE_TARGET' => '_top',
 11: 'ITEM_STATE' => 'ACT',
 12: '_SUB_MENU' => array(
 13: array(
 14: 'title' => 'Copenhagen Office',
 15: '_OVERRIDE_HREF' => 'index.php?id=11&officeId=cph',
 16:),
 17: array(
 18: 'title' => 'Paris Office',
 19: '_OVERRIDE_HREF' => 'index.php?id=11&officeId=paris',
 20:),
 21: array(
 22: 'title' => 'New York Office',
 23: '_OVERRIDE_HREF' => 'http://www.newyork-office.com',
 24: '_OVERRIDE_TARGET' => '_blank',
 25:)
 26:)
 27:),
 28: array(
 29: 'title' => 'Form',
 30: '_OVERRIDE_HREF' => 'index.php?id=10&cmd=showform',
 31:),
 32: array(
 33: 'title' => 'Thank you',
 34: '_OVERRIDE_HREF' => 'index.php?id=10&cmd=thankyou',

124

TypoScript Reference - doc_core_tsref Content Objects (cObject)

 35:),
 36:),
 37:),
 38: array(
 39: 'title' => 'Products',
 40: '_OVERRIDE_HREF' => 'index.php?id=14',
 41:)
 42:);
 43: }

Notice how the array contains "fake" page-records which has no uid field, only a "title" and
"_OVERRIDE_HREF" as required and some other fields as it fits.

• The first level with items "Contact" and "Products" contains "title" and "_OVERRIDE_HREF" fields,
but "Contact" extends this by a "_SUB_MENU" array which contains a similar array of items.

• The first item on the second level, "Offices", contains a field called "_OVERRIDE_TARGET".
Further the item has its state set to "ACT" which means it will render as an "active" item (you will
have to calculate such stuff manually when you are not rendering a menu of real pages!). Finally
there is even another sub-level of menu items.

CTABLE
Creates a table in which you can define the content of the the various cells.

A CTABLE is a little more feature packed than the simple OTABLE. It features a content column and
four surrounding columns, which may be useful for putting menus into them.

Property: Data type: Description: Default:

offset x,y /stdWrap Offset from upper left corner. 0,0

tm ->CARRAY
+TDParams /stdWrap

TopMenu
The default value of TDParams is: valign="top".
stdWrap is available for the property TDParams.

lm ->CARRAY
+TDParams /stdWrap

LeftMenu
The default value of TDParams is: valign="top".
stdWrap is available for the property TDParams.

rm ->CARRAY
+TDParams /stdWrap

RightMenu
The default value of TDParams is: valign="top".
stdWrap is available for the property TDParams.

bm ->CARRAY
+TDParams /stdWrap

BottomMenu
The default value of TDParams is: valign="top".
stdWrap is available for the property TDParams.

c ->CARRAY
+TDParams /stdWrap

Content-cell
The default value of TDParams is: valign="top".
stdWrap is available for the property TDParams.

cMargins margins /stdWrap Distance around the content-cell "c". 0,0,0,0

cWidth pixels /stdWrap Width of the content-cell "c".

tableParams <TABLE>-params
/stdWrap

Attributes of the table tag. border="0"
cellspacing="0"
cellpadding="0"

stdWrap ->stdWrap

[tsref:(cObject).CTABLE]

Example:
page.10 = CTABLE
page.10 {
 offset = 5, 0
 tableParams = border="0" width="400"
 cWidth = 400
 c.1 = CONTENT
 c.1.table = tt_content
 c.1.select {
 pidInList = this

125

TypoScript Reference - doc_core_tsref Content Objects (cObject)

 orderBy = sorting
 }

 tm.10 < temp.sidemenu
 tm.TDParams = valign=top

 stdWrap.wrap = <div id="mytable">|</div>
}

OTABLE
Creates a simple table. You can set an offset and some parameters for the table tag.

Property: Data type: Description: Default:

offset x,y /stdWrap Offset from upper left corner.

Note:
Actually the data type is "x,y,r,b,w,h" and stdWrap:
x,y is the offset from upper left corner.
r,b is the offset (margin) to right and bottom.
w is the required width of the content field.
h is the required height of the content field.

All measures are in pixels.

1,2,3,4... cObject

tableParams <TABLE>-params
/stdWrap

Attributes of the table tag. border="0"
cellspacing="0"
cellpadding="0"

stdWrap ->stdWrap

[tsref:(cObject).OTABLE]

Example:
top.100 = OTABLE
top.100.offset = 310,8
top.100.tableParams = border="1" cellpadding="0" cellspacing="0"
top.100.1 < temp.topmenu

COLUMNS
Inserts a table with several columns. Size and styling of the table tag can be defined with the according
options.

Property: Data type: Description: Default:

tableParams <TABLE>-params
/stdWrap

Attributes of the table tag. border="0"
cellspacing="0"
cellpadding="0"

TDparams <TD>-params
/stdWrap

Attributes of the td tags. valign="top"

rows integer (Range: 2-20)
/stdWrap

The number of rows in the columns. 2

totalWidth integer /stdWrap The total-width of the columns+gaps.

gapWidth integer /stdWrap
+optionSplit

Width of the gap between columns.
0 = no gap

gapBgCol HTML-color
/stdWrap
+optionSplit

Background-color for the gap-tablecells.

gapLineThickness integer /stdWrap
+optionSplit

Thickness of the divider line in the gap between cells.
0 = no line

126

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

gapLineCol HTML-color
/stdWrap
+optionSplit

Line color of the divider line. black

[column-number]
1,2,3,4...

cObject This is the content-object for each column!!

after cObject This is a cObject placed after the columns-table!!

if ->if If "if" returns false, the columns are not rendered!

stdWrap ->stdWrap

[tsref:(cObject).COLUMNS]

HRULER
This object inserts a table tag, which you can use as a horizontal divider.

Property: Data type: Description: Default:

lineThickness integer /stdWrap Range: 1-50 1

lineColor HTML-color
/stdWrap

The color of the ruler. black

spaceLeft pixels /stdWrap Space before the line (to the left).

spaceRight pixels /stdWrap Space after the line (to the right).

tableWidth string /stdWrap Width of the ruler ("width" attribute in a table). 99%

stdWrap ->stdWrap

[tsref:(cObject).HRULER]

IMGTEXT
This object is designed to align images and text. This is normally used to render text/picture records
from the tt_content table.

The image(s) are placed in a table and the table is placed before, after or left/right relative to the text.

See code examples.

Property: Data type: Description: Default:

text ->CARRAY
/stdWrap

Use this to import / generate the content, that should flow
around the image block.

textPos int /stdWrap Text position:
bit[0-2]: 000 = center, 001 = right, 010 = left
bit[3-5]: 000 = over, 001 = under, 010 text

0 - Above: Centre
1 - Above: Right
2 - Above: Left
8 - Below: Centre
9 - Below: Right
10 - Below: Left
17 - In Text: Right
18 - In Text: Left
25 - In Text: Right (no wrap)
26 - In Text: Left (no wrap)

textMargin pixels /stdWrap Margin between the image and the content.

textMargin_out
OfText

boolean If set, the textMargin space will still be inserted even if the
image is placed above or below the text.
This flag is only for a kind of backwards compatibility because
this "feature" was recently considered a bug and thus
corrected. So if anyone has depended on this way things are

127

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

done, you can compensate with this flag.

imgList list of
imagefiles
/stdWrap

List of images from ".imgPath".

Example:
This imports the list of images from tt_content's image-field.

imgList.field = image

imgPath path /stdWrap Path to the images.

Example:
"uploads/pics/"

imgMax int /stdWrap Maximum number of images.

imgStart int /stdWrap Start with image-number ".imgStart".

imgObjNum imgObjNum
+optionSplit

Here you define, which IMAGE-cObjects from the array
"1,2,3,4..." in this object that should render the images.
"current" is set to the image-filename.

Example:
imgObjNum = 1 |*||*| 2

This would render the first two images with "1. ..." and the last
image with "2. ...", provided that the ".imgList" contains 3
images.

1,2,3,4 ->IMAGE
(cObject)

Rendering of the images.
The register "IMAGE_NUM" is set with the number of image
being rendered for each rendering of an image-object. Starting
with zero.
The image-object should not be of type GIFBUILDER!

Important:
"file.import.current = 1" fetches the name of the images!

caption ->CARRAY
/stdWrap

Caption.

captionAlign align /stdWrap Caption alignment. default =
".textPos"

captionSplit boolean If this is set, the caption text is split by the character (or
string) from ".token" , and every item is displayed under an
image each in the image block.

.token = (string /stdWrap) Character to split the caption
elements (default is chr(10))
.cObject = cObject, used to fetch the caption for the split
.stdWrap = stdWrap properties used to render the caption.

altText
titleText

string /stdWrap Default altText/titleText if no alternatives are provided by the
->IMAGE cObjects.

If alttext is not specified, an empty alttext will be used.

emptyTitleHand
ling

string /stdWrap Value can be "keepEmpty" to preserve an empty title attribute,
or "useAlt" to use the alt attribute instead.

useAlt

longdescURL string /stdWrap Default longdescURL if no alternatives are provided by the
->IMAGE cObjects

"longdesc" attribute (URL pointing to document with extensive
details about image).

border boolean
/stdWrap

If true, a border i generated around the images.

borderCol HTML-color
/stdWrap

Color of the border, if ".border" is set black

borderThick pixels /stdWrap Width of the border around the pictures 1

cols int /stdWrap Columns

128

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

rows int /stdWrap Rows (higher priority thab "cols")

noRows boolean
/stdWrap

If set, the rows are not divided by a table-rows. Thus images
are more nicely shown if the height differs a lot (normally the
width is the same!)

noCols boolean
/stdWrap

If set, the columns are not made in the table. The images are
all put in one row separated by a clear giffile to space them
apart.
If noRows is set, noCols will be unset. They cannot be set
simultaneously.

colSpace int /stdWrap Space between columns.

rowSpace int /stdWrap Space between rows.

spaceBelowAbov
e

int /stdWrap Pixel space between content an images when position of
image is above or below text (but not in text)

tableStdWrap ->stdWrap This passes the final <table> code for the image block to the
stdWrap function.

maxW int /stdWrap Maximum width of the image-table.
This will scale images not in the right size! Takes the number
of columns into account!

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER!

maxWInText int /stdWrap Maximum width of the image-table, if the text is wrapped
around the image-table (on the left or right side).
This will scale images not in the right size! Takes the number
of columns into account!

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER!

50% of maxW

equalH int /stdWrap If this value is greater than zero, it will secure that images in a
row has the same height. The width will be calculated.
If the total width of the images raise above the "maxW"-value
of the table the height for each image will be scaled down
equally so that the images still have the same height but is
within the limits of the totalWidth.
Please note that this value will override the properties "width",
"maxH", "maxW", "minW", "minH" of the IMAGE-objects
generating the images. Furthermore it will override the
"noRows"-property and generate a table with no columns
instead!

colRelations string /stdWrap This value defines the width-relations of the images in the
columns of IMGTEXT. The syntax is "[int] : [int] : [int] : ..." for
each column. If there are more image columns than figures in
this value, it's ignored. If the relation between two of these
figures exceeds 10, this function is ignore.
It works only fully if all images are downscaled by their
maxW-definition.

Example:
If 6 images are placed in three columns and their width's are
high enough to be forcibly scaled, this value will scale the
images in the to be e.g. 100, 200 and 300 pixels from left to
right
1 : 2 : 3

image_compress
ion

int /stdWrap Image Compression:
0= Default
1= Don't change! (removes all parameters for the
image_object!!)
(adds gif-extension and color-reduction command)
10= GIF/256
11= GIF/128
12= GIF/64
13= GIF/32
14= GIF/16

129

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

15= GIF/8
(adds jpg-extension and quality command)
20= IM: -quality 100
21= IM: -quality 90 <=> Photoshop 60 (JPG/Very High)
22= IM: -quality 80 (JPG/High)
23= IM: -quality 70
24= IM: -quality 60 <=> Photoshop 30 (JPG/Medium)
25= IM: -quality 50
26= IM: -quality 40 (JPG/Low)
27= IM: -quality 30 <=> Photoshop 10
28= IM: -quality 20 (JPG/Very Low)
(adds png-extension and color-reduction command)
30= PNG/256
31= PNG/128
32= PNG/64
33= PNG/32
34= PNG/16
35= PNG/8
39= PNG

The default ImageMagick quality seems to be 75. This equals
Photoshop quality 45. Images compressed with ImageMagick
with the same visual quality as a Photoshop-compressed image
seem to be largely 50% greater in size!!

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

image_effects int /stdWrap Adds these commands to the parameters for the scaling. This
function has no effect if "image_compression" above is set to
1!!

1 => "-rotate 90",
2 => "-rotate 270",
3 => "-rotate 180",
10 => "-colorspace GRAY",
11 => "-sharpen 70",
20 => "-normalize",
23 => "-contrast",
25 => "-gamma 1.3",
26 => "-gamma 0.8"

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

image_frames Array
+ .key /stdWrap

Frames:
.key points to the frame used.

".image_frames.x" is imgResource-mask (".m")properties which
will override to the [imgResource].m properties of the
imageObjects. This is used to mask the images into a frame.
See how it's done in the default configuration and IMGTEXT
in the static_template-table.

Example:
1 {
 mask = media/uploads/darkroom1_mask.jpg
 bgImg = GIFBUILDER
 bgImg {
 XY = 100,100
 backColor = {$bgCol}
 }
 bottomImg = GIFBUILDER
 bottomImg {
 XY = 100,100
 backColor = black
 }
 bottomImg_mask =
media/uploads/darkroom1_bottom.jpg
}

130

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

NOTE: This cancels the jpg-quality settings sent as ordinary
".params" to the imgResource. In addition the output of this
operation will always be jpg or gif!
NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

editIcons string (See stdWrap.editIcons)

noStretchAndM
arginCells

boolean
/stdWrap

If set (1), the cells used to add left and right margins plus
stretch out the table will not be added. You will loose the
ability to set margins for the object if entered "in text". So it's
not recommended, but it has been requested by some people
for reasons.

stdWrap ->stdWrap

[tsref:(cObject).IMGTEXT]

Example:
tt_content.textpic.default {
 5 = IMGTEXT
 5 {
 text < tt_content.text.default
 imgList.field = image
 textPos.field = imageorient
 imgPath = uploads/pics/
 imgObjNum = 1
 1 {
 file.import.current = 1
 file.width.field = imagewidth
 imageLinkWrap = 1
 imageLinkWrap {
 bodyTag = <BODY bgColor=black>
 wrap = |
 width = 800m
 height = 600m
 JSwindow = 1
 JSwindow.newWindow = 1
 JSwindow.expand = 17,20
 }
 }
 maxW = 450
 maxWInText = 300
 cols.field = imagecols
 border.field = imageborder
 caption {
 1 = TEXT
 1.field = imagecaption
 1.wrap = |
 1.wrap2 = {$cBodyTextWrap}
 }
 borderThick = 2
 colSpace = 10
 rowSpace = 10
 textMargin = 10
 }
 30 = TEXT
 30.value =

}

CASE
This is a very flexible object whose rendering can vary depending on a given key. The principle is
similar to that of the "switch" construct in PHP.

The "key" property is expected to match one of the values found in the "Array". If none is found, the
"default" property will be used. Any string can be used as value in the "Array" except for those that
match another property. So the forbidden values are: "setCurrent", "key", "stdWrap" and "if". And of
course, "default" has a special meaning.

131

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

setCurrent string /stdWrap Sets the "current"-value.

key string /stdWrap This is used to define the source of the value that will be
matched against the values of "Array". It will generally not be
a simple string, but use its stdWrap properties to retrieve a
dynamic value from some specific source, typically a field of
the current record (see example below).

default

default cObject Defines the rendering for all values of "key" that don't match
any of the values of "Array".

Array... cObject Defines the rendering for a number of values.

stdWrap ->stdWrap stdWrap around any object that was rendered no matter what
the "key" value is.

if ->if If "if" returns false, nothing is returned.

[tsref:(cObject).CASE]

Example:

This example chooses between two different renderings of some content depending on whether the
field "layout" is "1" or not ("default"). The result is in either case wrapped with "|
". If the field
"header" turns out not to be set ("false") an empty string is returned anyway.

stuff = CASE
stuff.key.field = layout
stuff.if.isTrue.field = header
stuff.stdWrap.wrap = |

stuff.default = TEXT
stuff.default {

}
stuff.1 = TEXT
stuff.1 {

}

LOAD_REGISTER
This provides a way to load the array $GLOBALS['TSFE']->register[] with values. It doesn't return
anything! The usefulness of this is, that some predefined configurations (like the page-content) can be
used in various places but use different values as the values of the register can change during the page-
rendering.

Property: Data type: Description: Default:

Array...
[field name]

string /stdWrap Example:
(This sets "contentWidth", "label" and "head")

page.27 = LOAD_REGISTER
page.27 {
 contentWidth = 500

 label.field = header

 head = some text
 head.wrap = |
}

[tsref:(cObject).LOAD_REGISTER]

RESTORE_REGISTER
This unsets the latest changes in the register-array as set by LOAD_REGISTER.

Internally this works like a stack where the original register is saved when LOAD_REGISTER is called.
Then a RESTORE_REGISTER cObject is called the last element is pulled of that stack the register is

132

TypoScript Reference - doc_core_tsref Content Objects (cObject)

replaced with it.

RESTORE_REGISTER has no properties.

FORM
Note
The following only applies, if the system extension "form" (which comes with TYPO3 since
version 4.6) is not installed. If it is, things work as described in the documentation inside the
system extension.

This object provides a way to create forms:

textarea: Label | [* = required][field name =] textarea[,cols,rows,"wrap= [eg. "OFF"]"] |
[defaultdata] | Special evaluation configuration (see note below)
input: Label | [* = required][field name =] input[,size,max] | [defaultdata] |
Special evaluation configuration (see note below)
password: Label | [* = required][field name =] input[,size,max] | [defaultdata]
file: Label | [* = required][field name (*1)=] file[,size]
check: Label | [* = required][field name =]check | [checked=1]
select: Label | [* = required][field name =]select[,size (int/"auto"),
"m"=multiple] | label [=value] , ...
radio: Label | [* = required][field name =]radio | label [=value] , ...
hidden: |[field name =]hidden | value
submit: Label |[field name =]submit | Caption
reset: Label |[field name =]reset | Caption
label: Label | label | Label value
property: [Internal, see below]

Preselected item with type "select" and "radio":
This is an example, where "Brown" is the preselected item of a selector box:

Haircolor: | *haircolor=select| Blue=blue , Red=red , *Brown=brown

You can enter multiple items to be preselected by placing an asterisk in front of each preselected item.

Property override:
This can be done with the following properties from the table below:

type, locationData, goodMess, badMess, emailMess

syntax:

|[property] =property | value

(*1) (field name for files)

In order for files to be attached the mails, you must use the field names:

attachment, attachment1, ... , attachment10

Displaying the form:
You must set the property "layout". If you do not set it, the form will not be rendered! For more
information see the example and the table below.

Example:
temp.mailform = FORM
temp.mailform {

 dataArray {
 10.label = Name:
 10.type = name=input

 20.label = Nachricht:
 20.type = nachricht=textarea,40,10

 100.type = submit=submit
 100.value = Absenden

133

TypoScript Reference - doc_core_tsref Content Objects (cObject)

 }
 recipient = info@example.com
 layout = <div class="some-class">###LABEL### ###FIELD###</div>
}

Correct return-email:
In order for the mails to be attached with the email address of the people that submits the mails,
please use the field name "email", e.g:

Email: | *email=input |

Special evaluation
By prefixing a "*" before the field name of most types you can have the value of the field required. The
check is done in JavaScript; It will only submit the form if this field is filled in.

Alternatively you can evaluate a field value against a regular expression or as an email address for
certain types (textarea, password, input).

This is done by specifying the "Special evaluation configuration" for those types as part 4 in the
configuration line (see examples above).

The special evaluation types are divided by a semicolon (":").

The first part defines the evaluation keyword. Current options are "EREG" (for regular expression)
and "EMAIL" (for evaluation to an email address).

If the "EREG" keyword is specified the 2nd and 3rd parts are error message and regular expression
respectively.

Examples:
Your address: | address=textarea,40,10 | | EREG : You can only enter the characters A to
Z : ^[a-zA-Z]*$
Your email: | *email=input | | EMAIL

Property: Data type: Description: Default:

data string
/stdWrap

This is the data that sets up the form. See above.
"||" can be used instead of line breaks

dataArray [array of form
elements]

This is an alternative way to define the form-fields. Instead of
using the syntax with vertical separator bars suggested by
the .data property, you can define the elements in regular
TypoScript style arrays.
.dataArray is added to the input in .data if any.
Every entry in the dataArray is numeric and has three main
properties, label, type, value and required. All of them have
stdWrap properties.
There is an alternative property to .value, which is
.valueArray. This is also an array in the same style with
numeric entries which has properties label, value and selected.
All three of these properties have stdWrap properties.

Example:
dataArray {
 10.label = Name:
 10.type = name=input
 10.value = [Enter name]
 10.required = 1
 20.label = Eyecolor
 20.type = eyecolor=select
 20.valueArray {
 10.label = Blue
 10.value = 1
 20.label = Red
 20.value = 2
 20.selected = 1
 }
 40.type = submit=submit

134

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

 40.value = Submit
}

This is the same as this line in the .data property:

Name: | *name=input | [Enter name]
Eyecolor: | eyecolor=select | Blue=1, *Red=2
| submit=submit | Submit

Why do it this way? Good question, but doing it this way has
a tremendous advantage, because labels are all separated from
the codes. In addition it's much easier to pull out or insert
new elements in the form.
Inserting an email-field after the name field would be like this:

dataArray {
 15.label = Email:
 15.type = input
 15.value = your@email.com
 15.specialEval = EMAIL
}

Or translating the form to danish (setting config.language to
'dk'):

dataArray {
 10.label.lang.dk = Navn:
 10.value.lang.dk = [Indtast dit navn]
 20.label.lang.dk = Øjenfarve
 20.valueArray {
 10.label.lang.dk = Blå
 20.label.lang.dk = Rød
 }
 40.value.lang.dk = Send
}

radioWrap ->stdWrap Wraps the labels for radio buttons.

radioWrap.accessib
ilityWrap

wrap
/stdWrap

Defines how radio buttons are wrapped when accessibility
mode is turned on (see below "accessibility" property).

<fieldset###RA
DIO_FIELD_I
D###><legend>
###RADIO_G
ROUP_LABEL
###</legend>|
</fieldset>

radioInputWrap ->stdWrap Wraps the input element and label of a radio button.

type integer,
string

Type (action="" of the form):

Integer: this is regarded to be a page in TYPO3
String: this is regarded to be a normal URL (e.g.
"formmail.php" or "fe_tce_db.php")
Empty: the current page is chosen.

NOTE: If type is integer/empty the form will be submitted to
a page in TYPO3 and if this page has a value for
target/no_cache, then this will be used instead of the default
target/no_cache below.

NOTE: If the redirect-value is set, the redirect-target
overrides the target set by the action-url

NOTE: May be overridden by the property override feature
of the formdata (see above)

target target
/stdWrap

Default target of the form.

135

mailto:your@email.com

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

method form-method
/stdWrap

Example:
GET

POST

no_cache string
/stdWrap

Default no_cache-option.

noValueInsert boolean
/stdWrap

By default values that are submitted to the same page (and
thereby same form, e.g. at search forms) are re-inserted in the
form instead of any default-data that might be set up.
This, however, applies ONLY if the "no_cache=1" is set! (a
page being cached may not include user-specific defaults in
the fields of course...)
If you set this flag, "noValueInsert", the content will always be
the default content.

compensateFieldWi
dth

double
/stdWrap

Overriding option to the config-value of the same name. See
"CONFIG" above.

locationData boolean /
string
/stdWrap

If this value is true, then a hidden-field called "locationData"
is added to the form. This field will be loaded with a value like
this:
[page id]:[current record table]:[current record id]
For example, if a formfield is inserted on page with uid =
"100", as a page-content item from the table "tt_content" with
id "120", then the value would be "100:tt_content:120".
The value is use by eg. the cObject SEARCHRESULT. If the
value $GLOBALS['HTTP_POST_VARS']['locationData'] is
detected here, the search is done as if it was performed on this
page! This is very useful if you want a search functionality
implemented on a page with the "stype" field set to "L1" which
means that the search is carried out from the first level in the
rootline.
Suppose you want the search to submit to a dedicated search
page where ever. This page will then know - because of
locationData - that the search was submitted from another
place on the website.
If "locationData" is not only true but also set to
"HTTP_POST_VARS" then the value will insert the content of
$GLOBALS['HTTP_POST_VARS']['locationData'] instead of
the true location data of the page. This should be done with
search-fields as this will carry the initial searching start point
with.
NOTE: May be overridden by the property override feature
of the formdata (see above)

redirect string
/stdWrap

URL to redirect to (generates the hidden field "redirect")

Integer: this is regarded to be a page in TYPO3
String: this is regarded to be a normal url
Empty; the current page is chosen.

NOTE: If this value is set, the target of this overrides the
target of the "type".

recipient (list of)
string
/stdWrap

Email recipient of the formmail content (generates the
hiddenfield "recipient")

No email

goodMess string
/stdWrap

Message for the form evaluation function in case of correctly
filled form.

NOTE: May be overridden by the property override feature
of the formdata (see above).

No message

badMess string
/stdWrap

Message for the form evaluation in case of missing required
fields.
This message is shown above the list of fields.

NOTE: May be overridden by the property override feature
of the formdata (see above).

No message

136

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

emailMess string
/stdWrap

Message if a field evaluated to be an email address did not
validate.

NOTE: May be overridden by the property override feature
of the formdata (see above).

image ->IMAGE
(cObject)

If this is a valid image the submit button is rendered as this
image!!

NOTE: CurrentValue is set to the caption-label before
generating the image.

layout string This defines how the label and the field are placed towards
each other.

This property is mandatory; you must set it! Otherwise the
form will not be rendered.

Example:
This substitutes the marker "###FIELD###" with the field data
and the marker "###LABEL###' with label data.

layout = <tr><td>###FIELD###</td><td>
###LABEL###</td></tr>

You can also use the marker ###COMMENT### which is
ALSO the label value inserted, but wrapped in .commentWrap
stdWrap-properties (see below).

fieldWrap ->stdWrap Field: Wraps the fields

labelWrap ->stdWrap Labels: Wraps the label

commentWrap ->stdWrap Comments: Wrap for comments IF you use
###COMMENT###

REQ boolean
/stdWrap

Defines if required-fields should be checked and marked up.

REQ.fieldWrap ->stdWrap Field: Wraps the fields, but for required fields the
"fieldWrap"-
property

REQ.labelWrap ->stdWrap Labels: Wraps the label, but for required fields the
"labelWrap"-
property

REQ.layout string
/stdWrap

The same as "layout" above, but for required fields the "layout"-
property

COMMENT.layout string
/stdWrap

Alternative layout for comments. the "layout"-
property

CHECK.layout string
/stdWrap

Alternative layout for checkboxes the "layout"-
property

RADIO.layout string
/stdWrap

Alternative layout for radio buttons the "layout"-
property

LABEL.layout string
/stdWrap

Alternative layout for label types the "layout"-
property

stdWrap ->stdWrap Wraps the whole form (before form tag is added)

hiddenFields [array of
cObject]

Used to set hiddenFields from TS.

Example:
hiddenFields.pid = TEXT
hiddenFields.pid.value = 2

This makes a hidden-field with the name "pid" and value "2".

Available sub-property:
stdWrap, see ->stdWrap.

137

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

params form-element
tag
parameters
/stdWrap

Extra parameters to form elements.

Example:
params = style="width:200px;"
params.textarea = style="width:300px;"
params.check =

This sets the default to 200 px width, but excludes check-
boxes and sets textareas to 300.

stdWrap is available for the sub-properties, e.g.
params.tagname.

wrapFieldName wrap
/stdWrap

This wraps the field names before they are applied to the
form-field tags.

Example:
If value is tx_myextension[input][|] then the field name
"email" would be wrapped to this value: tx_myextension[input]
[email]

noWrapAttr boolean
/stdWrap

If this value is true then all wrap attributes of textarea
elements are suppressed. This is needed for XHTML-
compliancy.

The wrap attributes can also be disabled on a per-field basis
by using the special keyword "disabled" as the value of the
wrap attribute.

arrayReturnMode boolean
/stdWrap

If set, the <form> tags and the form content will be returned in
an array as separate elements including other practical values.
This mode is for use in extensions where the array return
value can be more useful.

accessibility boolean
/stdWrap

If set, then the form will be compliant with accessibility
guidelines (XHTML compliant). This includes:

● label string will be wrapped in <label for="formname[field
name-hash]"> ... </label>

● All form elements will have an id-attribute carrying the
formname with the md5-hashed field name appended

Notice: In TYPO3 4.0 and later, CSS Styled Content is
configured to produce accessible forms by default.

formName string
/stdWrap

An alternative name for this form. Default will be a unique
(random) hash.

<form name="...">

fieldPrefix string
/stdWrap

Alternative prefix for the name of the fields in this form.
Otherwise, all fields are prefixed with the form name (either a
unique hash or the name set in the "formName" property). If
set to "0", there will be no prefix at all.

dontMd5FieldNam
es

boolean
/stdWrap

The IDs generated for all elements in a form are md5 hashes
from the field name. Setting this to true will disable this
behavior and use a cleaned field name, prefixed with the form
name as the ID, instead.
This can be useful to style specifically named fields with CSS.

[tsref:(cObject).FORM]

Example: Login

In order to create a login form, you would need to supply these fields:

• "username" = username

• "userident" = password

• "login_status" = "logout" for logout, "login" for login.

138

TypoScript Reference - doc_core_tsref Content Objects (cObject)

If you insert "<!--###USERNAME###-->" somewhere in your document this will be substituted by the
username if a user is logged in!

If you want the login-form to change into a logout form you should use conditions to do this. See this
TS-example (extract from the static_template "styles.content (default)"):

 # loginform
styles.content.loginform {
 data = Username:|*username=input || Password:|*userident=password
}
[usergroup = *]
styles.content.loginform.data = Username: <!--###USERNAME###--> || |submit=submit| Logout
[global]

Example: Mailform

This creates a simple mail form (this is not TypoScript, but the setup code that you should put directly
into the "bodytext"-field of a pagecontent record of the type "FORMMAIL":

Name: | *replyto_name= input | Enter your name here
Email: | *replyto_email=input |
Like TV: | tv=check |
| formtype_mail = submit | Send this!

| html_enabled=hidden | 1
| subject=hidden| This is the subject
| recipient_copy=hidden | copy@email.com
| auto_respond_msg=hidden| Hello / This is an automatic response. //We have received your
mail.
| from_name=hidden | Website XY
| from_email=hidden | noreply@website.com
| organization=hidden | Organization XY
| redirect=hidden | 16
| priority=hidden | 5
| tv=hidden | 0

• "replyto_name": If the field is named like this the value is used as reply to name in the email
software and will not be shown in the mail content. Choose another field name like the_name
to use the value as a normal field. Note the asterisk (*) which means the field is required. and
the field name will be "the_name". Also a default value is set ("Enter your name here")

• "replyto_email": If the field is named like this the value is used as reply to email address in the
email software and will not be shown in the mail content. To get the value as sender address in
the mail software use "email" as field name.

• "Like TV" is a checkbox. Default is "unchecked".

• "formtype_mail" is the name of the submit button. It must be names so if you use the built-in
form mail of TYPO3, at it will make TYPO3 react automatically on the input and interpret it
as form mail input!

• "html_enabled" will let the mail be rendered in nice HTML

• "use_base64" will send the mail encoded as base64 instead of quoted-printable

• "subject": Enter the subject of your mail

• "recipient_copy" : A copy is sent to this mail-address. You may supply more addresses by
separating with a comma (,). The mail sent to recipient_copy is the same, but a separate
message from the one sent to the 'recipient' and furthermore the copy-mail is sent only if the
'recipient' mail is sent.

• "auto_respond_msg": This is an auto-responder message. This is sent if the email of the
"submitter" is known (field: "email"). The value of this is the message broken up in to lines by a
slash "/". Each slash is a new line in the email. The first line is used for the subject.

• "from_name": With this option you can set the mail header from name, which will be shown in
the mail software.

• "from_email": With this option you can set the mail header from email, which will be shown in

139

TypoScript Reference - doc_core_tsref Content Objects (cObject)

the mail software as sender address.

• "organization": With this option you can set the mail header organization parameter, which
won't be shown in the mail but in the mail header.

• "redirect": With this option you can define a TYPO3 page (page id) or external URL
(www.example.com) as redirect url after submit. If this option isn't set the form will be shown
again.

• "priority": With this option you can set the priority of the mail from 1 (not important) to 5 (very
important). Default is 3.

• "tv" (again, but hidden). Repeating this field may be smart as the value "tv" is normally NOT
submitted with the value "false" if not checked. Inserting this line will ensure a default value for
"tv".

SEARCHRESULT
This object can be used to display search results.

Search words are loaded into the register in a form ready for linking to pages:

Example:
register:SWORD_PARAMS = '&sword_list[]=word1&sword_list[]=word2'

See typolink for more info!

SEARCHRESULT returns results only from pages with of doktype "Standard" (1), "Advanced" (2) and
"Not in menu" (5)

Property: Data type: Description: Default:

allowedCols string List (separated by ":") of allowed table-cols.

Example:
pages.title:tt_content.bodytext

layout string This defines how the search content is shown.

Example:
This substitutes the following fields:

###RANGELOW###: The low result range, eg. "1"
###RANGEHIGH###: The high result range, eg. "10"
###TOTAL###: The total results
###RESULT###: The result itself
###NEXT###: The next-button
###PREV###: The prev-button

next cObject This cObject will be wrapped by a link to the next search result.
This is the code substituting the "###NEXT###"-mark

prev cObject This cObject will be wrapped by a link to the prev search result.
This is the code substituting the "###PREV###"-mark

target target
/stdWrap

target til next/prev links!

range integer
/stdWrap

The number of results at a time! 20

renderObj cObject The cObject to render the search results
$cObj->data array is set to the resulting record from the search.
Please note, that in all fields are named [tablename]_[fieldnam].
Thus the page title is in the field "pages_title".
Apart from this, these fields from the pages-table are also present:

uid

renderWrap wrap
/stdWrap

resultObj cObject The cObject prepended in the search results returns rows

noResultObj cObject The cObject used if the search results in no rows.

140

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

noOrderBy boolean
/stdWrap

If this is set, the result is NOT sorted after lastUpdated, tstamp for
the pages-table.

wrap wrap
/stdWrap

Wrap the whole content...

stdWrap ->stdWrap Wrap the whole content...

addExtUrlsAndS
hortCuts

boolean If set, then the doktypes 3 and 4 (External URLS and Shortcuts)
are added to the doktypes being searched.
However at this point in time, no pages will be select if they do
not have at least one tt_content record on them! That is because
the pages and tt_content (or other) table is joined. So there must
at least be one occurrence of a tt_content element on an External
URL / Shortcut page for them to show up.

languageField.
[2nd table]

string Setting a field name to filter language on. This works like the
"languageField" setting in ->select

Example:

languageField.tt_content = sys_language_uid

[tsref:(cObject).SEARCHRESULT]

NOTE: "sword" and "scols" MUST be set in order for the search to be engaged.

var "sword" = search word(s)

var "scols" = search columns separated by ":". E.g.: pages.title:pages.keywords:tt_content.bodytext

var "stype" = the starting point of the search: false = current page, L-2 = page before
currentPage, L-1 = current page, L0 = rootlevel, L1 = from first level, L2 = from second level

var $GLOBALS['HTTP_POST_VARS']['locationData']: If this is set, the search is done as was it from
another page in the website given by the value of "locationData" here. See the description at the
cObject "FORMS".

Only if the page locationData is pointing to, is inside the real rootLine of the site, the search will take
this into account.

internal:

var "scount": If this is set this is used as the searchCount - the total rows in the search. This way we
don't need to reconstruct this number!

var "spointer": This points to the start-record in the search.

LATER:

var "alldomains" : boolean: If set the search will proceed into other domains

var "allsites" : boolean: If set the search will proceed into other sites (defined
by the "root" setting of an active template.)

var "depth": The depth

Search syntax
When you search, you can use three operator types

• AND: "+", "and" (UK), "og" (DK)

• OR: "or" (UK), "eller" (DK)

• NOT: "-", "not" (UK), "uden" (DK)

Default operator is AND. If you encapsulate words in "" they are searched for as a whole string. The
search is case insensitive and matches parts of words also.

141

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Examples:

1. menu backend - will find pages with both 'menu' and 'backend'.

2. "menu backend" - will find pages with the phrase "menu backend".

3. menu or backend - will find pages with either 'menu' or 'backend'

4. menu or backend not content - will find pages with either 'menu' or 'backend' but not 'content'

Queries to the examples
In this case "pagecontent" is chosen as the fields to search. That includes tt_content.header,
tt_content.bodytext and tt_content.imagecaption.

Prefixed to these queries is this:

SELECT pages.title AS pages_title, pages.subtitle AS pages_subtitle, pages.keywords AS
pages_keywords, pages.description AS pages_description, pages.uid, tt_content.header AS
tt_content_header, tt_content.bodytext AS tt_content_bodytext, tt_content.imagecaption AS
tt_content_imagecaption
FROM pages, tt_content
WHERE(tt_content.pid=pages.uid) AND (pages.uid IN (2,5,6,20,21,22,29,30,31,3,4,8,9,16,1) AND
pages.doktype in (1,2,5) AND pages.no_search=0 AND NOT tt_content.deleted AND NOT
tt_content.hidden AND (tt_content.starttime<=985792797) AND (tt_content.endtime=0 OR
tt_content.endtime>985792797) AND tt_content.fe_group IN (0,-1) AND NOT pages.deleted AND
NOT pages.hidden AND (pages.starttime<=985792797) AND (pages.endtime=0 OR
pages.endtime>985792797) AND pages.fe_group IN (0,-1)) ...

The part "... pages.uid IN (2,5,6,20,21,22,29,30,31,3,4,8,9,16,1)... " is a list of pages-uid's to search. This
list is based on the page-ids in the website-branch of the pagetree and confines the search to that
branch and not the whole page-table.

1. ... AND ((tt_content.header LIKE '%menu%' OR tt_content.bodytext LIKE '%menu%' OR
tt_content.imagecaption LIKE '%menu%') AND (tt_content.header LIKE '%backend%' OR
tt_content.bodytext LIKE '%backend%' OR tt_content.imagecaption LIKE '%backend%')) GROUP
BY pages.uid

2. ... AND ((tt_content.header LIKE '%menu backend%' OR tt_content.bodytext LIKE '%menu
backend%' OR tt_content.imagecaption LIKE '%menu backend%')) GROUP BY pages.uid

3. ... AND ((tt_content.header LIKE '%menu%' OR tt_content.bodytext LIKE '%menu%' OR
tt_content.imagecaption LIKE '%menu%') OR (tt_content.header LIKE '%backend%' OR
tt_content.bodytext LIKE '%backend%' OR tt_content.imagecaption LIKE '%backend%')) GROUP
BY pages.uid

4. ... AND ((tt_content.header LIKE '%menu%' OR tt_content.bodytext LIKE '%menu%' OR
tt_content.imagecaption LIKE '%menu%') OR (tt_content.header LIKE '%backend%' OR
tt_content.bodytext LIKE '%backend%' OR tt_content.imagecaption LIKE '%backend%') AND NOT
(tt_content.header LIKE '%content%' OR tt_content.bodytext LIKE '%content%' OR
tt_content.imagecaption LIKE '%content%')) GROUP BY pages.uid

Notice that upper and lowercase does not matter. Also 'menu' as searchword will find 'menu', 'menus',
'menuitems' etc.

USER and USER_INT
This calls either a PHP-function or a method in a class. This is very useful if you want to incorporate
you own data processing or content.

Basically this is a userdefined cObject, because it's just a call to a function or method you control!

An important thing to know is that if you call a method in a class (which is of course instantiated as an
object) the internal variable 'cObj' of that class is set with a reference to the parent cObj. See the file
typo3/sysext/cms/tslib/media/scripts/example_callfunction.php for an example of how this may be
useful for you. Basically it offers you an API of functions which are more or less relevant for you. Refer
to the appendix "PHP include scripts" at the end of this document.

If you create this object as USER_INT, it'll be rendered non-cached, outside the main page-rendering.

142

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

userFunc function name The name of the function. If you specify the name with a '->'
in, it's interpreted as a call to a method in a class.
Two parameters are sent: A content variable (which is empty
in this case, but not when used from stdWrap function
.postUserFunc and .preUserFunc) and the second parameter is
an array with the properties of this cObject if any.

Example:
This TypoScript will display all content element headers of a
page in reversed order. Please take a look at
typo3/sysext/cms/tslib/media/scripts/example_callfunction.php!

page = PAGE
page.typeNum=0
includeLibs.something =
typo3/sysext/cms/tslib/media/scripts/example_c
allfunction.php

page.30 = USER
page.30 {
 userFunc = user_various-
>listContentRecordsOnPage
 reverseOrder = 1
}

NOTE: When using a function, the name of the function has
to start with "user_". When using a class, the name of the class
must start with "user_" (there are no conditions on the name
of the method).

includeLibs list of
resource
/stdWrap

This property applies only if the object is created as
USER_INT.

This is a comma-separated list of resources that are included
as PHP-scripts (with include_once() function) if this script is
included.
This is possible to do because any include-files will be known
before the scripts are included.

[tsref:(cObject).USER/(cObject).USER_INT]

TEMPLATE
With this cObject you can define a template (e.g. an HTML file) which should be used as a basis for
your whole website. Inside the template file you can define markers, which will later be replaced with
dynamic content by TYPO3.

Property: Data type: Description: Default:

template cObject This must be loaded with the template-code. If not, the object
returns nothing.

Example:
page.10 {
 template = FILE
 template.file = fileadmin/template.html
}

This will use the file fileadmin/template.html as template for
your website.

143

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

subparts Array... of
cObject

This is an array of subpart-markers (case-sensitive).
A subpart is defined by two markers in the template. The
markers must be wrapped by "###" on both sides. You may
insert the subpart-markers inside HTML-comment-tags!!

Example:
In the template there is the subpart "HELLO":

<!-- start of subpart ###HELLO### -->
This is the HTML-code, that will be loaded in
the register and will be replaced with the
result...
<!-- end ###HELLO### -->

The following TypoScript code now replaces the subpart
"HELLO" with the text given in "value":

page.10.subparts {
 HELLO = TEXT
 HELLO.value = En subpart er blevet
erstattet!!
}

NOTE:
Before the content-objects of each subpart are generated, all
subparts in the array are extracted and loaded into the
register so that you can load them from there later on.
The register-key for each subparts code is
"SUBPART_[theSubpartkey]".
In addition the current-value is loaded with the content of
each subpart just before the cObject for the subpart is parsed.
That makes it quite easy to load the subpart of the cObject
(eg: ".current=1")
Eg. this subpart above has the register-key
"SUBPART_HELLO".
This is valid ONLY if the property .nonCachedSubst is not set! (see
below)

relPathPrefix string / properties Finds all relative references (e.g. to images or stylesheets) and
prefixes this value.
If you specify properties (uppercase) these will match HTML
tags and specify alternative paths for them. See example
below.
If the property is named "style" it will set alternative path for
the "url()" wrapper that may be in <style> sections.

Example:
page.10 = TEMPLATE
page.10 {
 template = FILE
 template.file = fileadmin/template.html
 relPathPrefix = fileadmin/
 relPathPrefix.IMG = fileadmin/img/
}

In this example all relative paths found are prefixed
"fileadmin/" unless it was the src attribute of an img tag in
which case the path prefixed is "fileadmin/img/"

144

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

marks Array... of
cObject

This is an array of marks-markers (case-sensitive).
A mark is defined by one marker in the template. The marker
must be wrapped by "###" on both sides. Opposite to
subparts, you may NOT insert the subpart-markers inside
HTML-comment-tags! (They will not be removed.)

Example:
In the template:

<div id="copyright">
 © ###DATE###
</div>

The following TypoScript code now dynamically replaces the
marker "DATE" with the current year:

page.10.marks {
 DATE = TEXT
 DATE {
 data = date : U
 strftime = %Y
}

Marks are substituted by a str_replace-function. The subparts
loaded in the register are also available to the cObjects of
markers (only if .nonCachedSubst is not set!).

wraps Array... of
cObject

This is an array of wraps-markers (case-sensitive).
This is shown best by an example:
Example:
In the template there is the subpart "MYLINK":

This is <!--###MYLINK###-->a link to my<!--
###MYLINK###--> page!

With the following TypoScript code the subpart will be
substituted by the wrap which is the content returned by the
MYLINK cObject.

page.10.wraps {
 MYLINK = TEXT
 MYLINK.value = |
}

workOnSubpart string /stdWrap This is an optional definition of a subpart, that we decide to
work on. In other words; if you define this value that subpart
is extracted from the template and is the basis for this whole
template object.

markerWrap wrap /stdWrap This is the wrap the markers are wrapped with. The default
value is ### | ### resulting in the markers to be presented as
###[marker_key]###.
Any whitespace around the wrap-items is stripped before they
are set around the marker_key.

|

substMarksSepar
ately

boolean
/stdWrap

If set, then marks are substituted in the content AFTER the
substitution of subparts and wraps.
Normally marks are not substituted inside of subparts and
wraps when you are using the default cached mode of the
TEMPLATE cObject. That is a problem if you have marks
inside of subparts! But setting this flag will make the marker-
substitution a non-cached, subsequent process.
Another solution is to turn of caching, see below.

145

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

nonCachedSubst boolean
/stdWrap

If set, then the substitution mode of this cObject is totally
different. Normally the raw template is read and divided into
the sections denoted by the marks, subparts and wraps keys.
The good thing is high speed, because this "pre-parsed"
template is cached. The bad thing is that templates that
depend on incremental substitution (where the order of
substitution is important) will not work so well.
By setting this flag, markers are first substituted by str_replace
in the template - one by one. Then the subparts are
substituted one by one. And finally the wraps one by one.
Obviously you loose the ability to refer to other parts in the
template with the register-keys as described above.

stdWrap ->stdWrap

[tsref:(cObject).TEMPLATE]

Example:
page.10 = TEMPLATE
page.10 {
 template = FILE
 template.file = fileadmin/test.tmpl
 subparts {
 HELLO = TEXT
 HELLO.value = This is the replaced subpart-code.
 }
 marks {
 Testmark = TEXT
 Testmark.value = This is replacing a simple marker in the HTML-code.
 }
 workOnSubpart = DOCUMENT
}

In this example a template named test.tmpl is loaded and used.

146

TypoScript Reference - doc_core_tsref Content Objects (cObject)

FLUIDTEMPLATE
The TypoScript object FLUIDTEMPLATE works in a similar way to the regular "marker"-based
TEMPLATE object. However, it does not use markers or subparts, but allows Fluid-style variables with
curly braces.

Note
The extensions "fluid" and "extbase" need to be installed for this to work.

Property: Data type: Description: Default:

file string /stdWrap The fluid template file.

layoutRootPath filepath
/stdWrap

Sets a specific layout path; usually it is Layouts/ underneath
the template file.

partialRootPath filepath
/stdWrap

Sets a specific partials path; usually it is Partials/ underneath
the template file.

format keyword
/stdWrap

Sets the format of the current request. html

extbase.pluginNa
me

string /stdWrap Sets variables for initializing extbase.

extbase.controlle
rExtensionName

string /stdWrap Sets the extension name of the controller.

extbase.controlle
rName

string /stdWrap Sets the name of the controller.

extbase.controlle
rActionName

string /stdWrap Sets the name of the action.

variables Array... of
cObjects

Sets variables that should be available in the fluid template.
The keys are the variable names in Fluid.
Reserved variables are "data" and "current", which are filled
automatically with the current data set.

stdWrap ->stdWrap

[tsref:(cObject).FLUIDTEMPLATE]

Example:

The Fluid template (in fileadmin/templates/MyTemplate.html) could look like this:

<h1>{data.title}<f:if condition="{data.subtitle}">, {data.subtitle}</f:if></h1>
<h3>{mylabel}</h3>
<f:format.html>{data.bodytext}</f:format.html>

You could use it with a TypoScript code like this:

page = PAGE
page.10 = FLUIDTEMPLATE
page.10 {
 file = fileadmin/templates/MyTemplate.html
 partialRootPath = fileadmin/templates/partial/
 variables {
 mylabel = TEXT
 mylabel.value = Label coming from TypoScript!
 }
}

As a result the page title and the label from TypoScript will be inserted as headlines.

147

TypoScript Reference - doc_core_tsref Content Objects (cObject)

MEDIA
The Media content element is a dispatcher which gets its HTML output from one of the available
render objects. By default, these render objects include SWFOBJECT (Flash driven by JavaScript),
QTOBJECT (QuickTime driven by JavaScript) and Multimedia (the original Multimedia object rendered
with EMBED tags).

The property "renderType" defines which object will be used for rendering. If set to its default value
"auto", the Media content element uses the media file's extension to choose the right renderer. This
auto-detection may not work as well for external URLs so setting the renderType manually is
preferable in that case.

If one of the existing renderTypes does not meet your needs, new renderTypes can be registered and
rendered with a custom extension.

The Media content element contains the following 3rd party files in typo3/contrib/flashmedia:

– qtobject/qtobject.js (JavaScript for QTOBJECT)

– swfobject/swfobject.js (JavaScript for SWFOBJECT)

– swfobject/expressInstall.swf (This is displayed if the client’s Flash version is too low)

– flvplayer.swf (TYPO3 video player for flv, swf, mp4, m4u etc)

– player.swf (Audio player from 1pixelout)

– player.txt (License for the audio player)

If you want to use a different player, it can be configured via TypoScript.

Note
Files are treated as URLs. You need to set fully qualified URLs. Use config.baseURL and/or
config.absRefPrefix to get fully qualified URLs automatically.

Property: Data type: Description: Default:

flexParams string /stdWrap Used for Flexform configuration of the content element flexParams.fiel
d =
pi_flexform

alternativeCo
ntent

stdWrap Alternative content, which is printed out, if the client deactivated
JavaScript or has no Flash. Otherwise, the media will replace this
content.

alternativeCon
tent.field =
bodytext

type string /stdWrap Defines media type: "video" or "audio". video

renderType string /stdWrap Used to select the render object.
Possible values are: auto, swf, qt, embed.
Extensions may add a custom renderType as well.
swf will be used, if renderType is "auto".

Note: renderType embed will be rendered by the cObject
MULTIMEDIA, swf by SWFOBJECT and qt by QTOBJECT. For
the according documentation see the sections on these cObjects.

auto

allowEmptyU
rl

boolean If set to 0, you see a warning if no file/URL is configured. If you
do some advanced setup such as configuring a JavaScript-driven
player with a playlist, you may use the object without a URL and
need to set the value to 1.

0

148

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

fileExtHandl
er

array The mappings between file extensions and render types can be
configured here and will be used when renderType = auto.
Possible values are MEDIA, SWF, QT.

Example:
fileExtHandler {
 default = MEDIA
 mp3 = SWF
 mp4 = SWF
 m4v = SWF
 mov = QT
 avi = MEDIA
 asf = MEDIA
 class = MEDIA
 swa = SWF
}

mimeConf.sw
fobject
mimeConf.qt
object

array Configuration for a specific renderType. For each media type you
can set default values.

Example:
mimeConf.swfobject.audio {
 defaultWidth = 100
 defaultHeight = 50
}

file string /stdWrap URL of the media file.

parameter array There are some configuration values which are set via the media
content element. They are used to override the default settings. It
is not expected to use them directly via TypoScript.

parameter {
 mmFile
 mmRenderType
 mmforcePlayer
 mmType
 mmWidth
 mmHeight
 mmMediaOptions
 mmMediaOptionsContainer
}

forcePlayer string /stdWrap If the file is a URL and forcePlayer is not set, the URL will be
called directly instead of using a player.

width int /stdWrap Media width, will be overridden by parameter.mmWidth.

height int /stdWrap Media height, will be overridden by parameter.mmHeight.

stdWrap ->stdWrap

[tsref:(cObject).MEDIA]

149

TypoScript Reference - doc_core_tsref Content Objects (cObject)

SWFOBJECT
This object will insert a Flash player driven by JavaScript.

Property: Data type: Description: Default:

file string
/stdWrap

Media file or URL.

Note: Files are treated as URLs. You need to set fully qualified
URLs. Use config.baseURL and/or config.absRefPrefix to get fully
qualified URLs automatically.

width int /stdWrap Width of the swfObject.
If it is not set, it will be filled with defaultWidth of the player
configuration.

height int /stdWrap Height of the swfObject.
If it is not set, it will be filled with defaultHeight of the player
configuration.

type string
/stdWrap

Sets default for different media types. E.g. "audio" or "video". If
value is "audio", the player configuration audio.player will be used.

[type].player string
/stdWrap

Location of player

[type].player.
default

array Default parameter for flashvars / params / attributes.

Usage:
default {
 flashvars.allowFullScreen = true
 params.wmode = transparent
 attributes.align = center
}
flashvars are used for swf file configuration. There is no standard
across players, but for flvplayer see description below.
For detailed description of possible params/attributes visit this
URL:
http://livedocs.adobe.com/flash/9.0/UsingFlash/help.html?
content=WSd60f23110762d6b883b18f10cb1fe1af6-7ba7.html

[type].player.
defaultWidth

Default media width.

[type].player.
defaultHeight

Default media height.

[type].player.
mapping

The audio player doesn't work with file, but instead expects the
file with the flashvar soundFile. mapping does the rename of
parameter for you by default.

Example:
mapping {
 flashvars.file = soundFile
}

installUrl string
/stdWrap

typo3/contrib/f
lashmedia/swfo
bject/expressIn
stall.swf

forcePlayer string
/stdWrap

If the file is a URL and forcePlayer is not set, the URL will be
called directly instead of using a player.

flashvars array Flash vars.

params array Flash params.

attributes array Flash attributes.

flashVersion string
/stdWrap

Required flash version. 9

alternativeCo
ntent

stdWrap Alternative content. alternativeCon
tent.field =
bodytext

150

http://livedocs.adobe.com/flash/9.0/UsingFlash/help.html?content=WSd60f23110762d6b883b18f10cb1fe1af6-7ba7.html
http://livedocs.adobe.com/flash/9.0/UsingFlash/help.html?content=WSd60f23110762d6b883b18f10cb1fe1af6-7ba7.html

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

layout stdWrap HTML Template for the Object. ###SWFOBJECT### is replaced
with the sfwobject, ###ID### is replaced with the unique Id of the
div/object.

###SWFOBJE
CT###

stdWrap ->stdWrap

[tsref:(cObject).SWFOBJECT]

QTOBJECT
This element inserts a QuickTime Player.

Property: Data type: Description: Default:

file stdWrap Media file or URL.

Note: Files are treated as URLs. You need to set fully qualified
URLs. Use config.baseURL and/or config.absRefPrefix to get fully
qualified URLs automatically.

width int Width of QTOBJECT.
If it is not set, it will be filled with defaultWidth of the player
configuration.

height int Width of QTOBJECT.
If it is not set, it will be filled with defaultHeight of the player
configuration.

alternativeCo
ntent

stdWrap Alternative content. alternativeCon
tent.field =
bodytext

layout stdWrap HTML Template for the Object. ###QTOBJECT### is replaced
with the qtobject, ###ID### is replaced with the unique Id of the
div/object.

###QTOBJEC
T###

params array Define some parameters which should be set for the QTOBJECT.
These settings having precedence over player specific settings
([type].player.default.aprams).

type string
/stdWrap

Sets default for different media types. E.g. "audio" or "video". If
value is "audio", the player configuration audio.player will be used.
Player specific settings are only used, if there is no general value
set.

[type].player.
default

array Player specific default parameters. You can override them via
params setting (see above).
Usage:
default.params {
 autoplay = true
}

[type].player.
defaultWidth

int Default width.

[type].player.
defaultHeight

int Default height.

[type].player.
mapping

array The mapping does the rename of a parameter for a specific player
type. Player specific parameter mapping. See SWFOBJECT for an
example.

stdWrap ->stdWrap

[tsref:(cObject).QTOBJECT]

151

TypoScript Reference - doc_core_tsref Content Objects (cObject)

MULTIMEDIA
This element will insert a multimedia file. Text files will be output directly; for Java, Flash, Audio and
Video files an embed tag will be used.

Property: Data type: Description: Default:

file resource
/stdWrap

The multimedia file. Possible file types are:
txt, html, htm: Will be inserted directly, of the following
properties only ".stdWrap" can be used.
class: Java-applet.
swf: Flash animation.
swa, dcr: ShockWave Animation.
au, wav, mp3: Sound.
avi, mov, asf, mpg, wmv: Movies (AVI, QuickTime, MPEG4).

params string
/stdWrap

These are parameters for the multimedia-objects. Use this to enter
stuff like autostart, type, width, height and so on. For each file type
several parameters make sense. For an incomplete list see below
this table.

Example:
params (
 type = application/x-shockwave-flash
 width = 200
 height = 300
)

This will generate a tag like
<embed type="application/x-shockwave-flash"
width="200" height="300">

For parameters which are set by default (see tables below) an
empty string will remove the parameter from the embed-tag.
Example:

params (
 height =
)

Note: If you set a width or a height here, this will overwrite the
width or the height which have been set using ".width" and
".height".

width integer
/stdWrap

Width attribute of the embed tag.
Not used for txt, html, htm and sound files.

200

height integer
/stdWrap

Height attribute of the embed tag.
Not used for txt, html, htm and sound files.

200

stdWrap ->stdWrap

[tsref:(cObject).MULTIMEDIA]

Meaningful parameters for .params
For the different file types many different parameters can be set. This is an incomplete list of some of
those parameters:

au, wav, mp3:

Parameter: Description: Default:

width Width of the controls. If not set, the browser
defaults to 200.

height Height of the controls. If not set, the
browser defaults to 16.

loop Repeat the sound, when playing finished. Set
to true or false.

autostart Automatically start the sound. Set to true or
false.

152

TypoScript Reference - doc_core_tsref Content Objects (cObject)

avi, mov, asf, mpg, wmv:

Parameter: Description: Default:

width Width of the movie. 200

height Height of the movie. 200

autostart Automatically start the video. Set to true or
false.

Note: Not for "mov", there the parameter is
called "autostart". See example below.

swf, swa, dcr:

Parameter: Description: Default:

width Width of the object. If not set, the browser
defaults to approx. 200.

200

height Height of the object. If not set, the browser
defaults to approx. 200.

200

quality Quality of the video. high

class:

Parameter: Description: Default:

width Width of the object. 200

height Height of the object. 200

Example for QuickTime (mov):
params (
 width = 256
 height = 208
 autoplay = true
 controller = true
 loop = false
 pluginspage = http://www.apple.com/quicktime/
)

SVG
With this element you can insert a SVG. You can use XML data directly or reference a file. A flash
fallback will be used for browsers which do not have native SVG support, so that it also works in e.g.
IE 6/7/8.

Property: Data type: Description: Default:

width integer
/stdWrap

Width of the SVG. 600

height integer
/stdWrap

Height of the SVG. 400

src file resource
/stdWrap

SVG file resource.

Example:
src = fileadmin/svg/tiger.svg

value XML /stdWrap Raw XML data for the SVG.
Will be ignored, if "src" is defined.

noscript string
/stdWrap

Output, if SVG output is not possible.

stdWrap ->stdWrap

153

http://www.apple.com/quicktime/

TypoScript Reference - doc_core_tsref Content Objects (cObject)

[tsref:(cObject).SVG]

Example:
10 = SVG
10 {
 width = 600
 height = 600
 value (
 <rect x="100" y="100" width="500" height="200" fill="white" stroke="black" stroke-
width="5px"/>
 <line x1="0" y1="200" x2="700" y2="200" stroke="red" stroke-width="20px"/>
 <polygon points="185 0 125 25 185 100" transform="rotate(135 125 25)" />
 <circle cx="190" cy="150" r="40" stroke="black" stroke-width="2" fill="yellow"/>
)
 noscript.cObject = TEXT
 noscript.cObject.value = No SVG rendering possible, please use a browser.
}

This example will show some geometric forms.

EDITPANEL
This content object is inserted only if a backend user is logged in and if a FE-editing extension is
installed and loaded. What gets displayed exactly may depend on which FE-editing extension is used.
The reference below is related to the "feedit" system extension. In such a case the EDITPANEL also
requires that the Admin Panel be displayed (config.admPanel = 1) and that the user has checked the
"Display Edit Icons" option. Whenever the edit panel is inserted, page caching is disabled.

The edit panel inserts icons for moving, editing, deleting, hiding and creating records.

In conjunction with css_styled_content, an EDITPANEL will appear for each content element on the
page. It is also possible to insert an EDITPANEL as cObject in the template, using TypoScript.

Example
page = PAGE
page.10 = EDITPANEL
page.10 {
 ...
}

In such a case, there's nothing to edit in the FE, but the panel can be used to create new records, for
example.

Note
The extension "feedit" needs to be installed for this to work.

Property: Data type: Description: Default:

label string /stdWrap Title for the panel. You can insert the record title with %s

Example:
label = Section %s

allow string Define which functions are accessible. Further this list may be
reduced, if the BE_USER does not have permission to perform
the action
Values should be listed separated by comma. This is the
options you can choose between:
toolbar,edit,new,delete,move,hide
(toolbar is a general list of icons regarding the page, so use
this for page records only)

newRecordFrom
Table

string Will display a panel for creation of new element (in the top of
list) on the page from that table.

newRecordInPid int Define a page ID where new records (except new pages) will
be created.

line boolean / int If set, a black line will appear after the panel. This value will
indicate the distance from the black line to the panel

154

TypoScript Reference - doc_core_tsref Content Objects (cObject)

Property: Data type: Description: Default:

edit.displayReco
rd

boolean If set, then the record edited is displayed above the editing
form.

onlyCurrentPid boolean If set, only records with a pid matching the current id (TSFE-
>id) will be shown with the panel.

innerWrap wrap /stdWrap Wraps the edit panel

outerWrap wrap /stdWrap Wraps the whole edit panel including the black line (if
configured)

printBeforeCont
ent

boolean Normally the edit panel is displayed below the content
element it belongs to. If this option is set, the panel is printed
in front of the according element.

Example:
tt_content.stdWrap.editPanel.
printBeforeContent = 1

This displays the edit panels in front of the according
elements, if you use css_styled_content.

0

previewBorder boolean / int If set, the hidden/starttime/endtime/fe_user elements which are
previewed will have a border around.
The integer value denotes the thickness of the border

previewBorder.i
nnerWrap
previewBorder.o
uterWrap
previewBorder.c
olor

wrap / HTML
color

innerWrap wraps the content elements (including the icons)
inside the preview border (an HTML table).

outerWrap wraps the whole content element including the
border.

color denotes the color of the border.

stdWrap ->stdWrap

[tsref:(cObject).EDITPANEL]

155

TypoScript Reference - doc_core_tsref GIFBUILDER

GIFBUILDER
GIFBUILDER

GIFBUILDER is an object, which is used in many situations for creating gif-files. Anywhere the
->GIFBUILDER object is mentioned, these are the properties that apply.

Using TypoScript you can define a "numerical array" of "GIFBUILDER OBJECTS" (like "TEXT",
"IMAGE", etc.) and they will be rendered onto an image one by one.

The name "GIFBUILDER" comes from the time where GIF was the only file format supported. PNG
and JPG are just as well to create today (configured with $TYPO3_CONF_VARS['GFX']).

NOTE (+calc)
Whenever the "+calc"-function is added to a value in the data type of the properties underneath, you
can use the dimensions of TEXT and IMAGE-objects from the GifBuilderObj-array. This is done by
inserting a tag like this: "[10.w]" or "[10.h]", where "10" is the GifBuilderObj-number in the array and
"w"/"h" signifies either width or height of the object.

The special property "lineHeight" (e.g. "[10.lineHeight]") uses the height a single line of text would take.

On using the special function max(), the maximum of multiple values can be determined. Example:

XY: [10.w]+[20.w], max([10.h], [20.h])

Here's a full example (taken from "styles.content (default)"):

styles.header.gfx1 = IMAGE
styles.header.gfx1 {
 wrap = {$styles.header.gfx1.wrap}
 file = GIFBUILDER
 file {
 XY = [10.w]+10 ,{$styles.header.gfx1.itemH}
 backColor = {$styles.header.gfx1.bgCol}
 reduceColors = {$styles.header.gfx1.reduceColors}
 10 = TEXT
 10 {
 text.current = 1
 text.crop = {$styles.header.gfx1.maxChars}
 fontSize = {$styles.header.gfx1.fontSize}
 fontFile = {$styles.header.gfx1.file.fontFile}
 fontColor = {$styles.header.gfx1.fontColor}
 offset = {$styles.header.gfx1.fontOffset}
 }
 }
}

As you see, the gif-image has a width defined as the width of the text printed onto it + 10 pixels. The
height is fixed by the value of the constant {$styles.header.gfx1.itemH}

The "_GIFBUILDER" Top Level Object
You can configure some global settings for GIFBUILDER by a top level object named "_GIFBUILDER".
One of the available properties of the global GIFBUILDER configuration is "charRangeMap".

.charRangeMap

By this property you can globally configure mapping of font files for certain character ranges. For
instance you might need GIFBUILDER to produce gif files with a certain font for latin characters while
you need to use another true type font for Japanese glyphs. So what you need is to specify the usage of
another font file when characters fall into another range of Unicode values.

In the GIFBUILDER object this is possible with the "splitRendering" option but if you have hundreds of
GIFBUILDER objects around your site it is not very efficient to add 5-10 lines of configuration for each
time you render text. Therefore this global setting allows you to match the basename of the main font
face with an alternative font.

156

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

[array] string Basename of font file to match for this configuration.
Notice that only the filename of the font file is used -
the path is stripped off. This is done to make matching
easier and avoid problems when font files might move
to other locations in extensions etc.

So if you use the font file "EXT:myext/fonts/arial.ttf" or
"t3lib/fonts/arial.ttf" both of them will match with this
configuration.

The key:
The value of the array key will be the key used when
forcing the configuration into "splitRendering"
configuration of the individual GIFBUILDER objects. In
the example below the key is "123".
Notice; If the key is already found in the local
GIFBUILDER configuration the content of that key is
respected and not overridden. Thus you can make
local configurations which override the global setting.

Example:
_GIFBUILDER.charRangeMap {
 123 = arial.ttf
....

[array].charMapConfig TEXT /
splitRendering.
[array]
configuration

splitRendering configuration to set. See GIFBUILDER
TEXT object for details.

Example:

_GIFBUILDER.charRangeMap {
 123 = arial.ttf
 123 {
 charMapConfig {
 fontFile = t3lib/fonts/vera.ttf
 value = -65
 fontSize = 45
 }
 fontSizeMultiplicator = 2.3
 }
}

This example configuration shows that GIFBUILDER
TEXT objects with font faces matching "arial.ttf" will
have a splitConfiguration that uses "t3lib/fonts/vera.ttf"
for all characters that fall below/equal to 65 in Unicode
value.

[array].fontSizeMultiplic
ator

double If set, this will take the font size of the TEXT
GIFBUILDER object and multiply with this amount
(xx.xx) and override the "fontSize" property inside
"charMapConfig".

[array].pixelSpaceFontSi
zeRef

double If set, this will multiply the four [x/y]Space[Before/After]
properties of split rendering with the relationship
between the fontsize and this value.
In other words; Since pixel space may vary depending
on the font size used you can simply specify by this
value at what fontsize the pixel space settings are
optimized and for other fontsizes this will automatically
be adjusted according to this font size.

Example:
_GIFBUILDER.charRangeMap {
 123 = arial.ttf
 123 {
 charMapConfig {
 fontFile = t3lib/fonts/vera.ttf
 value = 48-57
 color = green

157

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

 xSpaceBefore = 3
 xSpaceAfter = 3
 }
 pixelSpaceFontSizeRef = 24
 }
}

In this example xSpaceBefore and xSpaceAfter will be
"3" when the font size is 24. If this configuration is
used on a GIFBUILDER TEXT object where the font
size is only 16, the spacing values will be corrected by
"16/24", effectively reducing the pixelspace to "2" in
that case.

[tsref:_GIFBUILDER.charRangeMap]

Object names in this section
Whenever you see a reference to anything named an "object" in this section it's a reference to a
"GifBuilderObj" and not the "cObjects" from the previous section. Confusion could happen, because
both "IMAGE" and "TEXT" is an object in both areas.

Property: Data type: Description: Default:

1,2,3,4... GifBuilderObj
+ .if (->if)

.if (->if) is a property of all gifbuilder-objects. If the property
is present and NOT set, the object is NOT rendered! This
corresponds to the functionality of ".if" of the stdWrap-
function.

XY x,y +calc
/stdWrap

Size of the gif-file.
For the usage of "calc" see the according note on that at the
beginning of the section "GIFBUILDER".

100,20

format "gif" / "jpg" Output type.
"jpg"/"jpeg" = jpg-image

gif

reduceColors posint (1-255)
/stdWrap

Reduce the number of colors (if gif-file)

transparentBack
ground

boolean
/stdWrap

Set this flag to render the background transparent. TYPO3
makes the color found at position 0,0 of the image (upper left
corner) transparent.
If you render text, you should leave the niceText option OFF
as the result will probably be more precise without the
niceText antialiasing hack.

transparentColor HTMLColor
/stdWrap

Specify a color that should be transparent

Example-values:
#ffffcc
red
255,255,127

Option:
transparentColor.closest = 1
This will allow for the closest color to be matched instead.
You may need this if you image is not guaranteed "clean".

NOTE: You may experience that this doesn't work if you use
the reduceColors-option or render text with niceText-option.

quality posint (10-100) JPG-quality (if ".format" = jpg/jpeg)

backColor GraphicColor
/stdWrap

Background color for the gif. white

offset x,y +calc
/stdWrap

Offset all objects on the gif. 0,0

158

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

workArea x,y,w,h + calc
/stdWrap

Define the workarea on the giffile. All the GifBuilderObj's will
see this as the dimensions of the gif-file regarding alignment,
overlaying of images an so on. Only TEXT-objects exceeding
the boundaries of the workarea will be printed outside this
area.

maxWidth pixels /stdWrap Maximal width of the gif-file.

maxHeight pixels /stdWrap Maximal height of the gif-file.

[tsref:->GIFBUILDER]

TEXT
Property: Data type: Description: Default:

text ->stdWrap This is text text-string on the gif-file. The item is rendered
only if this string is not empty.
The cObj->data-array is loaded with the page-record, if for
example the GIFBUILDER-object is used by GMENU or
IMGMENU.

breakWidth integer
/stdWrap

Defines the maximum width for an object, overlapping
elements will force an automatic line break.

breakSpace float Defines a value that is multiplied by the line height of the
current element.

1.0

textMaxLength int The maximum length of the text. This is just a natural break
that prevents incidental rendering of very long texts!

100

maxWidth pixels
/stdWrap

Sets the maximum width in pixels, the text must be. Reduces
the fontSize if the text does not fit within this width.

Does not support setting alternative fontSizes in
splitRendering options.

(By René Fritz <r.fritz@colorcube.de>)

doNotStripHTML boolean If set, HTML-tags in the string inserted are NOT removed.
Any other way HTML-code is removed by default!

0

fontSize posint Font size 12

fontColor GraphicColor
/stdWrap

Font color black

fontFile resource Font face (truetype font you can upload!) Nimbus (Arial-
clone)

angle degree Rotation degrees of the text.

Note: Angle is not available if spacing/wordSpacing is set.

0
Range: -90 til
90

align align Alignment of the text left

offset x,y +calc
/stdWrap

Offset of the text 0,0

antiAlias boolean FreeType antialiasing. Notice, the default mode is "on"!

Note: This option is not available if .niceText is enabled.

1

iterations posint How many times the text should be "printed" onto it self. This
will add the effect of bold text.

Note: This option is not available if .niceText is enabled.

1

spacing posint Pixel-distance between letters. This may render ugly! 0

wordSpacing posint Pixel-distance between words. = ".spacing"*2

hide boolean If this is true, the text is NOT printed.
This feature may be used if you need a shadow-object to base
a shadow on the text, but do not want the text to print.

0

159

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

hideButCreateMap boolean If this option is set, the text will not be rendered. Shadows
and emboss will, though, so don't apply these!! But this
feature is also meant only to enable a text to generate the
imageMap coordinates without rendering itself.

emboss GifBuilderObj-
>EMBOSS

shadow GifBuilderObj-
>SHADOW

outline GifBuilderObj-
>OUTLINE

imgMap ->IMGMAP

->stdWrap
properties for
"altText" and
"titleText" in
this case

niceText boolean This is a very popular feature that helps to render small
letters much nicer than the freetype library can normally do.
But it also loads the system very much!
The principle of this function is to create a black/white giffile
in twice or more times the size of the actual gif-file and then
print the text onto this in a scaled dimension. Afterwards
ImageMagick (IM) scales down the mask and masks the font
color down on the original gif-file through the temporary
mask.
The fact that the font is actually rendered in the double size
and scaled down adds a more homogenous shape to the
letters. Some fonts are more critical than others though. If
you do not need the quality, then don't use the function.

Some properties:
.before = IM-params before scale
.after = IM-params after scale
.sharpen = sharpen-value for the mask (after scaling), integer
0-99 (this enables you to make the text crisper if it's too
blurred!)
.scaleFactor = scaling-factor, int 2-5

splitRendering.co
mpX
splitRendering.co
mpY
splitRendering.
[array]

Split the rendering of a string into separate processes with
individual configurations. By this method a certain range of
characters can be rendered with another font face or size.
This is very useful if you want to use separate fonts for strings
where you have latin characters combined with e.g. Japanese
and there is a separate font file for each.
You can also render keywords in another font/size/color.

Properties:
splitRendering.compX = Additional pixelspace between parts, x
direction
splitRendering.compY = Additional pixelspace between parts, y
direction
splitRendering.[array] = keyword [charRange, highlightWord]
splitRendering.[array] {
 fontFile = Alternative font file for this rendering
 fontSize = Alternative font size for this rendering
 color = Alternative color for this rendering, works ONLY
without "niceText"
 xSpaceBefore = x-Space before this part
 xSpaceAfter = x-Space after this part
 ySpaceBefore = y-Space before this part
 ySpaceAfter = y-Space after this part
}

Keyword: charRange

160

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

splitRendering.[array].value = Commaseparated list of
character ranges (eg. "100-200") given as Unicode character
numbers. The list accepts optional starting and ending points,
eg. " - 200" or " 200 -" and single values, eg. "65, 66, 67"

Keyword: highlightWord
splitRendering.[array].value = Word to highlight, makes a case
sensitive search for this.

Limitations:
• The pixelcompensation values are not corrected for

scale factor used with niceText. Basically this means
that when niceText is used, these values will have
only the half effect.

• When word spacing is used the "highlightWord"
mode doesn't work.

• The color override works only without "niceText".

Example:
10.splitRendering.compX = 2
10.splitRendering.compY = -2
10.splitRendering.10 = charRange
10.splitRendering.10 {
 value = 200-380 , 65, 66
 fontSize = 50
 fontFile = t3lib/fonts/nimbus.ttf
 xSpaceBefore = 30
}
10.splitRendering.20 = highlightWord
10.splitRendering.20 {
 value = TheWord
 color = red
}

[tsref:->GIFBUILDER.(GBObj).TEXT]

SHADOW
Property: Data type: Description: Default:

textObjNum pos-int Must point to the TEXT-object if these shadow-properties
are not properties to a TEXT-object directly ("stand-alone-
shadow"). Then the shadow needs to know which TEXT-
object it should be a shadow of!
If - on the other hand - the shadow is a property to a text-
object, this property is not needed.

offset x,y Shadow offset

color GraphicColor Shadow color

blur posint (1-99) Blurring of the shadow. Above 40 only values of
40,50,60,70,80,90 mean something.

Note: Unfortunately the blurring capabilities of ImageMagick
are not very mature in version 4.2.9. This is addressed in the
later version 5.2.0 where a gaussian blur-function is added.
BUT as we cannot use the latest ImageMagick development
yet, this is not utilized so far.

opacity posint (1-100) Opacity (transparency^-1)
100% opacity = 0% transparency). Only active with a value for
blur.

intensity posint(0-100) How "massive" the shadow is. This value can - if it has a high
value combined with a blurred shadow - create a kind of
soft-edged outline.

[tsref:->GIFBUILDER.(GBObj).SHADOW]

161

TypoScript Reference - doc_core_tsref GIFBUILDER

EMBOSS
Emboss is actually two shadows offset in opposite directions and with different colors as to create an
effect of light cast onto an embossed text.

Property: Data type: Description: Default:

textObjNum pos-int Must point to the TEXT-object if these shadow-properties
are not properties to a TEXT-object directly ("stand-alone-
shadow"). Then the shadow needs to know which TEXT-
object it should be a shadow of!
If - on the other hand - the shadow is a property to a text-
object, this property is not needed.

offset x,y Offset of the emboss

highColor GraphicColor Upper border-color

lowColor GraphicColor lower border-color

blur posint (1-99) Blurring of the shadow. Above 40 only values of
40,50,60,70,80,90 means something.

opacity posint (1-100) Opacity (transparency^-1)
100% opacity = 0% transparency). Only active with a value for
blur.

intensity posint(0-100) How "massive" the emboss is. This value can - if it has a high
value combined with a blurred shadow - create a kind of
soft-edged outline.

[tsref:->GIFBUILDER.(GBObj).EMBOSS]

OUTLINE
This outline normally renders quite ugly as it's done by printing 4 or 8 texts underneath the text in
question. Try to use a shadow with a high intensity. That works better!

Property: Data type: Description: Default:

textObjNum pos-int Must point to the TEXT-object if these shadow-properties are
not properties to a TEXT-object directly ("stand-alone-
shadow"). Then the shadow needs to know which TEXT-object
it should be a shadow of!
If - on the other hand - the shadow is a property to a text-
object, this property is not needed.

thickness x,y Thickness in each direction, range 1-2

color GraphicColor Outline color

[tsref:->GIFBUILDER.(GBObj).OUTLINE]

BOX
Property: Data type: Description: Default:

dimensions x,y,w,h +calc
/stdWrap

Dimensions of a filled box.
x,y is the offset.
w,h are the dimensions. Dimensions of 1 will result in 1-
pixel wide lines!

color GraphicColor fill-color black

opacity pos-int (1-100) Opacity (i.e. inverse of transparency, e.g. 100% opacity = 0%
transparency)

100

162

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

align VHalign Pair of values, which defines the horizontal and vertical
alignment.

Values:
Horizontal alignment: r/c/l standing for right, center, left
Vertical alignment: t/c/b standing for top, center, bottom

Example:
Horizontally centered, vertically at the bottom:

align = c, b

l, t

[tsref:->GIFBUILDER.(GBObj).BOX]

ELLIPSE
Property: Data type: Description: Default:

dimensions x,y,w,h +calc
/stdWrap

Dimensions of a filled ellipse.
x,y is the offset.
w,h are the dimensions. Dimensions of 1 will result in 1-
pixel wide lines!

color GraphicColor fill-color

Example:
file = GIFBUILDER
file {
 XY = 200,200
 format = jpg
 quality = 100
 10 = ELLIPSE
 10.dimensions = 100,100,50,50
 10.color = red
}

black

[tsref:->GIFBUILDER.(GBObj).ELLIPSE]

IMAGE
Property: Data type: Description: Default:

file imgResource The imagefile

offset x,y +calc
/stdWrap

Offset of the image 0,0

tile x,y tile x,y times.
Maximum times is 20 each direction. If you need more, use a
larger image.

align VHalign See in the "Data types reference" at the beginning of this document
or in the table "BOX".

mask imgResource Optional mask-image for the imagefile.

[tsref:->GIFBUILDER.(GBObj).IMAGE]

EFFECT

Syntax:
.value = [Property] = [value] | [Property] = [value]

Example:
lib.image = IMAGE
lib.image {
 file = GIFBUILDER
 file {
 XY = 1024,768
 format = jpg
 10 = IMAGE

163

TypoScript Reference - doc_core_tsref GIFBUILDER

 10.file = fileadmin/image.jpg

 20 = EFFECT
 20.value = gamma=1.3 | flip | rotate=180
 }
}

Property: Data type: Description: Default:

gamma 0.5 - 3.0 Sets the gamma value. 1.0

blur 1-99 Blurs the edges inside the image. 0

sharpen 1-99 Sharpens the edges inside the image. 0

solarize 0-99 Color reduction.

swirl 0-100 The image is swirled or spun from its center. 0

wave amplitude,
length

All horizontal edges are transformed by a wave with the
given amplitude and length.
Maximum value for amplitude and length is 100.

Example:
20 = EFFECT
20.value = wave=1,20

charcoal 0-100 Makes the image look as if it had been drawn with charcoal
and defines the intensity of that effect.

gray - The image is converted to gray tones.

Example:
This gives the image a slight wave and renders it in gray.

20 = EFFECT
20.value = wave=1,20 | gray

edge 0-99 Creates rounded edges.

emboss - Creates a relief effect: Creates highlights or shadows that
replace light and dark boundaries in the image.

flip - Vertical flipping.

flop - Horizontal flipping.

rotate 0-360 Number of degrees for a clockwise rotation.
Image dimensions will grow if needed, so that nothing is cut
off from the original image.

0

colors 2-255 Defines the number of different colors to use in the image.

shear -90 - 90 Horizontal shearing.

invert - Invert the colors.

[tsref:->GIFBUILDER.(GBObj).EFFECT]

WORKAREA
Sets another workarea.

Property: Data type: Description: Default:

set x,y,w,h + calc
/stdWrap

Sets the dimensions of the workarea.
x,y is the offset.
w,h are the dimensions.
For the usage of "calc" see the according note at the
beginning of the section "GIFBUILDER".

clear (isset) Sets the current to the default.
Checked for using isset().

[tsref:->GIFBUILDER.(GBObj).WORKAREA]

CROP
Note: This object resets workArea to the new dimensions of the image!

164

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

backColor GraphicColor See "Data types reference". The original
backColor

align VHalign Horizontal and vertical alignment of the crop frame.
See "Data types reference".

l, t

crop x,y,w,h + calc
/stdWrap

x,y is the offset of the crop-frame from the position specified
by "align".
w,h are the dimensions of the frame.
For the usage of "calc" see the according note at the
beginning of the section "GIFBUILDER".

[tsref:->GIFBUILDER.(GBObj).CROP]

SCALE
Note: This object resets workArea to the new dimensions of the image!

Property: Data type: Description: Default:

width pixels + calc
/stdWrap

Width of the scaled image.

height pixels + calc
/stdWrap

Height of the scaled image.

params ImageMagickPar
ams

Parameters to be used for the processing.

[tsref:->GIFBUILDER.(GBObj).SCALE]

ADJUST
This lets you adjust the tonal range like in the "levels"-dialog of Photoshop. You can set the input- and
output-levels and that way remap the tonal range of the image. If you need to adjust the gamma value,
have a look at the EFFECT-object.

Example:
20 = ADJUST
20.value = inputLevels = 13, 230

Property: Data type: Description: Default:

inputLevels low, high With this option you can remap the tone of the image to
make shadows darker, highlights lighter and increase
contrast.
Possible values for "low" and "high" are integers between 0
and 255, where "high" must be higher than "low".
The value "low" will then be remapped to a tone of 0, the
value "high" will be remapped to 255.

Example:
This example will cause the tonal range of the resulting
image to begin at 50 of the original (which is set as 0 for the
new image) and to end at 190 of the original (which is set as
255 for the new image).

20 = ADJUST
20.value = inputLevels = 50, 190

165

TypoScript Reference - doc_core_tsref GIFBUILDER

Property: Data type: Description: Default:

outputLevels low, high With this option you can remap the tone of the image to
make shadows lighter, highlights darker and decrease
contrast.
Possible values for "low" and "high" are integers between 0
and 255, where "high" must be higher than "low".
The beginning of the tonal range, which is 0, will then be
remapped to the value "low", the end, which is 255, will be
remapped to the value "high".

Example:
This example will cause the resulting image to have a tonal
range, where there is no pixel with a tone below 50 and no
pixel with a tone above 190 in the image.

20 = ADJUST
20.value = outputLevels = 50, 190

autoLevels - Sets the levels automatically.

[tsref:->GIFBUILDER.(GBObj).ADJUST]

NON-GifBuilderObj
IMGMAP
This is used by the GifBuilderObj "TEXT" to create an image-map for the gif-file. This is especially
used with the IMGMENU menuobject.

Property: Data type: Description: Default:

url url url to link For
IMGMENU
menu objects
provided
automatically

target target target for link For
IMGMENU
menu objects
provided
automatically

noBlur Boolean Normally graphical links are "blurred" if the browser is MSIE.
This removes the ugly box around a link.
If this property is set, the link is NOT blurred with "onFocus".

For
IMGMENU
menu objects
provided
automatically

explode x,y This "explodes" or "implodes" the image-map. Useful to let
the hot area cover a little more than just the letters of the
text.

altText string Value of the alt-attribute.
(Used from TEXT Gifbuilding objects, this has stdWrap
properties. Otherwise not)

titleText string Value of the title attribute.
(Used from TEXT Gifbuilding objects, this has stdWrap
properties. Otherwise not)

[tsref:->IMGMAP]

166

TypoScript Reference - doc_core_tsref MENU Objects

MENU Objects
Common properties

These properties are in common for all menu objects unless otherwise noted!

Property: Data type: Description: Default:

sectionIndex (see below)

alternativeSortingFi
eld

Normally the menuitems are sorted by the fields "sorting"
in the pages- and tt_content-table. Here you can enter a list
of fields that is used in the SQL- "ORDER BY" statement
instead.

Examples (for "pages" table):
alternativeSortingField = title desc
(This will render the menu in reversed alphabetical order.)

LIMITATIONS:
This property works with normal menus, sectionsIndex
menus and special-menus of type "directory".

minItems int The minimum items in the menu. If the number of pages
does not reach this level, a dummy-page with the title "..."
and uid=[currentpage_id] is inserted.

Takes precedence over HMENU.minItems.

maxItems int The maximum items in the menu. More items will be
ignored.

Takes precedence over HMENU.maxItems.

begin int +calc The first item in the menu.

Example:
This results in a menu, where the first two items are
skipped starting with item number 3:

begin = 3

Takes precedence over HMENU.begin.

JSWindow boolean If set, the links of the menu-items will open by JavaScript in
a pop-up window.

.newWindow boolean, that lets every menuitem open in its
own window opposite to opening in the same window for
each click.

.params is the list of parameters sent to the JavaScript
open-window function, e.g.:
width=200,height=300,status=0,menubar=0

Note: Does not work with JSMENU's.

imgNamePrefix string prefix for the imagenames. This prefix is appended with the
uid of the page.

"img"

imgNameNotRando
m

boolean If set, the image names of menuitems is not randomly
assigned. Useful switch if you're manipulating these images
with some external JavaScript.

Note: Don't set this if you're working with a menu with
sectionIndex! In that case you need special unique names
of items based on something else than the uid of the parent
page of course!

167

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

debugItemConf Outputs (by the debug()-function) the configuration arrays
for each menuitem. Useful to debug optionSplit things and
such...
Applies to GMENU, TMENU and IMGMENU.

overrideId integer (page-
id)

If set, then all links in the menu will point to this pageid.
Instead the real uid of the page is sent by the parameter
"&real_uid=[uid]".
This feature is smart, if you have inserted a menu from
somewhere else, perhaps a shared menu, but wants the
menuitems to call the same page, which then generates a
proper output based on the real_uid.
Applies to GMENU, TMENU and IMGMENU.

addParams string Additional parameter for the menu-links.

Example:
"&some_var=some%20value"
Must be rawurlencoded.
Applies to GMENU, TMENU and IMGMENU.

showAccessRestrict
edPages

integer (page
id) / keyword
"NONE"

If set, pages in the menu will include pages with frontend
user group access enabled. However the page is of course
not accessible and therefore the URL in the menu will be
linked to the page with the ID of this value. On that page
you could put a login form or other message.
If the value is "NONE" the link will not be changed and the
site will perform page-not-found handling when clicked
(which can be used to capture the event and act
accordingly of course).

Properties:
.addParam = Additional parameter for the URL, which can
hold two markers; ###RETURN_URL### which will be
substituted with the link the page would have had if it had
been accessible and ###PAGE_ID### holding the page id
of the page coming from (could be used to look up which
fe_groups was required for access.

Example:
showAccessRestrictedPages = 22
showAccessRestrictedPages.addParams =
&return_url=###RETURN_URL###&pageId=###PAGE
_ID###

The example will link access restricted menu items to page
id 22 with the return URL in the GET var "return_url" and
the page id in the GET var "pageId".

itemArrayProcFunc function name The first variable passed to this function is the "menuArr"
array with the menuitems as they are collected based on
the type of menu.
You're free to manipulate or add to this array as you like.
Just remember to return the array again!

Note:
.parentObj property is hardcoded to be a reference to the
calling tslib_menu object. Here you'll find e.g. ->id to be the
uid of the menu item generating a submenu and such.

Presetting element state
You can override element states like SPC, IFSUB, ACT,
CUR or USR by setting the key ITEM_STATE in the page
records. See cObject HMENU/special=userdefined for more
information.

168

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

submenuObjSuffixes string
+optionSplit

Defines a suffix for alternative sub-level menu objects.
Useful to create special submenus depending on their
parent menu element. See example below.

Example:
This example will generate a menu where the menu objects
for the second level will differ depending on the number of
the first level item for which the submenu is rendered. The
second level objects used are "2" (the default), "2a" and "2b"
(the alternatives). Which of them is used is defined by
"1.submenuObjSuffixes" which has the configuration "a |*| |*|
b". This configuration means that the first menu element
will use configuration "2a" and the last will use "2b" while
anything in between will use "2" (no suffix applied)

page.200 = HMENU
page.200 {
 1 = TMENU
 1.wrap = <div style="width:200px; border:
1px solid;">|</div>
 1.expAll = 1
 1.submenuObjSuffixes = a |*| |*| b
 1.NO.allWrap = |

 2 = TMENU
 2.NO.allWrap = <div
style="background:red;">|</div>

 2a = TMENU
 2a.NO.allWrap = <div
style="background:yellow;">|</div>

 2b = TMENU
 2b.NO.allWrap = <div
style="background:green;">|</div>
}

The result can be seen in the image below (applied on the
testsite package):

Applies to GMENU, TMENU, GMENU_LAYERS,
TMENU_LAYERS and GMENU_FOLDOUT on >= 2nd level
in a menu.

[tsref:(cObject).HMENU.(mObj)]

169

TypoScript Reference - doc_core_tsref MENU Objects

Common item states for TMENU, GMENU and IMGMENU series:
These properties are in common for TMENU, GMENU and IMGMENU series. That means they are
not used by for instance the JSMENU.

Property: Data type: Description: Default:

NO Boolean /
(config)

The default "Normal" state rendering of Item. This is required
for all menus.
If you specify properties for the "NO" property you do not
have to set it "1". Otherwise with no properties setting "NO=1"
will render the menu anyways (for TMENU this may make
sense).

The simplest menu TYPO3 can generate is then:

page.20 = HMENU
page.20.1 = TMENU
page.20.1.NO = 1

That will be pure <a> tags wrapped around page titles.

1

IFSUB
IFSUBRO

Boolean /
(config)

Enable/Configuration for menu items which has subpages. 0

ACT
ACTRO

Boolean /
(config)

Enable/Configuration for menu items which are found in the
rootLine.

0

ACTIFSUB
ACTIFSUBRO

Boolean /
(config)

Enable/Configuration for menu items which are found in the
rootLine and have subpages.

0

CUR
CURRO

Boolean /
(config)

Enable/Configuration for a menu item if the item is the
current page.

0

CURIFSUB
CURIFSUBRO

Boolean /
(config)

Enable/Configuration for a menu item if the item is the
current page and has subpages.

0

USR
USRRO

Boolean /
(config)

Enable/Configuration for menu items which are access
restricted pages that a user has access to.

0

SPC Boolean /
(config)

Enable/Configuration for 'Spacer' pages.
Spacers are pages of the doktype "Spacer". These are not
viewable pages but "placeholders" which can be used to
divide menuitems.

Note: Rollovers doesn't work with spacers, if you use
GMENU!

0

USERDEF1
USERDEF1RO

Boolean /
(config)

Userdefined, see .itemArrayProcFunc for details on how to
use this.
You can set the ITEM_STATE values USERDEF1 and
USERDEF2 (+...RO) from a script/userfunction processing the
menu item array. See HMENU/special=userdefined or the
property .itemArrayProcFunc of the menu objects.

USERDEF2
USERDEF2RO

Boolean /
(config)

(See above)

[tsref:(cObject).HMENU.(mObj_itemStates)]

Order of priority: USERDEF2, USERDEF1, SPC, USR, CURIFSUB, CUR, ACTIFSUB, ACT, IFSUB

All *RO states require the default "RO" configuration to be set up.

170

TypoScript Reference - doc_core_tsref MENU Objects

[menuObj].sectionIndex
This is a property that all menuObj's share. If it's set, then the menu will not consist of links to pages
on the "next level" but rather links to the parent page to the menu, but in addition "#"-links to the
cObjects rendered on the page. In other words, the menu items will be links to the content elements
(with colPos=0!) on the page. A section index.

.sectionIndex = [boolean]

If you set this, all content elements (from tt_content table) of "Column" = "Normal" and the "Index"-
check box clicked are selected. This corresponds to the "Menu/Sitemap" content element when "Section
index" is selected as type.

.sectionIndex.type = "all" / "header"

If you set this additional property to "all", then the "Index"-checkbox is not considered and all content
elements with colPos=0 is selected.

If this property is "header" then only content elements with a visible header-layout (and a non-empty
'header'-field!) is selected. In other words, if the header layout of an element is set to "Hidden" then the
page will not appear in the menu.

The data-record /Behind the scene
When the menu-records are selected it works like this: The parent page record is used as the "base" for
the menu-record. That means that any "no_cache" or "target"-properties of the parent page is used for
the whole menu.

But of course some fields from the tt_content records are transferred. This is how it mapped:

$temp[$row[uid]]=$basePageRow;
$temp[$row[uid]]['title']=$row['header'];
$temp[$row[uid]]['subtitle']=$row['subheader'];
$temp[$row[uid]]['starttime']=$row['starttime'];
$temp[$row[uid]]['endtime']=$row['endtime'];
$temp[$row[uid]]['fe_group']=$row['fe_group'];
$temp[$row[uid]]['media']=$row['media'];
$temp[$row[uid]]['header_layout']=$row['header_layout'];
$temp[$row[uid]]['bodytext']=$row['bodytext'];
$temp[$row[uid]]['image']=$row['image'];
$temp[$row[uid]]['sectionIndex_uid']=$row['uid'];

Basically this shows that

- the field "header" and "subheader" from tt_content are mapped to "title" and "subtitle" in the pages-
record. Thus you shouldn't need to change your standard menu-objects to fit this thing...

- the fields "starttime", "endtime", "fe_group", "media" from tt_content are mapped to the same fields in
a pages-record.

- the fields "header_layout", "bodytext" and "image" are mapped to non-existing fields in the page-
record

- a new field, "sectionIndex_uid" is introduced in the page record which is detected by the function
t3lib_tstemplate->linkData(). If this field is present in a page record, the linkData()-function will
prepend a hash-mark and the number of the field.

Note:

You cannot create submenus to sectionIndex-menus. That doesn't make any sense as these elements
are not pages and thereby have no children.

171

TypoScript Reference - doc_core_tsref MENU Objects

GMENU
GMENU works as an object under the cObject "HMENU" and it creates graphical navigation, where
each link is a separate gif-file.

Property: Data type: Description: Default:

RO Boolean RollOver configuration enabled / disabled.
If this is true, RO becomes a GIFBUILDER-object defining
the layout of the menu item when the mouse rolls over it

0

expAll Boolean If this is true, the menu will always show the menu on the
level underneath the menu item. This corresponds to a
situation where a user has clicked a menu item and the menu
folds out the next level. This can enable that to happen on all
items as default.

collapse Boolean If set, "active" menu items that has expanded the next level
on the menu will now collapse that menu again.

accessKey Boolean If set access-keys are set on the menu-links

noBlur Boolean Normally graphical links are "blurred" if the browser is MSIE.
Blurring removes the ugly box around a clicked link.
If this property is set, the link is NOT blurred (browser-
default) with "onFocus".

target target Target of the menu links self

forceTypeValue int If set, the &type parameter of the link is forced to this value
regardless of target. Overrides the global equivalent in 'config'
if set.

stdWrap ->stdWrap Wraps the whole item using stdWrap

Example:
2 = TMENU
2 {
 stdWrap.dataWrap = <ul class="{register :
 parentProperty}"> |
 NO {
 ...
 }
}

wrap wrap Wraps only if there were items in the menu!

applyTotalH objNumsList
(offset)

This adds the total height of the previously generated menu
items to the offset of the GifBuilderObj's mentioned in this
list.

Example:
This is useful it you want to create a menu with individual
items but a common background image that extends to the
whole area behind the menu. Then you should setup the
background image in each GIFBUILDER-object and include
the object-number in this list.
Look at the implementation in static_template
"styles.gmenu.bug"

applyTotalW objNumsList
(offset)

This adds the total width of the previously generated menu
items to the offset of the GifBuilderObj's mentioned in this
list.

min x,y (calcInt) Forces the menu as a whole to these minimum dimensions

max x,y (calcInt) Forces the menu as a whole to these maximum dimensions

useLargestItemX boolean If set, then the width of all menu items will be equal to the
largest of them all.

useLargestItemY boolean If set, then the height of all menu items will be equal to the
largest of them all.

172

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

distributeX int+ If set, the total width of all the menu items will be equal to
this number of pixels by adding/subtracting an equal amount
of pixels to each menu items width.
Will overrule any setting for ".useLargestItemX"

distributeY int+ If set, the total height of all the menu items will be equal to
this number of pixels by adding/subtracting an equal amount
of pixels to each menu items height.
Will overrule any setting for ".useLargestItemY"

removeObjectsO
fDummy

objNumsList If the menu is forced to a certain minimum dimension, this is
a list of objects in the gifbuilder-object that is removed for
this last item. This is important to do if the menu items has
elements that should only be applied if the item is actually a
menu item!!

disableAltText boolean If set, the alt-parameter of the images are not set. You can do
it manually by "imgParams" (see below)

IProcFunc function name The internal array "I" is passed to this function and expected
returned as well. Subsequent to this function call the menu
item is compiled by implode()'ing the array $I[parts] in the
passed array. Thus you may modify this if you need to.
See example in
typo3/sysext/cms/tslib/media/scripts/example_itemArrayProcF
unc.php

[Common Item
States, see
above]
+ rollover
version for all,
except SPC

->GIFBUILDER
+ Additional
properties! See
table below

This is the GIFBUILDER-options for each category of menu
item that can be generated.

Note: For the GMENU series you can also define the
RollOver configuration for the item states. This means that
you define the GIFBUILDER object for the 'Active' state by
ACT and the RollOver GIFBUILDER object for the 'Active'
state by ACTRO.
This pattern goes for ALL the states except the SPC state.

SPECIAL:
The ->OptionSplit function is run on the whole GIFBUILDER-
configuration before the items are generated.

[tsref:(cObject).HMENU.(mObj).GMENU

Additional properties for Menu item states
These properties are additionally available for the GMENU item states although the main object is
declared to be GIFBUILDER.

It is evident that it is an unclean solution to introduce these properties on the same level as the
GIFBUILDER object in a single situation like this. However this is how it irreversibly is and has been
for a long time.

Property: Data type: Description: Default:

noLink boolean If set, the item is NOT linked!

imgParams params Parameters for the -tag

altTarget string Alternative target which overrides the target defined for the
GMENU

altImgResource imgResouce Defines an alternative image to use. If an image returns
here, it will override any GIFBUILDER configuration.

ATagParams string /stdWrap Additional parameters

ATagTitle string /stdWrap which defines the title attribute of the a-tag. (See
TMENUITEM also)

173

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

additionalParams string /stdWrap Define parameters that are added to the end of the URL.
This must be code ready to insert after the last parameter.

For details, see typolink->additionalParams

wrap wrap Wrap of the menu item.

allWrap wrap /stdWrap Wraps the whole item.

wrapItemAndSub wrap /stdWrap Wraps the whole item and any submenu concatenated to it.

subst_elementUid boolean If set, "{elementUid}" is substituted with the item uid.

allStdWrap ->stdWrap stdWrap of the whole item

[tsref:(cObject).HMENU.(mObj).GMENU.(itemState)]

GMENU_LAYERS / TMENU_LAYERS
GMENU_LAYERS / TMENU_LAYERS works as an extension to GMENU/TMENU, which means the
these properties underneath is additional properties to the ones above.

The purpose of xMENU_LAYERS is to create 2-level (or more!) menus where the 2nd+ level is shown
on a DHTML-layer. Most features works with modern browsers including Netscape, Microsoft Internet
Explorer, Mozilla, Konqueror and Opera. You can cascade the menus as you like.

Note: You must include the library "typo3/sysext/cms/tslib/media/scripts/gmenu_layers.php" (for
GMENU_LAYERS) and/or "typo3/sysext/cms/tslib/media/scripts/tmenu_layers.php" (for
TMENU_LAYERS) and you must also expand the xMENU_LAYERS to the next for the menu to make
sense (use the expAll-flag).

Compatibility: MSIE 4+, Netscape 4+ and 6+, Opera 5+, Konqueror.

Notes:

• Netscape 4 does not support mouseover on the layers.

• Opera seems to have problems with the mouseout event if you roll from an element to a layer. Then
the event may not be fired before entering the layer. It happens only if the layer is placed very close
to the trigger element. Problems from this may be that the rollover state of the items are not reset.

• Possible bug; It has been seen with cascaded layers that Opera may suddenly refuse any interaction
on the page, even clicking normal links. It may be a JavaScript error that makes this happen, but as
even normal links are not clickable anymore, I'm not really sure. Seems to be no problem with
single-level menu.

Property: Data type: Description: Default:

layerStyle <DIV>-tag
params

Parameters for the <DIV>-layer-tags in the HTML-
document. You might probably not need change this.

Example:
position: absolute; VISIBILITY: hidden;

position:absolu
te; visibility:
hidden;

lockPosition "x" / "y" / "" If this is set to "x" or "y" the menu on the layers is
locked and does not follow the mouse-cursor (which it
does if this is not set).
"x" or "y" defines respectively that the summed width
(x) or height (y) is added to the x or y offset of the
menu. That means that you should set this value to "x"
if you have a horizontal GMENU_LAYERS and to "y" if
you have a vertical menu.

dontFollowMouse boolean If set and lockPosition is blank (so that the menu layer
follows the mouse) then the menu will NOT follow the
mouse but still it will appear where the mouse cursor
hit the trigger-element. Useful if you don't know the
exact positions of elements.

174

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

Warning: You should not set displayActiveOnLoad for
menus with this feature enabled (because the absolute
position of the layer is not known).

lockPosition_adjust int A number which is added to the width/height of the
menu items in order to compensate for e.g. hspace or
other things between the images in the
GMENU_LAYERS

lockPosition_addSelf boolean Normally the width and height of the items
(+lockPosition_adjust) are summed up after the item has
been rendered. This is good if the direction of the
menu layers is right- og downwards.
But if you use directionLeft/directionUp, you might
want to add the width of the items before.
If so, set this flag.

xPosOffset int The offset of the menu from the point where it's
"activated" (if lockPosition is false) / from top left page
corner (if lockPosition is set)

yPosOffset int As above, but for the y-dimension.

topOffset int The offset of menu items from top of browser. Should
be set rather than defining it in the .layerStyle
property. Must be set in order to use directionUp.
Used with either lockPosition=x or xPosOffset defined.

leftOffset int The offset of menu items from left border of browser.
Should be set rather than defining it in the .layerStyle
property. Must be set in order to use directionLeft.
Used with either lockPosition=y or yPosOffset defined.

blankStrEqFalse boolean If set, then the properties topOffset,leftOffset,
xPosOffset, yPosOffset are considered "blank" if they
are really blank strings - not just "zero". You should
enable this if you wish to be able to work with zero
offsets. This is typically the case if you use relative
positioning.

directionLeft boolean Set this, if you want the items to be right-aligned (pop's
out towards the left).
Does not work with Opera at this time because I don't
know how to make Opera read the width of each layer.
If you set the width of the menu-layers in .layerStyles
this might work no matter what.

directionUp boolean Set this, if you want the items to be bottom-aligned
(pop's out upwards instead of downwards).

setFixedWidth int For GMENU_LAYERS the width and heights of the
element is normally known from the graphical item.
For TMENU_LAYERS this cannot be known in the
same way. Therefore you can use .setFixedWidth and
.setFixedHeight to set these values to a number you
find reasonable. Of course this may be blasted by the
browsers rendering if the font gets out of proportions
etc.
Alternatively you may want to use the property
"relativeToTriggerItem" which will position your menu
layers relative to the item you roll over. This has some
drawbacks though. A middle solution is to use a menu
with lockPosition set to blank and dontFollowMouse set
to true. Then you need only specify either an x or y
coordinate to follow and the item will appear where the
mouse hits the element.
Notice: Active if value is NOT a blank str. Setting this
value to zero means that no width is calculated for the
items in GMENU_LAYERS.

setFixedHeight int See "setFixedWidth". Same, but for height.

175

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

bordersWithin l,t,r,b,l,t Keep borders of the layer within these limits in pixels.
Zero is 'not set'
(Syntax: List of integers, evaluated clockwise: Left, Top,
Right, Bottom, Left, Top)

displayActiveOnLoad boolean If set, the submenu-layer of the active menu item is
opened at page-load. If .freezeMouseover is also set
and there is RO defined for the main menu items, the
menu item belonging to the displayed submenu is also
shown.

Properties:
.onlyOnLoad (boolean)
If set, then the display of the active item will happen
only when the page is loaded. The display will not be
restored on mouseout of other items.

Warning: If you are cascading GMENU_LAYER
objects, make sure that all elements before this element
(for which you set this attribute) also have this attribute
set!

freezeMouseover boolean If set, any mouseout effect of main menu items is
removed not on roll-out but when another element is
rolled over (or the layer is hidden/default layer
restored)

Properties:
.alwaysKeep (boolean)
If set, the frozen element will always stay, even if the
submenu is hidden.

hideMenuWhenNotOver int+ If set (> 1) then the menu will hide it self whenever a
user moves the cursor away from the menu. The value
of this parameter determines the width (pixels) of the
zone around the element until the mouse pointer is
considered to be far enough away to hide the layer.

hideMenuTimer int+ This is the number of milliseconds to wait before the
submenu will disappear if hideMenuWhenNotOver is
set.

dontHideOnMouseUp boolean If set, the menu will not hide its layers when the mouse
button is clicked. Useful if your menu items loads the
pages in another frame.

layer_menu_id string If you want to specifically name a menu on a page.
Probably you don't need that!

Warning: Don't use underscore and special characters
in this string. Stick to alpha-numeric characters.

[random 6
char
hashstring]

relativeToTriggerItem boolean This allows you to position the menu layers relative to
the item that triggers it. However you should be aware
of the following facts:
• This does not work with Netscape 4 - the position

of the trigger layer will be calculated to zero and
thus the offset for all menu layers will be 0,0 + your
values.

• This feature will wrap the menu item in some
<div>-tags right before the whole item is wrapped
by the .wrap code (for GMENU_LAYERS) or
.allWrap (for TMENU_LAYERS). The bottom line
of this is: 1) If your menu is horizontal, always wrap
your menu items in a table so line breaks does not
appear because of the <div>-tags and 2) make sure
the wrapping of the table cell is done with the
.wrap/.allWrap properties respectively.

• Works only effectively on the first xMENU_LAYER
in a cascade. For succeeding xMENU_LAYERS

176

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

items please use "relativeToParentLayer".
If set, properties xPosOffset, yPosOffset and lockPosition*
are not functional (properties directionLeft, directionUp,
topOffset and leftOffset are still active)

Additional Properties:
.addWidth = Adds the width of the trigger element
.addHeight = Adds the height of the trigger element

relativeToParentLayer boolean If set, then the layer will be positioned relative to the
previous layer (parent) in a cascaded series of
xMENU_LAYERS. Basically the relative position of the
parent layer is just added to the offset of the current
menu.

Warning: This property makes sense only if there
really is a previous GMENU_LAYER to get position
from! So you must have a cascaded menu!

Additional Properties:
.addWidth = Adds the width of the parent layer
.addHeight = Adds the height of the parent layer

[tsref:(cObject).HMENU.(mObj).GMENU_LAYERS, (cObject).HMENU.(mObj).TMENU_LAYERS]

Example:
page.includeLibs.gmenu_layers = media/scripts/gmenu_layers.php
page.10 = HMENU
page.10.1 = GMENU_LAYERS
page.10.1 {
 layerStyle = position: absolute; VISIBILITY: hidden;
 xPosOffset = -30
 lockPosition = x
 expAll=1
 leftOffset = 15
 topOffset = 30
}
page.10.1.NO {
 backColor = #cccccc
 XY = [10.w]+10, 14
 10 = TEXT
 10.text.field = title
 10.offset = 5,10
}
page.10.2 = GMENU
page.10.2.wrap = <nobr>|</nobr>
page.10.2.NO {
 backColor = #99cccc
 XY = [10.w]+10, 14
 10 = TEXT
 10.text.field = title
 10.offset = 5,10
}

GMENU_FOLDOUT
GMENU_FOLDOUT works as an extension to GMENU, which means the these properties underneath
is additional properties to the ones above.

The purpose of GMENU_FOLDOUT is to create 2-level menus which are folded out dynamically.

It works with both Netscape, Mozilla, Microsoft internet Explorer and Opera. The menu on the first
level is a GMENU because GMENU_FOLDOUT is responsible for this, but the submenu on the next
level (referred to as 2nd level) can be both TMENU and another GMENU.

NOTE: You must include the library "typo3/sysext/cms/tslib/media/scripts/gmenu_foldout.php".

The script implemented is taken from http://www9.ewebcity.com/skripts/foldoutmenu_move.htm

Compatibility: MSIE 4+, Netscape 4+ and 6+, Opera 5+

177

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

dontLinkIfSubmenu boolean If set, items that has a submenu is not linked. Items without
a submenu are always linked in the regular ways.

foldTimer int The timeout in the animation, these are milliseconds. 40

foldSpeed int, range 1-100 How many steps in an animation? Choose 1 for no
animation.

1

stayFolded boolean Stay open when you click a new toplink? (Level 1)

bottomHeight int, pixels Sets the height of the bottom layer. Is important if the
bottom layer contains either content or a background color:
Else the layer will be clipped.

100

menuWidth int, pixels Width of the whole menu main layer. Important to set,
especially for the bottom layer as it is clipped by this value.
Always try to set this to the width in pixels of the menu.

170

menuHeight int Height of the whole menu layer. Seems not to be not that
important.

400

subMenuOffset x,y Offset of the submenu for each menu item. This is important
because if you don't set this value the items will appear on
top of their "parent".

menuOffset x,y Offset of the menu main layer on the page. From upper left
corner

menuBackColor HTML-color Background color behind menu. If not set, transparent
(which will not work very well in case .foldSpeed is set to
something else than 1. But see for yourself)

dontWrapInTable boolean By default every menu item on the first level is wrapped in a
table:
<TABLE cellSpacing=0 cellPadding=0 width="100%"
border=0><TR><TD>
[menu item HTML here..]
</TD></TR></TABLE>
Doing this ensures that the layers renders equally in the
supported browsers. However you might need to disable that
which is what you can do by setting this flag.
Note: Using <TBODY> in this tables seems to break
Netscape 4+

0

bottomContent cObject Content for the bottom layer that covers the end of the
menu.

adjustItemsH int Adjusts the height calculation of the menulayers of the first
level (called Top)

Example:
-10

This value will substract 10 pixels from the height of the
layer in calculations.

adjustSubItemsH int Adjusts the height calculation of the menu layers of the
second level (subitems, called Sub)
See above

arrowNO
arrowACT

imgResource If both arrowNO and arrowACT is defined and valid
imgResources then these images are use as "traditional
arrows" that indicates whether an item is expanded (active)
or not.
NO is normal, ACT is expanded
The image is inserted just before the menu item. If you want
to change the position, put the marker
###ARROW_IMAGE### into the wrap of the item and the
image will be put there instead.

arrowImgParams params Parameters to the arrow-image.

Example:
hspace=5 vspace=7

178

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

displayActiveOnLoad boolean If set, the active menu items will fold out "onLoad".

[tsref:(cObject).HMENU.(mObj).GMENU_FOLDOUT]

Example:
GMENU_FOLDOUT
includeLibs.gmenu_foldout = typo3/sysext/cms/tslib/media/scripts/gmenu_foldout.php

temp.foldoutMenu = HMENU
temp.foldoutMenu.1 = GMENU_FOLDOUT
temp.foldoutMenu.1.expAll = 1
temp.foldoutMenu.1.NO {
 wrap = |

 XY = 150,20
 backColor = silver

 10 = TEXT
 10.text.field = title
 10.fontSize = 12
 10.fontColor = Blue
 10.offset = 2,10
}
temp.foldoutMenu.1.RO < temp.foldoutMenu.1.NO
temp.foldoutMenu.1.RO = 1
temp.foldoutMenu.1.RO {
 10.fontColor = red
}
temp.foldoutMenu.2 = TMENU
temp.foldoutMenu.2.NO {
 linkWrap = <nobr>|</nobr>

 stdWrap.case = upper
}
temp.foldoutMenu.1 {
 dontLinkIfSubmenu = 1
 stayFolded=1
 foldSpeed = 6
 subMenuOffset = 10,18
 menuOffset = 100,20
 menuBackColor = silver
 bottomBackColor = silver
 menuWidth = 170

 arrowNO = typo3/sysext/cms/tslib/media/bullets/arrow_no.gif
 arrowACT = typo3/sysext/cms/tslib/media/bullets/arrow_act.gif
 arrowImgParams = hspace=4 align=top

 bottomContent = TEXT
 bottomContent.value = Hello World! Here is some content!
}

179

TypoScript Reference - doc_core_tsref MENU Objects

This creates a menu like this (above). One important point is the line

temp.foldoutMenu.1.expAll = 1

If you don't set this (just like the GMENU_LAYERS) then the second level is not generated!

TMENU
Property: Data type: Description: Default:

expAll Boolean
/stdWrap

If this is true, the menu will always show the menu on the
level underneath the menu item. This corresponds to a
situation where a user has clicked a menu item and the menu
folds out the next level. This can enable that to happen on all
items as default.

collapse boolean If set, "active" menu items that has expanded the next level
on the menu will now collapse that menu again.

accessKey boolean If set access-keys are set on the menu-links

noBlur boolean Normally links are "blurred" if the browser is MSIE. Blurring
removes the ugly box around a clicked link.
If this property is set, the link is NOT blurred (browser-
default) with "onFocus".

target target Target of the menu links self

forceTypeValue int If set, the &type parameter of the link is forced to this value
regardless of target.

stdWrap ->stdWrap Wraps the whole item using stdWrap

Example: see GMENU.stdWrap

wrap wrap Wraps only if there were items in the menu!

IProcFunc function name The internal array "I" is passed to this function and expected
returned as well. Subsequent to this function call the menu
item is compiled by implode()'ing the array $I[parts] in the
passed array. Thus you may modify this if you need to.
See example in
typo3/sysext/cms/tslib/media/scripts/example_itemArrayProcF
unc.php

[Common Item
States, see
above]

->TMENUITEM This is the TMENUITEM-options for each category of menu
item that can be generated.

SPECIAL:
The ->OptionSplit function is run on the whole configuration
before the items are generated.

[tsref:(cObject).HMENU.(mObj).TMENU]

TMENUITEM
The current record is the page-record of the menu item - just like you have it with GMENU/gifbuilder.
Now, if you would like to get data from the current page record, use stdWrap.data = page : [field
name]

Property: Data type: Description: Default:

allWrap wrap /stdWrap Wraps the whole item.

wrapItemAndSub wrap /stdWrap Wraps the whole item and any submenu concatenated to
it.

subst_elementUid boolean If set, all appearances of the string '{elementUid}' in the
total element html-code (after wrapped in .allWrap} is
substituted with the uid number of the menu item.
This is useful if you want to insert an identification code

180

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

in the HTML in order to manipulate properties with
JavaScript.

RO_chBgColor string If property RO is set (see below) then you can set this
property to a certain set of parameters which will allow
you to change the background color of e.g. the table cell
when the mouse rolls over you text-link.

Syntax:
[over-color] | [out-color] | [id-prefix]

Example:
page = PAGE
page.typeNum = 0
page.10 = HMENU
page.10.wrap = <table border=1>|</table>
page.10.1 = TMENU
page.10.1.NO {
 allWrap = <tr><td valign=top
id="1tmenu{elementUid}"
style="background:#eeeeee;">|</td></tr>
 subst_elementUid = 1
 RO_chBgColor = #cccccc | #eeeeee |
1tmenu
 RO = 1
}

This example will start out with the table cells in #eeeeee
and change them to #cccccc (and back) when rolled over.
The "1tmenu" string is a unique id for the menu items.
You may not need it (unless the same menu items are
more than once on a page), but the important thing is that
the id of the table cell has the exact same label before the
{elementUid} (red marks). The other important thing is
that you DO set a default background color for the cell
with the style-attribute (blue marking). If you do not,
Mozilla browsers will behave a little strange by not
capturing the mouseout event the first time it's triggered.

before HTML
/stdWrap

beforeImg imgResource

beforeImgTagParams -params

beforeImgLink boolean If set, this image is linked with the same <A> tag as the
text

beforeROImg imgResource If set, ".beforeImg" and ".beforeROImg" is expected to
create a rollOver-pair.

beforeWrap wrap wrap around the ".before"-code

linkWrap wrap

stdWrap ->stdWrap stdWrap to the link-text!

ATagBeforeWrap boolean

ATagParams <A>-params
/stdWrap

Additional parameters

Example:
class="board"

ATagTitle string
/stdWrap

Allows you to specify the "title" attribute of the <a> tag
around the menu item.

Example:
ATagTitle.field = abstract // description

This would use the abstract or description field for the attribute.

181

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

additionalParams string
/stdWrap

Define parameters that are added to the end of the URL.
This must be code ready to insert after the last parameter.

For details, see typolink->additionalParams

doNotLinkIt boolean
/stdWrap

If set, the linktext are not linked at all!

doNotShowLink boolean
/stdWrap

If set, the text will not be shown at all (smart with spacers)

stdWrap2 wrap /stdWrap stdWrap to the total link-text and ATag. (Notice that the
plain default value passed to the stdWrap function is "|".)

 |

RO boolean If set, rollOver is enabled for this link

after... [mixed] The series of "before..." properties are duplicated to
"after..." properties as well. The only difference is that the
output generated by the .after.... properties are placed
after the link and not before.

altTarget target Alternative target overriding the target property of the
TMENU if set.

allStdWrap ->stdWrap stdWrap of the whole item

[tsref:(cObject).HMENU.(mObj).TMENUITEM]

IMGMENU
Imagemaps are made by creating one large GIFBUILDER-object based on the GIFBUILDER-object
".main" and adding the properties of the GIFBUILDER-objects for each item (NO, ACT, SPC... and so
on).

Property: Data type: Description: Default:

target target Target of the menu links self

forceTypeValue int If set, the &type parameter of the link is forced to this value
regardless of target.

noBlur Boolean Normally graphical links are "blurred" if the browser is MSIE.
Blurring removes the ugly box around a clicked link.
If this property is set, the link is NOT blurred (browser-
default) with "onFocus".

wrap wrap

params -params

main ->GIFBUILDER Main configuration of the image-map! This defines the
"underlay"!

dWorkArea offset + calc Main offset of the GIFBUILDER-items (also called the
"distribution")

182

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

[Common Item
States, see
above]

-
>IMGMENUITE
M
+ .distrib

This is the TMENUITEM-options for each category of menu
item that can be generated.

SPECIAL:
The ->OptionSplit function is run on the whole
GIFBUILDER-configuration before the items are generated.

.distrib is (x,y,v,h +calc) of the distribution of the menu
items. This provides a way to space each item from the other.
The codes "textX" and "textY" can be used for the width (X)
and height (Y) dimension of each link.
This works by adding a WORKAREA-GifBuilderObj between
each of the IMGMENUITEM ("subset" of a GIFBUILDER-
object) and this work area defines where the text should be
printed. As such the "x,y" defines the offset the next item
will have (this should be the width of the previous in many
cases!) and "v,h" defines the dimensions of the current item.
Consider this example taken from the static_template
"template: MM":
 NO.distrib = textX+10, 0, textX+10, textY+5
In the future TypoScript may provide better ways to position
GIFBUILDER-objects on the image-maps!

ImgMap is automatically used on the links! (that is the
".imgMap" property of the text-objects in the GIFBUILDER-
objects is set automatically, unless is already set.)

imgMapExtras <area...>-tags Extra <area...>tags for the image-map

debugRenumber
edObject

boolean if set, the final GIFBUILDER object configuration is output in
order for you to debug your configuration

[tsref:(cObject).HMENU.(mObj).IMGMENU]

183

TypoScript Reference - doc_core_tsref MENU Objects

IMGMENUITEM
Property: Data type: Description: Default:

1,2,3,4... ->GifBuilderObj NOTE:
The way an imagemap is made is this; All IMGMENUITEMS
are included in one big Gifbuilderobj (and renumbered!!).
Because of this, Gifbuilderobjects on the next level will not be
able to access the data of each menuitem.
Also the feature of using [##.w] and [##.h] with +calc is
currently not supported by IMGMENUITEMs.
Therefore all IMAGE-objects on the first level is checked; if
"file" or "mask" for any IMAGE-objects are set to
"GIFBUILDER", the Gifbuilder-object is parsed to see if any
TEXT-objects are present and if so, the TEXT-object is
"checked" - which means, that the stdWrap-function is called
at a time where the $cObj->data-array is set to the actual
menuitem.
In the example below, the text of each menuitem is rendered
by letting the title be rendered on a mask instead of directly
on the image. Please observe that the "NO.10"-object is
present in order for the image-map coordinates to be
generated!!

NO.6 = IMAGE
NO.6.file = masked_pencolor*.gif
NO.6.mask = GIFBUILDER
NO.6.mask {
 XY = 500, 200
 backColor = black
 10 = TEXT
 10 {
 text.field = title
 fontFile = fileadmin/fonts/caflisch.ttf
 fontSize = 34
 fontColor = white
 angle = 15
 offset = 48,110
 }
 20 = EFFECT
 20.value = blur=80
}
NO.10 = TEXT
NO.10 {
 text.field = title
 fontFile = fileadmin/fonts/caflisch.ttf
 fontSize = 34
 angle = 15
 offset = 48,110
 hideButCreateMap = 1
}

[tsref:(cObject).HMENU.(mObj).IMGMENUITEM]

JSMENU
Property: Data type: Description: Default:

levels int, 1-5 How many levels there are 1

menuName string JavaScript menu name.
If you have more than one JSMENU on the page, you should
set this value for each one.

target target Decides target of the menu-links

forceTypeValue int If set, the &type parameter of the link is forced to this value
regardless of target.

1,2,3,4... JSMENUITEM levels-config

wrap wrap wrap around the selector-boxes

184

TypoScript Reference - doc_core_tsref MENU Objects

Property: Data type: Description: Default:

wrapAfterTags wrap wrap around the selector-boxes with wrap and form-tags og
JS-code.

firstLabelGeneral string General first label. May be overridden by the one set in each
JSMENUITEM

SPC boolean If set, spacer can go into the menu, else not.

[tsref:(cObject).HMENU.(mObj).JSMENU]

JSMENUITEM
Property: Data type: Description: Default:

noLink boolean Normally the selection of a menu item in the selector box will
update the selector on the next level (if there is a next level)
and if there are no items for that selector (because there were
no subpages), then the link jumps to the page of itself.
If this flag is set, however, no menu items in the selector box
will ever link to anything. Only update the content of the next
selector box on next level.

alwaysLink boolean If set an item in the menu selector will always link. This takes
precedence over "noLink".

showFi rst boolean if set, the first link will be shown when the menu is updated.

showActive boolean if set, the active level will be selected, if present

wrap wrap wraps the selector box

width int+ Initial width of the boxes set by a number of _ (underscores) 14

elements int+ Initial number of elements in the menu. This is of course
overruled by the actual menu item texts.

5

additionalParams string Additional parameters to the <select> box. Eg, you could set
the width with a style-parameter like this:
style="width: 200px;"

firstLabel string Firt label in top of the menu (default is blank)

[tsref:(cObject).HMENU.(mObj).JSMENUITEM]

Example:
The menu:
temp.jsmenu = HMENU
temp.jsmenu.1 = JSMENU
temp.jsmenu.1 {
 levels = 2
 1.wrap = |

 2.wrap = |<hr>
}

Insert on page.
page = PAGE
page.typeNum =0
page.5 = TEXT
page.5.field = title
page.10 < temp.jsmenu

This draws a menu with two selector boxes.

185

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Appendix A – media/scripts/ Plugins
media/scripts/ in general

The directory typo3/sysext/cms/tslib/media/scripts (in older versions just media/scripts) primarily
contains php-scripts which are meant as 'external modules' as opposed to features included in the
typo3/sysext/cms/tslib/ libraries. Although they are distributed with TYPO3 just like the rest of tslib/
they form a basis for externally developed frontend functionality. So for most of these scripts, be
inspired by them to write your own code. Notice the word 'most'; because some are written long time
ago and do not represent the state-of-the-day to do it.

About 'example templates'
For each plugin script there is one or more example templates. These templates are a part of the
documentation of the features in the plugin because they describe the features of the markers and
subparts and present an example to learn from. Therefore the example templates may be changed e.g.
when new features come along.

You should therefore not rely on using the default templates unless you'll accept the fact that they may
change in the future! So make a copy, modify it for your own purpose if needed and set up the
TypoScript of the plugin to use your own template file!

fe_adminLib.inc
Files:
File: Description:

fe_adminLib.inc Main class used to display the frontend administration forms.
Call it from a USER_INT cObject with 'userFunc = user_feAdmin->init'. See the
static_templates for examples.
Note: Using the USER_INT cObject allows the script to work regardless of the
page-cache which is necessary!!

fe_admin_dmailsubscrip.tmpl Example template file for subscription to newsletters of users to the tt_address
table. This template is used by the static_template
'plugin.feadmin.dmailsubscription'.

fe_admin_fe_users.tmpl Example template file for creating new frontend users (fe_users). This template is
used by the static_template 'plugin.feadmin.fe_users'.

Description
This class is used to create forms for database-administration in the frontend independently of the
backend (TBE). Thus you may want to use this, if you like frontend users to edit database content.

Authentication either goes through fe_user login in which case you can stamp the records with the
fe_user_uid so a record belongs to a certain fe_user. The other authentication option is email
authentication. In this case you have access to the record if your email is found in a certain field. By
fe_user authentication you can get a menu of items to edit when you're logged in. With email-
authentication, you can request an email to be sent to your email address. This email contains a list of
the available records.

It's all based on HTML-template files which you have to design by yourself, so there's some design
work to do. On the other hand you get total freedom to design your forms.

Example:

See static_templates 'plugin.feadmin.*' for various examples. Test them configured on the TYPO3 test
site.

186

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Static template
plugin.feadmin.*

Incoming GET or POST vars:
Name: Description:

cmd Command.

preview Preview flag.

backURL Back URL.

rU Record UID.

aC Authentication Code.

fD Fixed Data (array of fields)

FE Frontend Edit data array, syntax, FE[tablename][field name] = value

fe_adminLib.inc properties
Property: Data type: Description: Default:

templateFile resource The template file, see examples in
typo3/sysext/cms/tslib/media/scripts/fe_user_admin.tmpl

templateContent string Alternatively you can set this property directly to the value
of the template.

table tablename The table to edit.
Notice: The ultimate lsit of fields allowed to be edited for
the table is defined in TCA with the key ["feInterface"]
["fe_admin_fieldList"] for each table in question. For an
example, see the table definition for fe_users which is a
good example.

defaultCmd string Defines which action should be default (if &cmd= is not set
when calling the page)

clearCacheOfPages [list of integers] This is a list of page-ids for which to clear the cache on
any successful operation be it EDIT, CREATE or DELETE.

debug boolean If set, debug information will be output from fe_adminLib
which helps to track errors.

Actions:

edit boolean
/actionObject

If set, editing is basically allowed.
But you need to specify:

.fields (list of field names) which determines the fields
allowed for editing. Every field in this list must be found as
well in the ["feInterface"]["fe_admin_fieldList"] found in the
TCA array which ultimately determines which fields can be
edited by the fe_adminLib.

.overrideValues.[field name] (value string) defines values
for specific fields which will override ANY input from the
form. Overriding values happens after the outside values
has been parsed by the .parseValues-property of
fe_adminLib but before the evaluation by .required and
.evalValues below. For example this may be useful if you
wish to hide a record which is being edited, because you
want to preview it first.

.required (list of field names, subset of .fields) which
determines which fields are required to return a true value.
The valid fields entered here will have the subpart
###SUB_REQUIRED_FIELD_[field name]### removed from
the templates if they evaluates to being true and thereby
OK. See below for information about this subpart.

187

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Property: Data type: Description: Default:

.evalValues.[field name] (list of eval-codes) defines
specific evaluation forms for the individual fiels of the
form. See below.

.preview (boolean) will enable the form submitted to be
previewed first. This requires a template for preview to be
found in the template file. See below for subpart marker
names.

.menuLockPid (boolean will force the menu of editable
items to be locked to the .pid (edit only)

.userFunc_afterSave (function name) is called after the
record is saved. The content passed is an array with the
current (and previous) record in.

create boolean
/actionObject

The same as .edit above except where otherwise stated.
Plus there is these additional properties:

.noSpecialLoginForm (boolean) - if set, fe_adminLib does
NOT look for the subpart marker
TEMPLATE_CREATE_LOGIN but always for
TEMPLATE_CREATE

.defaultValues.[field name] (value string); Like

.overrideValues but this sets the default values the first
time the form is displayed.

delete boolean Whether or not records may be deleted. Still regular
authentication (ownership or email authCode) is required.
Setting the var "preview" lets you make a delete-preview
before actually deleting the record.

infomail boolean Infomails are plaintext mails based on templates found in
the template file. They may be used for such as sending a
forgotten password to a user, but what goes into the
infomail is totally up to your design of the template.
Normally you may have only a default infomail
(infomail.default) for instance for sending the password.
But you can use other keys also. See below.

infomail.[key] (configuration
of infomail
properties)

In order to make fe_adminLib send an infomail, you must
specify these vars in your GET vars or HTML-form.

fetch - if integer, it searches for the uid being the value of
'fetch'. If not, it searches for the email-field (defined by a
property of fe_adminLib, see below).

key - points to the infomail.[key] configuration to use

Properties:
.dontLockPid (boolean) - selects only records from the
.pid of fe_adminLib.
.label (string) - The suffix for the markers, see 'Email
Markers' beneath.

setfixed boolean
/properties

Allows set-fixed input, probably coming from a link in an
infomail or notification mail.
Syntax:

.[fixkey].[field name] = fieldvalue - is used to setup a
setfixed-link insertable in the infomail by the
SYS_SETFIXED_*-markers. See above (setfixed-property of
fe_adminLib).
Special fixkey 'DELETE' is just a boolean.

.userFunc_afterSave (function name) is called after the
record is saved. The content passed is an array with the

188

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Property: Data type: Description: Default:

current (and previous) record in.

Concept:
The 'setfixed' concept is best explained by describing a
typical scenario - in fact the most common situation of its
use:
Imagine you have some users submitting information on
your website. But before that information enters the
database, you would like to moderate it - simply preview it
and then either delete it or approve it. In the 'create'
configuration of fe_adminLib, you set up the hidden field
of the record to be overridden to 1. Thus the record is
hidden by default. Then you configure a setfixed-fixkey to
set the hidden field to 0. This set up generates a list of
parameters for use in an URL and those parameters are
finally inserted by a corresponding marker in the email
template. The link includes all necessary authentication to
perform the change of values and thus a single click on
that link is enough to change the field values. So this will -
by a single click of a link in a notification mail sent to an
admin - enable the record! Or of course a similar link with
a cmd=delete link will delete it...
There is a special "field name" you can use, which is
'_FIELDLIST" and that lets you specify a list of fields in
the record to base the auth-code on. If nothing is specifyed
the md5-hash is based on the whole record which means
that any changes will disable the setfixed link. If on the
other hand, you set _FIELDLIST = uid,pid then that
record will be editable as long as the uid and pid values
are intact.
Example:
This is a common configuration of the email-properties
with a simple setfixed setting:

email.from = kasper@typo3.com
email.fromName = Kasper Skårhøj
email.admin = kasper@typo3.com
setfixed.approve {
 hidden = 0
 _FIELDLIST = uid,pid
}
setfixed.DELETE = 1
setfixed.DELETE._FIELDLIST = uid

Now, if you insert this marker in your email template

###SYS_SETFIXED_approve###

it will get substituted with something like these parameters:

&cmd=setfixed&rU=9&fD[hidden]=0&aC=5c403d90

Now, all you need is to point that to the correct url (where
fe_adminLib is invoked!), e.g.:

###THIS_URL######FORM_URL######SYS_SETFIXED
_approve###

and for deletion:

...###SYS_SETFIXED_DELETE###

Others

authcodeFields [list of fields] Comma separated list of fields to base the authCode
generation on. Basically this list would include "uid" only
in most cases. If the list includes more fields, you should
be aware that the authCode will change when the value of
that field changes. And then the user will have to re-send
an email to himself with a new code.

189

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Property: Data type: Description: Default:

.addKey (string) adds the string to the md5-hash of the
authCode. Just enter any random string here. Point is that
people from outside doesn't know this code and therefore
are not able to reconstruct the md5-hash solely based on
the uid

.addDate (date-config) You can use this to make the code
time-disabled. Say if you enter "d-m-Y" here as value, the
code will work until midnight and then a new code will be
valid.

.codeLength (int) Defines how long the authentication
code should be. Default is 8 characters.
In any case $TYPO3_CONF_VARS['SYS']['encryptionKey']
is prepended.

Advice:
If you want to generate authCodes compatible with the
standard authCodes (used by the direct mailer by
t3lib_div::stdAuthCode()), please set
$TYPO3_CONF_VARS['SYS']['encryptionKey'] to a unique
and secret key (like you should in any case) and add "uid"
as authcodeField ONLY. This is secure enough.

email .from (string, email) Defines the sender email address of
mails sent out

.fromName (string) Defines the name of the sender. If set,
this will be used on the form NAME <EMAIL>

.admin Email address of the administrator which is
notified of changes.

.field (string/integer) Defines the field name of the record
where the email address to send to is found. If the field
content happens to be an integer, this is assumed to be the
uid of the fe_user owning the record and the email address
of that user is fetched for the purpose instead.

pid int+ The pid in which to store/get the records. Current
page

fe_userOwnSelf boolean If set, fe_users created by this module has their
fe_cruser_id-field set to their own uid which means they
'own' their own record and can thus edit their own data.
All other tables which has a fe_cruser_id field configured
in the 'ctrl' section of their $TCA-configuration will
automatically get this field set to the current fe_user id.

fe_userEditSelf boolean If set, fe_users - regardless of whether they own themselves
or not - will be allowed to edit himself.

allowedGroups [list of
integers]

List of fe_groups uid numbers which are allowed to edit
the records through this form. Normally only the owner
fe_user is allowed to do that.

evalFunc function name Function by which you can manipulate the dataArray
before it's saved.
The dataArray is passed to the function as $content and
MUST be returned again from the function.
The property "parentObj" is a hardcoded reference to the
fe_adminLib object.

formurl ->typolink Contains typolink properties for the URL (action tag) of
the form.

parseValues.[field] [list of
parseCodes]

ParseCodes:
int - returns the integer value of the input
lower - returns lowercase version of the input

190

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Property: Data type: Description: Default:

upper - returns uppercase version of the input
nospace - strips all space
alpha, num, alphanum, alphanum_x - only alphabetic
(a-z) and/or numeric chars. alphanum_x also allows _ and -
trim - trims whitespace in the ends of the string
setEmptyIfAbsent - will make sure the field is set to
empty if the value is not submitted. This ensures a field to
be updated an is handy with checkboxes
random[x] - Returns a random number between 0 and x
files[semicolon-list(!) of extensions, none=all][maxsize
in kb, none=no limit] - Defining the field to hold files.
See below for details!
multiple - Set this, if the input comes from a multiple-
selector box (remember to add ...[] to the field name so the
values come in an array!)
checkArray - Set this, if you want several checkboxes to
set bits in a single field. In that case you must prepend
every checkbox with [x] where x is the bitnumber to set
starting with zero. The default values of the checkbox form
elements must be false.
uniqueHashInt[semicolon-list(!) of other fields] - This
makes a unique hash (32 bit integer) of the content in the
specified fields. The values of those fields are first
converted to lowercase and only alphanum chars are
preserved.

userFunc_updateArray function name Points to a user function which will have the value-array
passed to it before the value array is used to construct the
update-JavaScript statements.

evalErrors.[field].
[evalCode]

This lets you specify the error messages inserted in the
###EVAL_ERROR_FIELD_[field name]### markers upon
an evaluation error.
See description of evaluation below.

cObjects.[marker_name] cObject This is cObjects you can insert by markers in the template.

Example:
Say, you set up a cObject like this:

cObject.myHeader = TEXT
cObject.myHeader.value = This is my header

then you can include this cObject in most of the templates
through a marker named ###CE_myHeader### or
###PCE_myHeader### (see below for details on the
difference).

wrap1 ->stdWrap Global Wrap 1. This will be split into the markers
###GW1B### and ###GW1E###. Don't change the input
value by the settings, only wrap it in something.

Example:
wrap1.wrap = |

wrap2 ->stdWrap Global Wrap 2 (see above)

color1 string
/stdWrap

Value for ###GC1### marker (Global color 1)

color2 string
/stdWrap

Value for ###GC2### marker (Global color 2)

color3 string
/stdWrap

Value for ###GC3### marker (Global color 3)

[tsref:(script).fe_adminLib]

191

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Main subparts
There is a certain system in the naming of the main subparts of the template file. The markers below
are used when an action results in "saving". The [action] code may be DELETE, EDIT or CREATE
depending on the cmd value.

Subpart marker: Description:

###TEMPLATE_[action]_SAVED### Used for HTML output

###TEMPLATE_SETFIXED_OK### (general)
###TEMPLATE_SETFIXED_OK_[fixkey]###

Used for a successful setfixed-link.

###TEMPLATE_SETFIXED_FAILED### Used for an unsuccessful setfixed-link. Notice that
if you click a setfixed link twice, the second time it
will fail. This is because the setfixed link is bound
to the original record and if that changes in any
way the authentication code will be invalid!

###EMAIL_TEMPLATE_[action]_SAVED### Used for an email message sent to the website user

###EMAIL_TEMPLATE_[action]_SAVED-ADMIN### Used for an email message sent to the admin

###EMAIL_TEMPLATE_SETFIXED_[fixkey]### Used for notification messages in the event of
successful setfixed operations.

###EMAIL_TEMPLATE_SETFIXED_[fixkey]-ADMIN### Ditto, for admin email

Likewise there is a system in the subpart markers used for the EDIT and CREATE actions to display
the initial forms:

###TEMPLATE_[action]### or if a fe_user is logged in (only CREATE):
###TEMPLATE_[action]_LOGIN###

... and if the &preview-flag is sent as well (including DELETE)

###TEMPLATE_[action]_PREVIEW###

Must-have subparts:

These are subparts that should exist in any template.

Subpart marker: Description:

###TEMPLATE_AUTH### Displayed if the authentication - either of fe_user or email
authentication code - failed. You must design the error
display to correctly reflect the problem!

###TEMPLATE_NO_PERMISSIONS### This error message is displayed if you were authenticated but
did not posses the right to edit or delete a record due to other
reasons (like wrong fe_user/group ownership).

'infomail' Email subparts
All email subparts can be sent as HTML. This is done if the first and last word of the templates is
<html> and </html> respectively. In addition the t3lib_htmlmail class must be loaded.

Subpart: Description:

###EMAIL_TEMPLATE_NORECORD###

###EMAIL_TEMPLATE_[infomail_key]###

###SUB_RECORD###

192

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

'infomail' Email markers
Marker: Description:

###SYS_AUTHCODE###

###SYS_SETFIXED_[fixkey]###

FORM conventions
The forms used with fe_adminLib should be named after the table they are supposed to edit. For
instance if you are going to edit records in the table 'fe_users' you must use a FORM-tag like this:

<FORM name="fe_users_form" method="POST" action="....">

The fields used to submit data for the records has this syntax: FE[tablename][field name]. This means, if
you want to edit the 'city' field of a tt_address record, you could use a form element like this:

<INPUT name="FE[tt_address][city]">

Submit buttons can be named as you like except using the name "doNotSave" of a submit button will
prevent saving. If you need a Cancel button, please resort to JavaScript in an onClick even to change
document.location.

Common markers
Marker: Description:

###GW1B### / ###GW1E### Global wrap 1, begin and end (headers).

###GW2B### / ###GW2E### Global wrap 2, begin and end (bodytext).

###GC1### / ###GC2### / ###GC3### Global color 1 through 3.

###FORM_URL### The url used in the forms:
index.php?id=page-id&type=page-type

###FORM_URL_ENC### As above, but rawurlencoded.

###BACK_URL### The backUrl value. Set to the value of incoming "backURL"
var.

###BACK_URL_ENC### As above, but rawurlencoded.

###REC_UID### The UID of the record edited. Set to the value of incoming
"rU" var.

###AUTH_CODE### The "aC" incoming var.

###THE_PID### The "thePid" value - where the records are stored.

###THIS_ID### Set to the current page id.

###THIS_URL### Set to the current script url as obtained by
t3lib_div::getThisUrl().

###HIDDENFIELDS### A bunch of hiddenfields which are required to be inserted in
the forms. These by default include 'cmd', 'aC' and 'backURL'.

In addition you can in most cases use markers like this

###FIELD_[field name]###

where [field name] is the name of a field from the record. All fields in the record are used.

Finally you can insert cObjects defined in TypoScript with this series of markers (see .cObject property
in table above):

###CE_[cObjectName]###
###PCE_[cObjectName]###

193

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

(###PCE_* is different from the ###CE_* cObjects by the fact they are rendered with a newly created
cObj (as opposed to the parant cObj of fe_adminLib) where the data-array is loaded with the value of
->dataArr which is the array submitted into the script. This is useful for presenting preview data.
Finally both PCE_ and CE_ types cObject markers may be used with each single element in an edit
menu (list of available records) by prefixing the marker with 'ITEM_', e.g.
###ITEM_PCE_[cObjectName]###

Evaluation of the form fields
Printing error messages for REQUIRED fields

When a form template is displayed all subparts with the markers

###SUB_REQUIRED_FIELDS_WARNING###
and

###SUB_REQUIRED_FIELD_[field name]###

are removed. If there is a simple "required"-error (a field is not filled in) then the
SUB_REQUIRED_FIELDS_WARNING is not removed and thus the error message contained herein is
shown.

Let's say that more specifically it's the 'email' field in a form which is not filled in. Then you can put in
a subpart named

###SUB_REQUIRED_FIELD_email###
This is normally removed, but it'll not be removed if the email field fails and thus you are able to give a
special warning for that specific field.

Printing other error messages

However you may use other forms of evaluation than simple "required" check. This is specified for
"create" and "edit" modes by the properties ".evalValues.[field name] = [list of codes]". In order to tell
your website user which of the possible evaluations went wrong, you can specify error messages by the
property .evalErrors which will be inserted as the marker named ###EVAL_ERROR_FIELD_[field
name]###.

Lets say that you have put the code 'uniqueLocal' in the list of evaluation code for the email field. You
would do that if you want to make sure that no email address is put into the database twice. Then you
may specify that as:

create.evalValues {
 email = uniqueLocal, email
}

Then you set the evaluation error messages like this:

evalErrors.email {
 uniqueLocal = Apparently you're already registered with this email address!
 email = This is not a proper email address!
}

If the error happens to be that the email address already exists, the field
###EVAL_ERROR_FIELD_email### will be substituted with the error message "Apparently you're
already registered with this email address!".

Passing default values to a form
You can pass default values to a form by the same syntax as you use in the forms. For instance this
would set the name and email address by default:

...?FE[tt_address][name]=Mike%20Tyson&FE[tt_address]

194

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

[email]=mike@trex.us&doNotSave=1&noWarnings=1

Notice the blue value names are the field values (must be rawurlencoded. In javascript this function is
called escape()) and the red values are necessary if you want to NOT save the record by this action and
NOT to display error messages if some fields which are required is not passed any value.

List of eval-codes
Eval-code: Description:

uniqueGlobal This requires the value of the field to be globally unique, which means it must not exist in the
same field of any other record in the current table.

uniqueLocal This is like uniqueGlobal, but the value is required to be unique only in the PID of the record.
Thus if two records has different pid values, they may have the same value of this field.

twice This requires the value of the field to match the value of a secondary field name [field
name]_again sent in the incoming formdata. This is useful for entering password. Then if
your password field is name "user_pass" then you simple add a second field name
"user_pass_again" and then set the 'twice' eval code.

email Requires the field value to be an email address at least on the form [name]@*[domain].[tld]

required Just simple required (trimmed value). 0 (zero) will evaluate to false!

atLeast
atMost

Specifies a minimum / maximum of characters to enter in the fields.
Example, that requires at least 5 characters: atleast [5]

inBranch inBranch requires the value (typically of a pid-field) to be among a list of page-id's (pid's)
specified with the inBranch parameters. The parameters are given like [root_pid; depth;
beginAt]
Example, which will return a list of pids one level deep from page 4 (included): inBranch [4;1]

unsetEmpty This evaluation does not result in any error code. Only it simply unsets the field if the value
of the field is empty. Thus it'll not override any current value if the field value is not set.

[tsref:(script).fe_adminLib.evalErrors.(field).(evalCode)]

Uploading files
fe_adminLib is able to receive files in the forms. However there currently are heavy restrictions on how
that is handled. Ideally the proces would be handled by the t3lib_tcemain class used in the backend. In
fact this could have been deployed but is not at this stage. The good thing about tcemain.php is that it
perfectly handles the copying/deletion of files which goes into a certain field and even handles it
independent of the storing method be it a list of filenames or use MM-relations to records (see
tables.php section in 'Inside TYPO3').

This is how files are handled by fe_adminLib and the restrictions that apply currently:

• You can upload files ONLY using "create" mode of a record. In any case you cannot edit currently
attached files (this may be improved in the future). You can however use 'delete' mode.

• However you can use PREVIEW mode with 'create'. Works like this: if the mode is preview the
temporary uploaded file is copied to a unique filename (prepended with the tablename) in
typo3temp/ folder. Then the field value is set to the filenames in a list. When the user approves the
content of the preview those temporary files are finally copied to the uploads/* folder (or wherever
specified in TCA). Limitations are that the temporary files in typo3temp/ are NOT deleted when
copied to the real upload-folder (this may be improved) and certainly not if the user aborts (can't be
improved because the user may go anywhere). If the user cancels the preview in order to change
values, the files will need to be uploaded again (this may be improved).

• The TCA extensions allowed for the field is ignored! However you can specify a list of extensions of
allowed for the files in the .parseValues property of fe_adminLib

• The TCA filesize limitation for the field is ignored! However you can specify a max file size in kb in
the .parseValues property of fe_adminLib

• Works only on fields configured for comma-list representation of the filenames (non-MM, see

195

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

"Inside TYPO3" document on MM relations for files).

It's recommended to use a dedicated folder for files administered by the fe_adminLib. The TYPO3
testsite does that by using the uploads/photomarathon/ folder for images. This makes it much easier to
clean up the mess if files and their relations to the records are broken.

field names for files

Lets say you have a field named "picture" of a table name "user_cars", the form-element should look
like this:

<input type="file" name="FE[user_cars][picture][]">

If you wish to upload multiple files to that field, the form-elements should look like:

<input type="file" name="FE[user_cars][picture][]">
<input type="file" name="FE[user_cars][picture][]">
<input type="file" name="FE[user_cars][picture][]">

Use blob-types for the file-fields and reserve a minimum of 32 characters pr. filename.

Note: Make sure to always add the last square brackets ('...[]') to the field name! Otherwise it will not
work!

tipafriendLib.inc

196

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Files:
File: Description:

tipafriendLib.inc Main class used to display the Tip-a-Friend form.
Call it from a USER cObject with 'userFunc = user_tipafriend->main_tipafriend'

tipafriend_template.tmpl Example template file.

Example:
(See static_template 'plugin.tipafriend' for a working configuration)

Static template
plugin.tipafriend

tipafriendLib.inc properties
Property: Data type: Description: Default:

templateFile resource The template-file.
See example in 'media/scripts/tipafriend_template.tmpl'

code string
/stdWrap

Code to define, what the script does. Case sensitive.

defaultCode string The default code (see above) if the value is empty. By default
it's not set and a help screen will appear

wrap1 ->stdWrap Global Wrap 1. This will be split into the markers
###GW1B### and ###GW1E###. Don't change the input value
by the settings, only wrap it in something.

Example:
wrap1.wrap = |

wrap2 ->stdWrap Global Wrap 2 (see above)

color1 string
/stdWrap

Value for ###GC1### marker (Global color 1)

color2 string
/stdWrap

Value for ###GC2### marker (Global color 2)

color3 string
/stdWrap

Value for ###GC3### marker (Global color 3)

typolink ->typolink TypoLink configuration for the TIPLINK to the TIPFORM
page. .additionalParams is added the parameter "&tipUrl="

htmlmail boolean If set, the page is fetched as HTML and send in HTML (a
plain text version is sent as well).

[tsref:(script).tipafriend]

plaintextLib.inc
Files:
File: Description:

plaintextLib.inc Main class used to display plain text content.
Call it from a USER cObject with 'userFunc = user_plaintext->main_plaintext'

plaintext_content.tmpl Example template file.

Example:
(See static_template 'plugin.alt.plaintext' for a working configuration)

197

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

Static template
plugin.alt.plaintext

plaintextLib.inc properties
Property: Data type: Description: Default:

siteUrl url Url of the site.

defaultOutput untrimmed string Default output if CType is not rendered.

uploads.header untrimmed string Header for uploads.

images.header untrimmed string Header for images.

images.captionHeader untrimmed string Header for image captions.

images.linkPrefix untrimmed string Prefix for image-links.

.header

defaultType int Defines which type to use as default.

date date-config For header date.

datePrefix untrimmed string Prefix for header date.

linkPrefix untrimmed string Prefix for header links.

[1-5].preLineLen int Length of line before header.

[1-5].postLineLen int Length of line after header.

[1-5].preBlanks int Number of blank lines before header.

[1-5].postBlanks int Number of blank lines after header.

[1-5].stdWrap ->stdWrap for header text.

[1-5].preLineChar string Character to pre-line.

[1-5].postLineChar string Character to post-line.

[1-5].preLineBlanks int Number of blank lines between header and pre-line.

[1-5].postLineBlanks int Number of blank lines between header and post-line.

[1-5].autonumber boolean If set, a number is prepended every header. The number
corresponds to the content element number in the select.

[1-5].prefix untrimmed string Header string prefix.

bulletlist.[0-3].bullet untrimmed string Bullet for bullet list, layout [0-3].

bulletlist.[0-
3].secondRow

untrimmed string If set, this is used for lines on the second row of bullet-
lists.

menu cObject cObject to render menu. The output is stripped for tags
and the links is extracted. Further all
 chars are
converted to chr(10).

shortcut cObject cObject to render other elements. See config below which
simply uses this object to render more tt_content
elements as plaintext.

bodytext.stdWrap ->stdWrap stdWrap for body-text. See config example below.

userProc function name Lets you process the output of each content element
before it finally is returned. Property "parentObj" of the
conf-array holds a references to the plainText object
calling the function.

[tsref:(script).plaintextLib]

Datatype 'untrimmed string' means that you can enter a string as usual, but if you enter a value
between two vertical lines, that value will be used and NOT trimmed. Normally values are trimmed.

Example:
lib.renderObj = USER

198

TypoScript Reference - doc_core_tsref Appendix A – media/scripts/ Plugins

lib.renderObj.userFunc = user_plaintext->main_plaintext
lib.renderObj {
 header.defaultType = 1
 header.date = D-m-Y
 header.datePrefix = |Date: |
 header.linkPrefix = | - Headerlink: |
 header.1.preLineLen = 76
 header.1.postLineLen = 76
 header.1.preBlanks = 1
 header.1.stdWrap.case = upper

 header.2 < .header.1
 header.2.preLineChar = *
 header.2.postLineChar = *

 header.3.preBlanks = 2
 header.3.postBlanks = 1
 header.3.stdWrap.case = upper

 header.4 < .header.1
 header.4.preLineChar= =
 header.4.postLineChar= =
 header.4.preLineBlanks= 1
 header.4.postLineBlanks = 1

 header.5.preBlanks = 1
 header.5.autonumber = 1
 header.5.prefix = |: >> |

 siteUrl = {$plugin.alt.plaintext.siteUrl}
 defaultOutput (
|
[Unrendered Content Element; ###CType###]
|
)

 uploads.header = |DOWNLOADS:|

 images.header = |IMAGES:|
 images.linkPrefix = | - Imagelink: |
 images.captionHeader = |CAPTION:|

 bulletlist.0.bullet = |* |

 bulletlist.1.bullet = |# |

 bulletlist.2.bullet = | - |

 bulletlist.3.bullet = |> |
 bulletlist.3.secondRow = |. |
 bulletlist.3.blanks = 1

 menu = <tt_content.menu.20
 shortcut = <tt_content.shortcut.20
 shortcut.0.conf.tt_content = <lib.renderObj
 shortcut.0.tables = tt_content

 bodytext.stdWrap.parseFunc.tags {
 link < styles.content.parseFunc.tags.link
 typolist = USER
 typolist.userFunc = user_plaintext->typolist
 typolist.siteUrl = {$plugin.alt.plaintext.siteUrl}
 typolist.bulletlist < temp.renderObj.bulletlist
 typohead = USER
 typohead.userFunc = user_plaintext->typohead
 typohead.siteUrl = {$plugin.alt.plaintext.siteUrl}
 typohead.header < temp.renderObj.header
 typocode = USER
 typocode.userFunc = user_plaintext->typocode
 typocode.siteUrl = {$plugin.alt.plaintext.siteUrl}
 }
}

199

TypoScript Reference - doc_core_tsref Appendix B – Standard Templates

Appendix B – Standard Templates
static_template

This section of the TypoScript reference is used to introduce the standard templates that come with
TYPO3 in the static table "static_template".

In newer versions of TYPO3 the static templates are an own system extension. Old records in the
database table static_template are NOT changed from version to version! Still changes may appear!

Media
The standard templates use some standard media-files, like gif-images and fonts. These are situated in
the folder "typo3/sysext/cms/tslib/media/" (in older versions in "media/") relative to the root of the
TYPO3-website.

200

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

Appendix C – PHP include scripts
Introduction

Although you can do very much with TypoScript itself, it can sometimes be a much more flexible
solution to include a PHP-script you write on your own. But you must understand and respect some
circumstances. For example the caching system: When a page is shown with TYPO3 it's normally
cached afterwards in the SQL-database. This is done to ensure a high performance when delivering the
same page the next time. But this also means that you can only make custom code from your include
files if you differ your output based on the same conditions that the template may include! For
example you cannot just return browser-specific code to TypoScript if not the template also
distinguishes between the actual browsers. If you do, the cache will cache the page with the browser-
specific HTML-code and the next hit by another browser will trigger the cache to return a wrong page.
If the condition is correctly setup "another browser"-hit will instead render another page (which will
also be cached but tagged with the other browser!) and the two browsers will receive different pages
but still the pages will be cached.

TypoScript Configuration
The following objects are related to the direct inclusion of PHP code inside templates.

PHP_SCRIPT
This includes a PHP-script. You should not name the script ".php" but rather ".inc" as it's meant to be
included and not executed on it's own.

NOTE: This option is ignored if $TYPO3_CONF_VARS['FE']['noPHPscriptInclude']=1; is set in
localconf.php.

Property: Data type: Description: Default:

file resource
/stdWrap

File that will be included. This file must be valid PHP-code!
It's included with "include()";

Directions:
1) All content must be put into $content. No output must be
echo'ed out!

2) Call $GLOBALS['TSFE']->set_no_cache(), if you want to
disable caching of the page. Set this during development! And
set it, if the content you create may not be cached.

NOTE: If you have a parsing error in your include script the
$GLOBALS['TSFE']->set_no_cache() function is NOT executed
and thereby does not disable caching. Upon a parse-error you
must manually clear the page-cache after you have corrected
your error!
3) the array $conf contains the configuration for the
PHP_SCRIPT cObject. Try debug($conf) to see the content
printed out for debugging!
See the appendix later in this manual for an introduction to
writing your own PHP include-scripts.

stdWrap ->stdWrap

[tsref:(cObject).PHP_SCRIPT]

PHP_SCRIPT_INT
(see PHP_SCRIPT)

Property: Data type: Description: Default:

file resource
/stdWrap

File that will be included. This file must be valid PHP-code! It's
included with "include()";

201

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

Property: Data type: Description: Default:

Purpose:
This basically works like PHP_SCRIPT. But the vital difference is
that inserting a PHP_SCRIPT_INT (internal opposed to
external, see below) merely inserts a divider-string in the code
and then serializes the current cObj and puts it in the
$GLOBALS['TSFE']->config['INTincScript']-array. This array is
saved with the cached page-content.
Now, the point is, that including a script like this lets you avoid
disabling pagecaching. The reason is that the cached page
contains the divider string and when a "static" page is fetched
from cache, it's divided by that string and the dynamic content
object is inserted.
This is the compromise option of all three PHP_SCRIPT-
cObjects, because the page-data is all cached, but still the
pagegen.php script is included, which initializes all the classes,
objects and so. What you gain here is an environment for your
script almost exactly the same as PHP_SCRIPT because your
script is called from inside a class tslib_cObj object. You can
work with all functions of the tslib_cObj-class. But still all the
"static" page content is only generated once, cached and only
your script is dynamically rendered.

Rules:
- calls to $GLOBALS['TSFE']->set_no_cache() and
$GLOBALS['TSFE']->set_cache_timeout_default() makes no sense
in this situation.
- parsing errors do not interfere with caching
- Be aware that certain global variables may not be set as usual
and be available as usual when working in this mode. Most
scripts should work out-of-the-box with this option though.
- Dependence and use of LOAD_REGISTER is fragile because
the PHP_SCRIPT_INT is not rendered until after the cached
content and due to this changed order of events, use of
LOAD_REGISTER may not work.
- You can not nest PHP_SCRIPT_INT and PHP_SCRIPT_EXT in
PHP_SCRIPT_INT. You may nest PHP_SCRIPT cObjects
though.

includeLibs list of resource This is a comma-separated list of resources that are included as
PHP-scripts (with include_once() function) if this script is
included.
This is possible to do because any include-files will be known
before the scripts are included. That's not the case with the
regular PHP_SCRIPT cObject.

stdWrap ->stdWrap

[tsref:(cObject).PHP_SCRIPT_INT]

202

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

PHP_SCRIPT_EXT
(see PHP_SCRIPT)

Property: Data type: Description: Default:

file resource
/stdWrap

File that will be included. This file must be valid PHP-code! It's
included with "include()";

Purpose:
This works like PHP_SCRIPT_INT, because a divider string is also
inserted in the content for this kind of include-script. But the
difference is that the content is divided as the very last thing before
it's output to the browser.
This basically means that PHP_SCRIPT_EXT (external, because it's
included in the global space in index_ts.php file!!) can output data
directly with echo-statements!
This is a very "raw" version of PHP_SCRIPT because it's not
included from inside an object and you have only very few standard
functions from TYPO3 to call.
This is the fastest option of all three PHP_SCRIPT-cObjects, because
the page-data is all cached and your dynamic content is generated
by a raw php-script.

Rules:
- All content can be either 1) echo'ed out directly, or 2) returned in
$content.
- calls to $GLOBALS['TSFE']->set_no_cache() and
$GLOBALS['TSFE']->set_cache_timeout_default() makes no sense in
this situation.
- parsing errors do not interfere with caching
- In the global name-space, the array $REC contains the current
record when the file was "inserted" on the page, and $CONF-array
contains the configuration for the script.
- Don't mess with the global vars named $EXTiS_*

includeLibs list of resource This is a comma-separated list of resources that are included as
PHP-scripts (with include_once() function) if this script is included.
This is possible to do because any include-files will be known before
the scripts are included. That's not the case with the regular
PHP_SCRIPT cObject.

stdWrap ->stdWrap

[tsref:(cObject).PHP_SCRIPT_EXT]

Including your script
Your script is included by a function, PHP_SCRIPT, inside the class "tslib_cObj" in the
"tslib_content.php" script. Thereby your file is a part of this object (tslib_cObj) and function. This is
why you must return all content in the variable "$content" and any TypoScript-configuration is
available from the array "$conf" (it may not be set at all though so check it with is_array()!)

$conf
The array $conf contains the configuration for the PHP_SCRIPT cObject. Try debug($conf) to see the
content printed out for debugging!

$content
Return all content in this variable.

Remember, don't output anything (but debug code) in your script!

White spaces
Because nothing is sent off to the browser before everything is rendered and returned to index_ts.php
which originally set of the rendering process, you must ensure that there's no whitespace before and
after your <?...?> tags in your include- or library-scripts!

203

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

$GLOBALS['TSFE']->set_no_cache()
Call the function $GLOBALS['TSFE']->set_no_cache(), if you want to disable caching of the page. Call
this during development! And call it, if the content you create may not be cached.

Note: If you make a syntax error in your script that keeps PHP from executing it, then the
$GLOBALS['TSFE']->set_no_cache() function is not executed and the page is cached! So in these
situations, correct the error, clear the page-cache and try again. This is true only for PHP_SCRIPT and
not for PHP_SCRIPT_INT and PHP_SCRIPT_EXT which are rendered after the cached page!

Example:
$GLOBALS['TSFE']->set_no_cache();

$this->cObjGetSingle(value , properties)
Gets a content-object from the $conf-array. (See the section below named "Case story" on how to use
this!)

Example:
$content = $this->cObjGetSingle($conf['image'], $conf['image.']);

This would return any IMAGE-cObject at the property "image" of the conf-array for the include-script!

$this->stdWrap(value, properties)
stdWrap's the content "value" due to the configuration of the array "properties".

Example:
$content = $this->stdWrap($content, $conf['stdWrap.']);

This will stdWrap the content with the properties of ".stdWrap" of the $conf-array!

Internal Vars in the main frontend object, TSFE (TypoScript Front End)
There are some variables in the global object, TSFE, you might need to know about. These ARE ALL
READ-ONLY!! (Read: Don't change them!) See the class tslib_fe for the full descriptions.

If you for instance want to access the variable "id", you can do so by writing: $GLOBALS['TSFE']->id

Var: PHP-Type: Description: Default:

id int The page id

type int The type

page array The pagerecord

fe_user object The current front-end user.
Userrecord in $GLOBALS['TSFE']->fe_user->user, if any login.

loginUser boolean Flag indicating that a front-end user is logged in. 0

rootLine array The rootLine (all the way to tree root, not only the current
site!). Current site root line is in $GLOBALS['TSFE']->tmpl-
>rootLine

sys_page object The object with pagefunctions (object) See t3lib/page.php

gr_list string (list) The group list, sorted numerically. Group -1 = no login

beUserLogin boolean Flag that indicates if a Backend user is logged in! 0

204

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

Global vars
Var: PHP-Type: Description: Default:

BE_USER object The back-end user object (if any). not set

TYPO3_CONF_VARS array TYPO3 Configuration.

TSFE object Main frontend object.

Case story
This is a case story of how to use include-scripts.

In this situation we would like to use some libraries of our very own, not part of TYPO3. Therefore we
use the feature of including a library at the very beginning of the page-parsing.

First we put this TypoScript line in the "Setup"-field of the template:

config.includeLibrary = fileadmin/scripts/include.inc

The file include.inc is now included (in typo3/sysext/cms/tslib/pagegen.php). In this case it looks like
this:

file: fileadmin/scripts/include.inc

<?
...
include('fileadmin/scripts/hello_world.inc');
include('fileadmin/scripts/other_library.inc');
...

?>
As you can see, this file includes our library "hello_world" and some other libraries too!

The file hello_world.inc looks like this:

file: fileadmin/scripts/hello_world.inc

<?
class hello_world {

function theMessage() {
return "Hello World";

}
}
?>

So far nothing has happened, except our libraries are included, ready for use.

Now we need to use the outcome of the class hello_world somewhere on a page. So in the TypoScript
code we setup a content-object that includes the third script:

page.100 = PHP_SCRIPT
page.100.file = fileadmin/scripts/surprise.inc

surprise.inc looks like this:

file: fileadmin/scripts/surprise.inc

<?
$hello_world_object = new hello_world; // New instance is created
$contentBefore = $this->cObjGetSingle($conf['cObj'], $conf['cObj.']);
$content = $contentBefore . $hello_world_object->theMessage();
$content = $this->stdWrap($content, $conf['stdWrap.']);

?>

205

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

Line 1: The PHP-object $hello_world_object is created.

Line 2: This fetches the content of a cObject, "cObj", we defined

Line 3: The result of line 2 is concatenated with the result of the "theMessage"-function of the
$hello_world_object object

Line 4: Finally the content is stdWrap'ed with the properties of ".stdWrap" of the $conf-array.

The output:

With this configuration -

page.100 = PHP_SCRIPT
page.100.file = fileadmin/scripts/surprise.inc

- the output will look like this:

Hello World

With this configuration -

page.100 = PHP_SCRIPT
page.100 {

file = fileadmin/scripts/surprise.inc
cObj = TEXT
cObj.value = Joe says:

}

- the output will look like this:

 Joe says: Hello World

With this configuration -

page.100 = PHP_SCRIPT
page.100 {

file = fileadmin/scripts/surprise.inc
cObj = TEXT
cObj.value = Joe says:
stdWrap.wrap = |
stdWrap.case = upper

}

- the output will look like this:

JOE SAYS: HELLO WORLD

End of lesson.

Storing user-data or session-data
Doing so is quite simple with TYPO3.

Userdata is data, that follows login users. As soon as a user, who is logged in, logs out, this data is no
more accessible and cannot be altered.

Session data is data, that follows the user currently browsing the site. This user may be a logged in
user, but his session-data is bound to the "browsing-session" and not to the user-id of his. This means,
that the very same person will carry this data still, even if he logs out. As soon as he closes his
browser, his data will be gone though.

Also you should know, that session-data has a default expire-time of 24 hours.

206

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

Retrieving and storing user-/session-data is done by these functions:

$GLOBALS['TSFE']->fe_user->getKey(type, key)
"type" is either "user" or "ses", which defines the data-space, user-data or session-data

"key" is the "name" under which your data is stored. This may be arrays or normal scalars.

Note that the key "recs" is reserved for the built-in "shopping-basket". As is "sys" (for TYPO3 standard
modules and code)

Example:
if ($GLOBALS['TSFE']->loginUser) {

$myData = $GLOBALS['TSFE']->fe_user->getKey('user', 'myData');
} else {

$myData = $GLOBALS['TSFE']->fe_user->getKey('ses', 'myData');
}

This gets the stored data with the key "myData" from the user-data, but if no user is logged in, it's
fetched from the session data instead.

$GLOBALS['TSFE']->fe_user->setKey(type, key, data)
"type" is either "user" or "ses", which defines the data-space, user-data or session-data

"key" is the "name" under which your data is stored.

Note that the key "recs" is reserved for the built-in "shopping-basket". As is "sys" (for TYPO3 standard
modules and code)

"data" is the variable, you want to store. This may be arrays or normal scalars.

Example:
$myConfig['name'] = 'paul';
$myConfig['address'] = 'Main street';
$GLOBALS['TSFE']->fe_user->setKey('ses', 'myData', $myConfig);

This stores the array $myConfig under the key "myData" in the session-data. This lasts as long as
"paul" is surfing the site!

Using the built in "shopping basket"
TYPO3 features a shopping basket for the session-data.

When you submit data from forms (or by querystring) (post/get-method) in the array "recs" it's stored
in the session-data under the key recs.

The syntax is like this:

recs[table_name][uid_of_record]

Example:

This form-element will change the registered value of record with uid=345 from the "tt_products" table
in typo3. Please note, that the record itself is NOT in any way modified, only the "counter" in the
session-data indicating the "number of items" from the table is modified.

<input name="recs[tt_products][345]">

Note on checkboxes:

When you are creating forms with checkboxes, the value of the checkbox is sent by MSIE/Netscape

207

TypoScript Reference - doc_core_tsref Appendix C – PHP include scripts

ONLY if the checkbox is checked! If you want a value sent in case of a disabled checkbox, include a
hidden formfield of the same name just before the checkbox!

Example:
<INPUT type="hidden" name="recs[tt_content][345]" value="0">
<INPUT type="checkbox" name="recs[tt_content][345]" value="1">

Clearing the "basket"
This will clear the basket:

 <INPUT type="hidden" name="recs[clear_all]" value="1">

208

TypoScript Reference - doc_core_tsref Appendix D – index.php

Appendix D – index.php
Introduction

index.php is the main script for showing pages with TYPO3 / TypoScript. This page provides some
information about this script and how to use it.

Normally you request pages by setting a value for "id" and possibly for "type".

"id" refers to a page. This is an integer. If a string is supplied, it's regarded as an alias and the
corresponding page is found.

"type" defines which "type" the page is of. It is always an integer (0-255). If "type" is not set, it's
regarded to be zero. "type" is used to build framesets. For example the frameset could have "type=0"
(or nothing) and the pages in the various frames could have "type=1" and "type=2" and "type=3". In
TypoScript you define a PAGE-object for each type so TYPO3 renders different pages depending on
the type-value. Normally the PAGE-object displaying the page content is named "page" and has the
"type=1" value.

Submitting data to index.php
You can submit data to index.php for several reasons. These are the standard features included in the
script:

Login/Logout:
Detected by class "t3lib_userauth" looking for the var "logintype". If this is set, authentication is done.

Input may be of both GET and POST method.

Login:

logintype = "login"

pass = the password

user = the username

pid = the id of the page where the user-archive is found. You don't need this value if
$TYPO3_CONF_VARS['FE']['checkFeUserPid'] is set.

(redirect = Not used)

Logout:

logintype = "logout"

See the cObject FORMS for an in-depth description

Search
Detected by the cObject SEARCHRESULT, which proceeds with a search if "sword" && "scols" are set.
The search MUST submit to a page with such a content-object on it!

Input may be of both GET and POST method.

Search:

sword = the searchwords

209

TypoScript Reference - doc_core_tsref Appendix D – index.php

stype = the search type

scols = the tables/columns to search

locationData = Reference to the record carrying the form. Used to look up the original
startingpoint of the search (ONLY POST-method)

(redirect = Not used)

scount = Used by the searchresult to indicate the number of results

spointer = Used by the searchresult to indicate the startingpoint for the next number of
results.

See the cObject SEARCHRESULT for a complete description.

Emailforms
Detected by the mainscript "index.php" looking for the var "formtype_mail" to be set (could be the
submit-button).

Input MUST be POST method. And the REFERER and HTTP_HOST must match. Also the
locationData var must be sent and at least point to the uid of a readable page.

Database-submit
Detected by the mainscript "index.php" looking for the var "formtype_db" to be set. (could be the
submit-button)

Input MUST be POST method. And the REFERER and HTTP_HOST must match. To setup a script to
handle the input, refer to the FE_DATA object.

See examples from the typo3/sysext/cms/tslib/media/scripts/ folder, e.g. "guest_submit.inc".

210

	TypoScript Reference
	Introduction
	About this document
	What's new
	Credits
	Feedback
	General information
	Case sensitivity
	Version numbers

	Data types
	Introduction
	Data types reference
	Data types: Object types

	Objects and properties
	Introduction
	Reference to objects
	Calculating values (+calc)
	Example:

	"... /stdWrap"
	Example:

	optionSplit
	Examples:
	Subparts ||

	Example:
	Example:
	Parts |*|

	Example:
	Example:
	"1: The priority is last, first, middle"
	"2: If the middle-value is empty, the last part of the first-value is repeated"

	Example:
	"3: If the first- and middle value are empty, the first part of the last-value is repeated before the last value"

	Example:
	"4: The middle value is rotated"

	Example:

	Conditions
	Condition reference
	General syntax
	Example:

	General notes
	Examples:

	browser
	Syntax:
	Values and comparison:

	Examples:

	version
	Syntax:
	Comparison:

	Examples:

	system
	Syntax:
	Values and comparison:

	Examples:

	device
	Syntax:
	Values and comparison:

	Examples:

	useragent
	Syntax:
	Values and comparison:

	Examples:
	WAP-agents:

	language
	Syntax:
	Comparison:

	IP
	Syntax:
	Comparison:

	Examples:

	hostname
	Syntax:
	Comparison:

	hour
	Syntax:
	Comparison:

	Examples:

	minute
	Syntax:
	Comparison:

	month
	Syntax:
	Comparison:

	year
	Syntax:
	Comparison:

	dayofweek
	Syntax:
	Comparison:

	dayofmonth
	Syntax:
	Comparison:

	dayofyear
	Syntax:
	Comparison:

	usergroup
	Syntax:
	Comparison:

	Example:

	loginUser
	Syntax:
	Comparison:

	Example:
	Example:

	page
	Syntax:

	[page|field = value]
	Comparison:

	This condition checks values of the current page record. While you can achieve the same with TSFE:[field] conditions in the frontend, this condition is usable in both frontend and backend.
	Example:

	This condition matches, if the layout field is set to 1:
	[page|layout = 1]
	treeLevel
	Syntax:
	Comparison:

	Example:

	PIDinRootline
	Syntax:
	Comparison:

	Example:

	PIDupinRootline
	Syntax:
	Comparison:

	compatVersion
	Syntax:
	Comparison:

	globalVar
	Syntax:
	Comparison:

	Examples:

	globalString
	Syntax:
	Comparison:

	Examples:
	IMPORTANT NOTE ON globalVar and globalString:

	Examples:
	Examples:

	userFunc
	Syntax:
	Comparison:

	Example:

	Functions
	stdWrap
	Content-supplying properties of stdWrap

	imgResource
	Example:

	imageLinkWrap
	Example:

	numRows
	select
	split
	Example:

	replacement
	Example:

	if
	Explanation
	Example:

	typolink
	Using link handlers

	textStyle
	encapsLines
	Example:
	Example:

	tableStyle
	Example:

	addParams
	Example:

	filelink
	Example:

	round
	Examples:

	numberFormat
	Examples:

	parseFunc
	Example:

	makelinks
	tags
	Example:

	HTMLparser
	HTMLparser_tags
	cache
	Examples:

	Setup
	Top-level objects
	The "plugin" TLO
	"CONFIG"
	"CONSTANTS"
	"PAGE"
	"FE_DATA"
	"FE_TABLE"
	"FRAMESET"
	"FRAME"
	Example of a simple frameset with a topframe and content-frame:

	"META"
	"CARRAY"

	Content Objects (cObject)
	PHP information
	REUSING cOBJECTS
	NOTE:
	Example:

	HTML
	Example:
	Example:
	Example:

	TEXT
	Example:
	Example:
	Example:

	COBJ_ARRAY (COA, COA_INT)
	Example:

	FILE
	Example:

	IMAGE
	Example:

	IMG_RESOURCE
	CLEARGIF
	Example:

	CONTENT
	Example (of the CONTENT-obj):
	Example (of record-renderObj's):

	RECORDS
	Example:

	HMENU
	Example:
	The .special property
	special.directory
	special.list
	special.updated
	Example for special = updated:

	special.rootline
	Example for special = rootline:

	special.browse
	special.keywords
	special.language
	Example:

	special.userdefined
	How-to:

	special.userfunction
	Example: Creating hierarchical menus of custom links

	CTABLE
	Example:

	OTABLE
	Example:

	COLUMNS
	HRULER
	IMGTEXT
	Example:

	CASE
	Example:

	LOAD_REGISTER
	RESTORE_REGISTER
	FORM
	Preselected item with type "select" and "radio":
	Property override:
	Displaying the form:
	You must set the property "layout". If you do not set it, the form will not be rendered! For more information see the example and the table below.
	Example:

	temp.mailform = FORM
	temp.mailform {
	dataArray {
	10.label = Name:
	10.type = name=input
	20.label = Nachricht:
	20.type = nachricht=textarea,40,10
	100.type = submit=submit
	100.value = Absenden
	}
	recipient = info@example.com
	layout = <div class="some-class">###LABEL### ###FIELD###</div>
	}
	Correct return-email:
	Special evaluation
	Examples:
	Example: Login
	Example: Mailform

	SEARCHRESULT
	Example:
	Search syntax
	Examples:

	Queries to the examples

	USER and USER_INT
	TEMPLATE
	Example:

	FLUIDTEMPLATE
	Example:

	MEDIA
	SWFOBJECT
	QTOBJECT
	MULTIMEDIA
	Meaningful parameters for .params
	au, wav, mp3:
	avi, mov, asf, mpg, wmv:
	swf, swa, dcr:
	class:
	Example for QuickTime (mov):

	SVG
	Example:

	EDITPANEL
	Example

	GIFBUILDER
	GIFBUILDER
	NOTE (+calc)
	The "_GIFBUILDER" Top Level Object

	Object names in this section
	TEXT
	SHADOW
	EMBOSS
	OUTLINE
	BOX
	ELLIPSE
	[tsref:->GIFBUILDER.(GBObj).ELLIPSE]
	IMAGE
	EFFECT
	Syntax:
	Example:

	WORKAREA
	CROP
	SCALE
	ADJUST
	Example:

	NON-GifBuilderObj
	IMGMAP

	MENU Objects
	Common properties
	Common item states for TMENU, GMENU and IMGMENU series:
	[menuObj].sectionIndex
	The data-record /Behind the scene

	GMENU
	Additional properties for Menu item states

	GMENU_LAYERS / TMENU_LAYERS
	Example:

	GMENU_FOLDOUT
	Example:

	TMENU
	TMENUITEM
	IMGMENU
	IMGMENUITEM
	JSMENU
	JSMENUITEM
	Example:

	Appendix A – media/scripts/ Plugins
	media/scripts/ in general
	About 'example templates'

	fe_adminLib.inc
	Files:
	Description
	Example:

	Static template
	Incoming GET or POST vars:
	fe_adminLib.inc properties
	Main subparts
	'infomail' Email subparts
	'infomail' Email markers
	FORM conventions
	Common markers
	Evaluation of the form fields
	Passing default values to a form
	List of eval-codes
	Uploading files

	tipafriendLib.inc
	Files:
	Example:
	Static template
	tipafriendLib.inc properties

	plaintextLib.inc
	Files:
	Example:
	Static template
	plaintextLib.inc properties
	Example:

	Appendix B – Standard Templates
	static_template
	Media

	Appendix C – PHP include scripts
	Introduction
	TypoScript Configuration
	PHP_SCRIPT
	PHP_SCRIPT_INT
	PHP_SCRIPT_EXT

	Including your script
	$conf
	$content
	White spaces
	$GLOBALS['TSFE']->set_no_cache()
	Example:

	$this->cObjGetSingle(value , properties)
	Example:

	$this->stdWrap(value, properties)
	Example:

	Internal Vars in the main frontend object, TSFE (TypoScript Front End)
	Global vars

	Case story
	Storing user-data or session-data
	$GLOBALS['TSFE']->fe_user->getKey(type, key)
	Example:

	$GLOBALS['TSFE']->fe_user->setKey(type, key, data)
	Example:

	Using the built in "shopping basket"
	Example:
	Example:
	Clearing the "basket"

	Appendix D – index.php
	Introduction
	Submitting data to index.php
	Login/Logout:

	Search
	Emailforms
	Database-submit

